

SOA-PLC – Dynamic Generation and Deployment of

Web Services on a Programmable Logic Controller

Lisa Ollinger*. Alexander Abdo**.

Detlef Zühlke*. Henning Heutger***

* German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany

(e-mail: lisa.ollinger@dfki.de, detlef.zuehlke@dfki.de).

** SmartFactory
KL

, 67663 Kaiserslautern, Germany

(e-mail: abdo@smartfactory.de)

*** Phoenix Contact Electronics GmbH, Bad Pyrmont, Germany

(e-mail: HHeutger@phoenixcontact.com)

Abstract: The static and inflexible design of control software with current Programmable Logic

Controllers (PLCs) and its integration in other automation systems do not meet the demands of agile and

dynamic manufacturing systems with their rising complexity. Service-oriented Architecture (SOA) is a

promising approach to overcome this shortcoming. Thus, a concept of a SOA-PLC is presented in this

paper. The suggested concept allows a fully automated generation and deployment of field device

functions as services implemented with the Devices Profile for Web Services (DPWS). Moreover, the

concept is demonstrated in a case study using a conventional Phoenix Contact PLC and the DPWS

orchestration tool JGrafchart.

Keywords: Manufacturing control, Control engineering, Distributed control, Process models, Flexible

manufacturing systems.

1. INTRODUCTION

Manufacturing companies can gain an important competitive

advantage by adapting their production systems dynamically

to new conditions, like changing or new product variants,

process optimizations, or the current order situation. The

enabler for this desired agility is a highly integrated and

consistent information flow between the business process and

technological process [Gerber et al. 2013]. Additionally, the

control software should be easy to reuse and adapt in order to

save efforts during reconfiguration tasks [Westkämper and

Zahn 2009].

Production automation systems can be typically separated in

two sections concerning the type of IT systems that are

employed. Due to different requirements concerning real-

time, reliability, safety, etc. each section uses its specific

hardware and communication technologies and standards

[Zuehlke 2012]. The tasks related to business processes like

production planning and scheduling are realized with IT

systems based on common PC and internet standards (IT

levels). In contrast, the control and process monitoring of the

production process—which is strongly related to the

technological process itself—is typically implemented in

specialized and proprietary systems like Programmable Logic

Controllers (PLCs) and field devices (AT levels). The in- and

outputs (I/Os) of the field devices and controllers are

connected via field bus systems or even old-fashioned wiring.

The deficits of today’s situation are a lack of integrated

information exchange between the business and the technical

level and monolithic and hardware-dependent control

software due to the low implementation level and vendor-

specific programming methods [Karnouskous et al. 2010,

Zoitl and Vyatkin 2009].

To close the existing communication gap a standardized

middleware that defines the communication technology is

needed. Furthermore, to improve the information flow

between different automation levels and the engineering of

automation software the abstraction degree of the

communication needs to be risen. Instead of exchanging raw

bits and bytes the communication has to take place via

encapsulated functions whose interfaces are described

formally.

In the business process domain (ERP systems) such open and

flexible software systems are already established today by

means of Service-oriented Architecture (SOA). SOA is an

abstract software paradigm which enables a high degree of

reusability, flexibility, and interoperability of software

components presented as services [Bieberstein 2005]. The

most widely used technology for implementing SOA are Web

Services.

The application of SOA is a promising approach to encounter

the mentioned deficits of automation systems and has already

been subject to several research activities. Thereby, a central

question is how SOA can be realized on the lower automation

levels without the need for revolutionary changes. Since the

PLC is not only today’s prevailing system for manufacturing

control but also the connection to high-level scheduling and

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 2622

planning systems, a sudden redesign of the automation

pyramid without the PLC is simply not practical. Thus, the

idea is to enhance the functionality of the PLC so that it can

act as a mediator between the IT and AT section and thereby

improve the software engineering for manufacturing control

(see Figure 1).

Fig. 1. SOA-PLC in the automation pyramid

2. STATE OF THE ART

SOA has already been applied to industrial automation in

several research activities. Concerning the implementation of

Web Services on PLCs in [Mathes et al. 2009] the

SOAP4PLC engine for enabling the implementation of Web

Services on PLCs is presented. The European projects

SIRENA [Jammes et al. 2005] and SOCARDES [Souza et al.

2008] provided a substantial contribution for realizing

services on device level. The follow-up project IMC-AESOP

[Karnouskos et al. 2010] addresses a SOA-based monitoring

and control applications for batch and continuous production

processes. From these projects emerged a SOA technology

for devices based on Web Services named the Devices Profile

for Web Services (DPWS) [Zeeb et al. 2007]. Two research

initiatives, SOA4D and WS4D, provide open source DPWS

development toolkits [Mensch 2011, Zeeb 2010].

