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Abstract: This paper is concerned with stochastic model predictive control for Markovian
jump linear systems with additive disturbance, where the systems are subject to soft constraints
on the system state and the disturbance sequence is finitely supported with joint cumulative
distribution function given. By resorting to the maximal disturbance invariant set of the system,
a model predictive control law is given based on a dynamic controller which is with guaranteed
recursive feasibility and ensures the probabilistic constraints on the states. By optimizing the
volume of the disturbance invariant set, the dynamic controller is given. The closed loop system
under this control law is proven to be stable in the mean square sense. Finally, a numerical
example is given to illustrate the developed results.

1. INTRODUCTION

Persistent efforts in stochastic control theory during the
past decades make it increasingly mature. However, tradi-
tional stochastic control usually does not take constraints
into account. Since in real applications, especially in in-
dustrial process control, constraints are very common due
to performance requirements and limitations on process
equipment. When dealing with constraints, model predic-
tive control is usually a good choice because of its special
receding horizon implementation mechanism. So stochas-
tic model predictive control (SMPC) has been attracting
more and more attention, such as Li et al. [2002], Cannon
et al. [2009a,b,c], Kouvaritakis et al. [2010], Cannon et al.
[2011], Hokayem et al. [2012], Cannon et al. [2012].

Probabilistic constraints are a common feature in SMPC.
For example, stress cycles experienced by the blades in
wind turbines are subject to a probabilistic constraint in
order to achieve a specified fatigue life (see Cannon et al.
[2009c]). An MPC controller is developed for SISO systems
with chance constraints on the outputs in Li et al. [2002].
By designing a probability-invariant set, soft constraints
can be guaranteed for systems with stochastic multiplica-
tive uncertainty in Cannon et al. [2009b]. SMPC for sys-
tems with both multiplicative and additive stochastic un-
certainty has been developed using tubes in Cannon et al.
[2011]. Another type of soft constraint, say, the number of
violations of constraints in a given time horizon is less than
a specified integer, is considered in Cannon et al. [2009a,c].
Use of probabilistic distributions of disturbance has been
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explicitly made to deal with probabilistic constraints on
system states in Kouvaritakis et al. [2010], in this way the
conservatism can be reduced significantly. For the case in
which the system state can not be measured, SMPC with
output feedback has been investigated in Hokayem et al.
[2012], Cannon et al. [2012].

It is noted that the above results all deal with systems with
continuous state. To the best knowledge of the authors,
little literature is concerned with probabilistic constrained
SMPC for hybrid systems, especially, for Markovian jump
linear systems (MJLS). Extensive applications of MJLS
in economic systems, aircraft control systems, networked
control systems, etc. (see do Valle Costa et al. [2005],
Zou et al. [2010] and references therein) make the study
of probabilistic constrained SMPC for MJLS a very at-
tractive topic. Furthermore by dealing with constraints
as soft constraints rather than hard constraints, control
performance can be improved significantly, and the domain
of attraction can be enlarged considerably. Motivated by
these mentioned above, SMPC for MJLS with finitely
supported additive disturbance and soft constraints on
system states is studied in this paper.

The controller design is based on a dynamic controller
and the maximal disturbance invariant set (MDIS) for the
resulting augmented system. A recursively feasible MPC
controller guaranteeing the soft constraints on system
states is given by steering one step ahead augmented
system state into the MDIS. And the dynamic controller
dynamics are designed by optimizing the volume of the
MDIS. The closed loop system under this controller is
proved to be mean square stable.

The paper is organized as follows. The problem formula-
tion is given in Section 2. The main results including the
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MPC control law design, optimization of the dynamic con-
troller, and the MPC algorithm are presented in Section
3. In Section 4, a numerical example is given to illustrate
the developed results. Finally, some conclusions are drawn
in Section 5.

2. PROBLEM FORMULATION

Consider an MJLS modeled by:

xk+1 = Arkxk +Brkuk +Gwk, (1)

where xk ∈ Rnx , uk ∈ Rnu , wk ∈ Rnw are system state,
control input, and uncertain stochastic disturbance, re-
spectively; rk, k = 0, 1, . . . is a discrete time Markov chain
taking values in a finite integer set M = {1, 2, . . . ,m}
with transition probability matrix T = {ρij}i,j∈M , where
ρij = Pr{rk+1 = j|rk = i}; And Ark , Brk , G are appropri-
ate matrices of conformable dimensions; The disturbance
sequence wk, k = 0, 1, . . . is assumed i.i.d and independent
of rk, we also assume that wk lies in an ellipsoid:

wk ∈W = {w ∈ Rnw : wTΛ−1w ≤ 1}, (2)

with E[wk] = 0, E[wkw
T
k ] = Ξ and joint cumulative

distribution function given as:

Pr{wk,i ≤ αi, i = 1, . . . , nw} = F (α1, α2, . . . , αnw). (3)

As pointed out by Kouvaritakis et al. [2010], finite support
assumption of random disturbance of (2) is more general
in real applications compared with the one of infinite
support.

System (1) is assumed to be subject to probabilistic
constraints on system states as follows:

Pr{|gTxk| ≤ h} ≥ p, k ≥ 1, (4)

where g ∈ Rnx and h ∈ R are used to account for
constraints on system states; and 0 < p < 1 is a specified
probability in which constraints are satisfied. Without loss
of generality, only one-dimensional constraints on linear
combination of only system state are considered. However,
the case with more constraints and even for the constraints
on both system states and control inputs can be dealt with
by easy extension.

Our objective is to design an MPC controller to stabilize
the system (1) subject to (2)-(4) in the mean square sense,
while at each time k minimizing the following quadratic
cost:

Jk =

∞∑
n=0

Ek[xTk+n|kQrk+n|kxk+n|k + uTk+n|kRrk+n|kuk+n|k],

(5)
where Qi ≥ 0, Ri > 0, i ∈ M are appropriate weighting
matrices; and xk+n|k, uk+n|k, rk+n|k are predicted future
states, inputs, and modes at time k + n predicted at time
k, respectively; by Ek[·] we denote the expected value
of a corresponding random variable conditional on the
information available at time k.

To ensure (5) is well defined, we also assume that the
disturbance sequence wk, k = 0, 1, . . . is with bounded
energy, i.e.,

∑∞
k=0 E[wTk wk] = $ < ∞. If it is not

the case, long run average cost should be considered
(cf.do Valle Costa et al. [2005], Kouvaritakis et al. [2010]).

At time instant k, once the optimisation (5) is solved, only
the first control move, that is, uk is implemented. Then

the optimization problem will be reformulated and solved
based on the predicted information and new measurements
at the next time instant k + 1. This procedure repeats as
time evolves.

The problem formulation stated here refers to that in
Kouvaritakis et al. [2010] for the linear time invariant
system. However, due to the existence of Markovian jump
of the modes, the prediction of the future system states
becomes more complicated. And also it becomes more
difficult to achieve a guarantee of the recursive feasibility
of the resulting MPC algorithm. So results in Kouvaritakis
et al. [2010] can not be applied directly. To overcome
these problems, set-valued predictions will be adopted and
we will resort to the MDIS to guarantee the recursive
feasibility of the MPC algorithm.

3. MAIN RESULTS

3.1 Controller structure

Since the MDIS plays an important role in our results,
a brief description of it is given before presenting the
controller design.

For an MJLS with the following dynamics:

xk+1 =Arkxk +Brkwk, (6)

yk =Cxk, (7)

the maximal disturbance invariant set O∞ (A,B,C,M,W,
Y ) or simply O∞ is defined as:

O∞ =
{
x0 : yk ∈ Y,∀k ∈ Z+,∀rk ∈M,∀wk ∈W

}
,

where C ∈ Rny×nx is the output matrix; Z+ is the set of
nonnegative integers; and Y is a compact set containing
the origin;

y0 =Cx0,

yk =CArk−1
· · ·Ar0x0 +

k−1∑
l=0

CArk−1
· · ·Arl+1

Brlwl, k ≥ 1.