The authors’ previous work investigated the application of

SOA for the development of industrial control procedures

[Ollinger et al. 2011]. For the realization of service-oriented

control procedures an implementation concept has been

developed featuring DPWS and the graphical modeling

language Grafchart [Theorin et al. 2012]. Moreover, to enable

an integrated control system development based on the SOA

paradigm a model-driven engineering procedure has been

defined [Ollinger and Zühlke 2013, Ollinger et al. 2013].

Additionally, a concept for the automatic code generation for

implementing services on embedded devices was investigated

by making use of existing MDD methods and tools [Ollinger

et al. 2013b]. These research tasks were accompanied by

practical applications at industry-related demonstration

systems of the SmartFactory
KL

 in order to validate the results

and to show the practical applicability.

3. CONCEPT OF A SOA-PLC

3.1 Basic concept of a SOA-PLC

A SOA-PLC works like a conventional PLC but has some

enhanced features in terms of service-oriented functionality.

Its purpose is to provide PLC software components as

encapsulated services with a well-defined and openly

accessible interface. Thereby, the connection to the field level

via field busses or direct wiring of the I/Os and the PLC

programming methods according to IEC 61131 are retained

unchanged. Additionally to the conventional PLC, innovative

devices that have already an own service interface can be

accessed as well (see Figure 1).

The core tasks of a PLC are the implementation and

execution of field device functions and process logics. The

PLC program is structured with Program Organization Units,

whereby Function Block (FB) is the main POE type

[Tiegelkamp and John 2009]. The capability of a SOA-PLC

allows representing any desired set FBs as a service (see

Figure 2). A service generated by the SOA-PLC can either be

used outside or even inside the SOA-PLC. By providing

services to the outside the SOA-PLC acts as a mediator

between AT and IT levels to vertically connect different

automation systems and applications. This helps to integrate

field device functions to automation software, like

monitoring, process planning, and scheduling applications.

The internal use of services permits the engineering and

execution of control programs in a service-oriented way. The

higher abstraction level enable by functional encapsulation to

services provides a better reusability, adaptability, and clarity

of control software [Ollinger et al. 2013]. Thus, the control

logics can be developed in a more abstract way without

dealing with the implementation details of the underlying

functions. The arrangement of services to a certain process

logic is called service orchestration which can be

encapsulated to a new service again so that various

hierarchical service levels can emerge.

Fig. 2. Concept of a SOA-PLC

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2623

Altogether, to design and develop a SOA-PLC the following

requirements have to be met:

• The traditional field level remains the same, which

means no modifications on field devices themselves

or their connection to the PLC via direct I/O wiring

or bus systems are necessary.

• The encapsulation of selected FBs to a service is

done automatically.

• The services are exposed by a standardized

communication technology (e.g. Web Services,

DPWS, OPC-UA).

• The service descriptions can be retrieved from

outside in order to receive the information which

services are available and how to access them.

3.2 Engineering concept of a SOA-PLC

A service can be roughly described as a software construct

comprising various functions called operations that are

accessible via a well-defined service interface. In terms of a

service-oriented automation system the lowest service level

represents the field devices so that the individual functions of

a field device are exposed as service operations [Ollinger and

Zühlke 2013].

To develop a SOA-PLC service representing field device

functions the following steps are defined:

1. Functional encapsulation

First, every function of a field device that should be

represented as a service operation has to be implemented in

an own FB. To gain maximum flexibility during later service

orchestrations those FBs should represent all basic functions

of the field device and not only consist of aggregated

functions. Each FB defines its in- and output parameters that

constitute later the in- and output parameters of the service

operation.

2. Grouping function blocks to a service

Since every physically present field device has its own

service, FBs of the same type can be instantiated several

times. Thus, all FB instances belonging to a field device are

added to a group representing the device. Consequently,

different field devices of the same type can later be used and

differentiated easily.

3. Exposing the service to the environment

Finally, such a group of FBs representing a device is exposed

to the surrounding environment as a service. Therefore, a

description of the service interface has to be made public and

the service itself has to be launched. Every FB belonging to

the service is then accessible via a single service operation.

Besides field device functions any other desired PLC

function can be provided as a service so that the described

engineering steps just have to be adapted according to the

respective case.

4. IMPLEMENTATION

After defining the basic concept of a SOA-PLC the question

arises how the additional SOA features can be realized.

Therefore, an implementation concept is defined with the

objective to realize a SOA-PLC prototype on a conventional

PLC with minimum modifications.