From the above definition, we can conclude that

x0 ∈ O∞⇒ x1 = Ar0x0 +Br0w0 ∈ O∞,
∀r0 ∈M,∀w0 ∈W.

That is, O∞ is disturbance invariant.

The above definition follows from Kolmanovsky and
Gilbert [1998]. For more details about maximal invariant
sets, readers may refer to Gilbert and Tan [1991], Kol-
manovsky and Gilbert [1998], Pluymers et al. [2005].

Now we are ready to present the predictive controller
design. For system (1)-(5), referring to Kouvaritakis et al.
[2000], Cannon and Kouvaritakis [2005], we adopt the
following predictive controller:

uk+n|k = Krk+n|kxk+n|k + ck+n|k, n ≥ 0, (8)

whereKi, i ∈M are off-line designed to be optimal in some
sense, which also guarantee the asymptotical stability of
the closed loop system xk+1 = Φrkxk irrespective of the
mode transition, where Φi = Ai + BiKi, i ∈ M ; and
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ck+n|k, n ≥ 0 are perturbations on the optimal control
Krk+n|kxk+n|k, n ≥ 0 generated by the dynamic controller:

xck+n+1|k =Acrk+n|k
xck+n|k, (9)

ck+n|k =Ccxck+n|k, (10)

where xck+n|k ∈ R
nx , n ≥ 0 is the dynamic controller state,

with its initial state xck as the optimization variable of
the MPC algorithm; Aci , i ∈ M,Cc will be designed to
maximize the volume of the MDIS.

It is noted that the control law with the perturbations
given by a dynamic controller is usually with a larger
initial feasible region than that with finite number of
perturbations (see Kouvaritakis et al. [2000], Cannon and
Kouvaritakis [2005] for more details).

By combining (1) and (8)-(10), the whole autonomous
system under control law (8) can be described by

Xk+n+1|k = Ārk+n|kXk+n|k + Ḡwk+n|k, (11)

with Xk =

[
xk
xck

]
, Āi =

[
Φi BiC

c

0 Aci

]
, i ∈M , Ḡ =

[
G
0

]
.

And the constraints (4) and (5) can be rewritten in terms
of the autonomous state Xk, respectively as

Pr{|ḡTXk+n|k| ≤ h} ≥ p, n ≥ 1, (12)

Jk =

∞∑
n=0

Ek[Xk+n|kQrk+n|kXk+n|k], (13)

where ḡ =
[
gT 0

]T
, Qi =

[
KT
i RiKi +Qi K

T
i RiC

c

CcTRiKi CcTRiC
c

]
, i ∈

M .

In the sequel, MPC controller design will be based on
the autonomous system description (11)-(13) due to its
equivalence to the original one (1)-(5).

To guarantee the satisfaction of the constraints (12), we
give the following lemma.

Lemma 1. For system (11), constraints (12) are satisfied
if we can find an initial state xck of the dynamic controller
such that

ĀrkXk ∈ O∞
(
Ā, ĀḠ, ḡT ,M,W, Ȳ

)
, (14)

where Ȳ = [−h + γ̄, h − γ̄], and γ̄ is the smallest real
number satisfying

Pr
{
|ḡT Ḡwk| = |gTGwk| ≤ γ̄

}
= p. (15)

Proof. Set X̄0 = ĀrkXk, from (14) we have

−h+ γ̄ ≤ ḡT Ārk−1
· · · Ār0X̄0

+

k−1∑
l=0

ḡT Ārk−1
· · · Ārl+1

(
ĀrlḠ

)
wl ≤ h− γ̄, k ≥ 0.

Since the above inequalities hold for all realizations of
the mode sequence rk, k = 0, 1, . . ., and wk, k ≥ 0 have
the identical distributions, the above inequalities can be
rewritten equivalently as:

−h+ γ̄ ≤ ḡT Ārk+n−1|k · · · Ārk+1|kX̄0

+

n−1∑
l=1

ḡT Ārk+n−1|k · · · Ārk+l+1|k

(
Ārk+l|kḠ

)
wk+l−1|k

≤ h− γ̄, n ≥ 1

By combining the above inequalities with (15) and substi-
tuting X̄0 = ĀrkXk into them, we get that

−h ≤ ḡTXk+n|k = ḡT Ārk+n−1|k · · · Ārk+1|kĀrkXk

+

n−1∑
l=0

ḡT Ārk+n−1|k · · · Ārk+l+1|kḠwk+l|k ≤ h, n ≥ 1,

is satisfied with at least probability p, which completes the
proof. 2

3.2 The dynamic controller design

By restricting the one step ahead augmented state into the
corresponding MDIS, the probabilistic constraints (12) can
be guaranteed. This necessitates an algorithm to obtain
the MDIS. For linear time invariant systems, Kolmanovsky
and Gilbert [1998] have developed efficient algorithms to
solve it. However, for MJLS no algorithm exists. Theo-
retically, such algorithms can be obtained by extending
the results in Kolmanovsky and Gilbert [1998]. However,
due to the mode uncertainty, the number of inequalities
involved will grow exponentially as the increase of the
horizon, namely, “curse of dimensionality ”, which makes
it intractable especially for large dimensional systems.

An efficient way to solve this problem is to approximate the
MDIS by an ellipsoidal set. So in this section, we will give
an ellipsoidal approximation of O∞

(
Ā, ĀḠ, ḡT ,M,W, Ȳ

)
.

Before doing it, a lemma from Kolmanovsky and Gilbert
[1998] is needed.

Lemma 2. (Kolmanovsky and Gilbert [1998]) For system
xk+1 = Axk +Bwk with wk ∈ {w : wTΛ−1w ≤ 1}, the set
{x : xTPx ≤ 1}, P = PT > 0 is disturbance invariant, if
there exists a positive number 0 < ξ < 1 such that

P−1 − ξ−1AP−1AT − (1− ξ)−1BΛBT > 0. (16)

Now we are ready to give the following lemma.

Lemma 3. The ellipsoidal set O = {X : XTPX ≤ 1} is
an inner approximation of O∞

(
Ā, ĀḠ, ḡT ,M,W, Ȳ

)
, that

is, for the following system

Xk+1 = ĀrkXk + ĀrkḠwk (17)

Yk = ḡTXk (18)

Xk ∈ O ⇒ Xk+1 ∈ O and ḡTX ∈ [−h+γ̄ h−γ̄],∀X ∈ O,
if there exists a positive number 0 < ξ < 1 and an
appropriate matrix P = PT > 0 satisfying P PĀi PĀiḠ

∗ ξP 0
∗ ∗ (1− ξ)Λ−1

> 0, i ∈M, (19)

[
(h− γ̄)2 ḡT

∗ P

]
> 0, (20)

where ∗ induces a symmetric structure in a matrix.

Proof. By applying the Schur complement, (19) is satis-
fied iff

P − ξ−1PĀiP
−1(PĀi)

T − (1− ξ)−1PĀiḠΛ(PĀiḠ)T > 0

for all i ∈ M . Then pre- and post-multiplying both sides
of the above inequalities by P−1, we obtain

P−1 − ξĀrkP−1Ārk
T − (1− ξ)−1ĀrkḠΛ(ĀrkḠ)T > 0,
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which guarantees the disturbance invariance of the set O.
To prove ḡTX ∈ [−h+ γ̄ h− γ̄],∀X ∈ O, using the Schur
complement, (20) can be rewritten equivalently as

ḡTP−1ḡ ≤ (h− γ̄)2.

Then we have

|ḡTX|= |ḡTP−1/2P 1/2X| ≤ ‖ḡTP−1/2‖‖P 1/2X‖
≤ (ḡTP−1ḡ)1/2 ≤ h− γ̄, ∀X ∈ O.

completing the proof. 2

Notice that the existence of a matrix P satisfying (19)-(20)
guarantees the asymptotical stability of the system (17)
without disturbance. Also should be pointed out is that the
above approximation is made for given Āi, i ∈ M and Ḡ.
From design point of view, we want to design Āi, i ∈M to
make the MDIS as large as possible. To this end, following
Cannon and Kouvaritakis [2005] we parameterize P and
P−1 as follows

P =

[
X−1 X−1U

UTX−1 Û

]
, P−1 =

[
Y V

V T V̂

]
, (21)

where X ∈ Rnx×nx ,Y ∈ Rnx×nx , U ∈ Rnx×nx , Û ∈
Rnx×nx , V ∈ Rnx×nx , V̂ ∈ Rnx×nx . To guarantee PP−1 =
I, it must have UV T = X − Y. Similar to Geromel
et al. [2009], we can always find X,Y, U, Û , V, V̂ satisfying

PP−1 = I, if

[
Y X
X X

]
> 0.

To design Āi, i ∈M , more precisely Aci , C
c, i ∈M , we give

the following lemma.

Lemma 4. With (21), for 0 < ξ < 1 the satisfaction
of (19)-(20) is equivalent to the existence of matrices
Y,X,Υ,Γi, i ∈M of appropriate dimensions satisfying the
following LMIs

Y X ΦiY +BiΥ ΦiX ΦiG
X X ΦiY +BiΥ + Γi ΦiX ΦiG
∗ ∗ ξY ξX 0
∗ ∗ ξX ξX 0
∗ ∗ ∗ ∗ (1− ξ)Λ−1

 > 0, (22)

 (h− γ̄)2 gTY gTX
∗ Y X
∗ X X

 > 0, (23)

where Υ = CcV T ,Γi = UAciV
T , i ∈M .

Proof. Pre- and post-multiplying (19), respectively by

diag{ΠT ΠT I} and diag{Π Π I} with Π =

[
Y X
V T 0

]
we obtain (22); Similarly, pre- and post-multiplying (20),
respectively by diag{1 ΠT } and diag{1 Π}, we can obtain
(23), which prove the equivalence of (19)-(20) to (22)-
(23). 2

For design purpose, we want the inner ellipsoidal approx-
imation O is as large as possible. Furthermore as pointed
out by Kouvaritakis et al. [2000], Cannon and Kouvaritakis
[2005], for O = {X : XTPX ≤ 1} with P given by (21), its
projection onto the xk space is {x : xTY−1x ≤ 1}. So our
dynamic controller can be designed to maximize the vol-
ume of this set, which is proportional to its determinant.
The optimization problem is stated as follows:

min
X,Y,Υ,Γi

−logdet Y
s.t. (22)− (23)

(24)

Once the optimization is solved, we can choose any non-
singular U , and then solve UV T = X − Y for V . Finally
we can obtain Aci = U−1ΓiV

−T and Cc = ΥV −T . The
condition (14) should also be modified as

ĀrkXk ∈ O. (25)

Notice that although the set O is not the MDIS, it is still
disturbance invariant, then the constraints (12) can still
be guaranteed.

3.3 MPC algorithm

After the design of the MPC control law and the dynamic
controller, we move on to the MPC algorithm in this
subsection. We will first compute the cost function (13)
of system (11).

Lemma 5. The cost function (13) of system (11) can be
given by

Jk = XT
k ΘrkXk +$k, (26)

where Θi, i ∈M solve the coupled Lyapunov equations:

Θi − ĀTi (
∑
j∈M

ρijΘj)Āi = Qi, i ∈M ; (27)

$k =
∑∞
n=0

∑
i∈M πi(k + n|k)tr[ḠΞḠT (

∑
j∈M ρijΘj)],

πi(k + n|k) = Pr{rk+n|k = i|rk}, n ≥ 0;

Proof. At prediction time k+n|k, n ≥ 0, by (27) we have

E[XT
k+n+1|kΘrk+n+1|kXk+n+1|k|rk+n|k]

−XT
k+n|kΘrk+n|kXk+n|k

= Ek+n|k[(Ārk+n|kXk+n|k + Ḡwk+n|k)TΘrk+n+1|k

×(Ārk+n|kXk+n|k + Ḡwk+n|k)]−XT
k+n|kΘrk+n|kXk+n|k

=XT
k+n|kĀ

T
rk+n|k

(
∑
j∈M

ρrk+n|kjΘj)Ārk+n|kXk+n|k

−XT
k+n|kΘrk+n|kXk+n|k

+E[wTk+n|kḠ
T (
∑
j∈M

ρrk+n|kjΘj)Ḡwk+n|k]

=−XT
k+n|kQrk+n|kXk+n|k + tr[ḠΞḠT (

∑
j∈M

ρrk+n|kjΘj)].

Then taking the expected values on both sides of the
above inequality based on the information available at time
instant k, and summing them up from n = 0 to ∞ and we
obtain

∞∑
i=0

Ek[XT
k+n|kQrk+n|kXk+n|k]

=XT
k ΘrkXk − Ek[XT

k+∞|kΘrk+∞|kXk+∞|k] +$k

=XT
k ΘrkXk +$k

The last equality follows from the finite energy as-
sumption of the disturbance sequence and the fact that
Ek[XT

k+∞|kΘrk+∞|kXk+∞|k] = 0 due to the asymptotical
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stability furthermore the mean square stability of the
disturbance free system. This completes the proof. 2

Let λ = maxi∈M λ(GT (
∑
j∈M ρijΘj)G), from the above

arguments we have

$k

=

∞∑
n=0

∑
i∈M

πi(k + n|k)tr[ḠΞḠT (
∑
j∈M

ρijΘj)]

=

∞∑
n=0

∑
i∈M

πi(k + n|k)E[wTk+n|kḠ
T (
∑
j∈M

ρijΘj)Ḡwk+n|k]

≤ λ
∞∑
n=0

E[wTk+n|kwk+n|k] ≤ λ$ <∞,

which implies Jk in (26) is well defined. See do Valle Costa
et al. [2005] for more details.

Now we are ready to give the MPC algorithm in terms of
the optimization at each time instant k.

MPC Algorithm At each time instant k, solve the
following optimization for xck:

min
xc
k

XT
k ΘrkXk

s.t. XT
k Ā

T
rk
PĀrkXk ≤ 1,

(28)

where Xk =
[
xTk (xck)T

]T
. Then implement the control

move uk = Krkxk + Ccxck.

It is noted that, since the second term of the cost function
(26) has nothing to do with the optimization variable xck,
it is omitted in the objective function of the optimization.
And also the minimization of (28) is a quadratically
constrained quadratic programming problem. To solve it,
we will translate it into a semi-definite program, for which
efficient solvers exist.

By applying Schur complement, optimization (28) can be
equivalently translated into the following optimization.

min
xc
k
,η
η (29)

s.t.

[
η ∗
Xk Θ−1

rk

]
> 0 (30)[

1 ∗
ĀrkXk P

−1

]
> 0 (31)

As pointed out by Kouvaritakis et al. [2000, 2002], similar
quadratically constrained quadratic programming prob-
lems can be translated into a line search problem, for
which efficient methods such as Newton-Raphson method
can be used. So in this way, the computation of our MPC
algorithm can be further reduced.

Regarding the closed loop stabilizability and recursive
feasibility of the MPC algorithm, we give the following
theorem.

Theorem 6. Consider the system (11) with partial initial
state xk, if the optimization problem (29)-(31) is feasible
at time instant k, then it is feasible at all subsequent
time instants k + i, i ≥ 0, and the receding horizon
implementation of the MPC algorithm guarantees the
mean square stability of the closed loop system.

Proof. For recursive stability, assume that the optimal
solution at time instant k is {η∗k, (xck)∗}, which guar-
antees XT

k ΘrkXk ≤ η∗k and ĀrkXk ∈ O. Then con-
struct a solution at time instant k + 1 as {ηk+1 =
XT
k+1Θrk+1

Xk+1, x
c
k+1 = Acrk(xck)∗}. It is clear that this

choice of ηk+1 guarantees (30). Since the set O is distur-
bance invariant, then for all realizations of the mode rk+1

and disturbance wk, Ārk+1
ĀrkXk + Ārk+1

Ḡwk ∈ O, that

is Ārk+1

[
Φrkxk +BrkC

c +Gwk
Acrk(xck)∗

]
= Ārk+1

Xk+1 ∈ O,

implying the satisfaction of (31). So we can conclude that
{ηk+1 = XT

k+1Θrk+1
Xk+1, x

c
k+1 = Acrk(xck)∗} is indeed a

feasible solution at time k + 1. By induction, the opti-
mization problem (29)-(31) is feasible at all time instants
k + n, n ≥ 0.

For mean square stability, from the proof of Lemma 5 and
the feasibility of {XT

k+1Θrk+1
Xk+1, A

c
rk

(xck)∗}, we have

η∗k +$k ≥XT
k ΘrkXk +$k

= Ek[XT
k+1Θrk+1

Xk+1 +$k+1|rk] +XT
k QrkXk

= Ek[ηk+1 +$k+1|rk = i] +XT
k QrkXk.

Moreover, by optimality principle ηk+1 will be further op-
timized at time instant k+1. Then {η∗k+$k, k ≥ 0} is a su-
permartingale, implying limi→∞ Ek[XT

k+nQrk+n
Xk+n] =

0. Since Qi > 0, we have limi→∞ Ek
[
XT
k+nXk+n

]
= 0,

which in turn guarantees the mean square stability of the
closed loop system. 2

Finally notice that by adopting the control law uk+n|k =
Krk+n|kxk+n|k with Ki, i ∈ M optimized online, the
corresponding MPC controller can also guarantee the
recursive feasibility and mean square stability of the closed
loop system. However, since more LMIs are involved in
order to solve for the feedback control gains Ki, i ∈ M ,
which makes the online computation burden prohibitive.

4. A NUMERICAL EXAMPLE

In this section, a numerical example is given to illustrate
the efficiency of the developed results. Consider an MJLS
with two modes M = {1, 2}, the system data are given by

A1 =

[
0 1
−2.5 3.2

]
, A2 =

[
0 1

5.3 −5.2

]
, B1 = B2 =

[
0
1

]
,

G =

[
0

0.5

]
, T =

[
0.75 0.25
0.2 0.8

]
, Q1 = 0.5I,Q2 = I,

R1 = 0.5, R2 = 1;

And wk, 0 ≤ k ≤ 10 are mutually independent and
uniformly distributed in the interval [−0.6, 0.6]; wk =
0, k > 10.

Consider the following probabilistic constraints on system
states

Pr{|x1
k + 2x2

k| ≤ 4} ≥ 0.8, k ≥ 1.

Then γ̄ satisfying (15) can be chose as 0.48.

By solving optimization problem (24), we can obtain an
ellipsoidal approximation of O∞

(
Ā, ĀḠ, ḡT ,M,W, Ȳ

)
as

shown in Fig. 1. Also is shown in this figure is the initial
feasible region of the MPC algorithm.
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Fig. 1. Ellipsoidal approximation of O∞ and the feasible
region of the MPC algorithm

For initial conditions x0 = [13.2 3.38]T and r0 = 1, 1000
simulations have been performed. The trajectories x1

k+2x2
k

of the closed loop system under the controller (29)-(31)
are shown in Fig. 2, where the two solid parallel lines are
constraints |x1

k + 2x2
k| = 4. It can be seen at time instant

k = 2, the constrains are not always satisfied. There are
9.6% trajectories violate the constraints. However, at each
time instant the MPC controller remains feasible. It is also
obvious that the closed loop system under the designed
MPC controller is guaranteed to be stable.

0 5 10 15
−5

0

5

10

15

20

k

x
1 k
+
2
x
2 k

Fig. 2. Trajectories of the closed loop system

5. CONCLUSION

In this paper, probabilistic constrained stochastic model
predictive control for MJLS with additive bounded l2
disturbance is investigated. By steering the one step ahead
prediction state into an disturbance invariant set, a model
predictive control law is given. The dynamic controller
dynamics are obtained by optimizing the volume of the
MDIS. Finally recursive feasibility and mean square stabi-
lizability of the developed MPC controller is proven. Sim-
ulation results verify the efficiency the presented results.

It should be pointed out that since an ellipsoidal ap-
proximation of the MDIS is used in the MPC algorithm,
then our design is in some sense conservative. Efficient
algorithms to compute the real MDIS form our future
research topic.
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