4.1 Integration Concept

There are different ways to realize the behavior of services on

a PLC. The most efficient way would be to implement the

services as separate tasks so that each service can act as a

individual program. Thus, each task will only be started on

demand saving resources and optimizing runtime. Moreover,

a set of parameters can be handed over to the dynamically

started task which is also able to hand back return values, e.g.

indicating success or failure of the desired operation.

However, today’s PLC runtime environments have usually a

limited amount of tasks so that the just a few services can be

realized with one PLC.

Another possibility is to implement and execute the service

behavior of all services with one PLC task in various FBs. An

obstacle constitutes the fact that traditional PLC

programming methods do not comprise a software concept

that groups various functions to a service. However, a

possibility to indicate a group of related FBs is a naming

scheme. Therefore, naming conventions have to be defined so

that the SOA-PLC can automatically identify which FBs

belong to which service. To allow such an automated

identification of different FBs belonging to a single service, a

unique prefix is used for every service only changing the

suffix according to the operation name, e.g.

ServiceName_OperationName1.

Furthermore, the encapsulation of the service implementation

to with a SOA interface according to a respective SOA

technology needs to be done. This could happen inside of the

PLC environment so that the PLC software components can

be exposed as service directly. However, today’s PLCs do not

offer this feature. Thus, the service interface has to be

realized outside of the PLC runtime environment. This

implies that the PLC variables need to be accessible from the

outside which could be realized with “virtual I/Os”. Instead

of communicating via electrical signals as real I/Os, virtual

I/Os interact with services, being able to forward and receive

parameters to and from them. Every time a service is called a

virtual input variable is set and automatically and forwarded

to the specific FB. In turn this FB sets a return value which

will be forwarded as a virtual output to the service interface.

4.2 Implementation

The platform for the SOA-PLC prototype is a RFC 470 PN

3TX from Phoenix Contact which uses Windows CE 5.x as

the basic operating system. For the implementation of the

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2624

services the technology Devices Profile for Web Services

(DPWS) is chosen which has already been used for previous

applications in the SmartFactory
KL

.

To realize SOA-PLC prototype, a first solution with

minimum adjustments of the PLC platform was preferred.

Thus, the services are realized within the conventional PLC

environment in a single task and the service encapsulation

takes place outside of the PLC environment. During every

cycle of the PLC runtime all FBs are executed. At the

beginning of each FB the program checks whether the code

inside the FB shall be executed indicated by a caller variable.

If the service is not called the code implementing the service

behavior is skipped. A specific piece of software called PLC

handler constantly checks the status of the virtual I/Os

forwarding the corresponding variables to the PLC

environment.

The PLC platform is extended with additional software

components to transform the ordinary PLC into a SOA-PLC.

Since the platform uses a Win CE operating system a .NET

Compact Framework was installed to use a DPWS stack

which relies on the framework. The communication between

the functions inside the conventional PLC code and the

program parts outside the PLC environment are realized via

virtual I/Os as described above. Figure 3 shows the system

architecture of the SOA-PLC with its different software

modules.

Fig. 3. SOA-PLC system architecture

The functionality of the individual software modules of SOA-

PLC are described in the following:

a) Function blocks inside the PLC environment

During the implementation of the function blocks for the

field devices in the PLC code a strict naming scheme is

used. Thereby an automatic detection of input and output

parameter is made possible by the known prefixes IN_

and OUT_ respectively. Every function block uses

specific CALL and DONE variables of the bool type thus

creating a virtual I/O.

b) PLC handler

The PLC handler is responsible for checking the caller

variables to recognize whenever a FB is called. It is

realized as a simple IF ELSE sequence, constantly

detecting whether a CALL variable was set to true and

thereby a function was called or not. Since the PLC

handler is located right inside the conventional PLC

environment, the PLC handler is simply implemented as

a function block as well. Once a CALL variable is set the

PLC handler starts the corresponding FB and hands over

the values of the IN_ parameters to the FB. After the FB

was executed the PLC handler sets the OUT_

parameters.

c) PLC interface

Outside the PLC environment a special PLC interface

communicates with the PLC environment. The PLC

interface writes the CALL and IN_ variables into the PLC

environment whenever a service is requested and reads

the OUT_ variables back. This is possible by using an

API realized as a static library provided by the PLC

manufacturer Phoenix Contact. Since the .NET

Framework can only handle dynamic link libraries, the

static library has been converted into a dll.

d) Service handler

The service handler is mainly responsible for the creation

of the DPWS services. Consequently, it generates polls

to get the existing service groups which exist inside the

PLC environment using the already mentioned API from

Phoenix Contact. By processing the described naming

scheme, e.g. ServiceName_OperationName1, all

operations belonging to one service are grouped into a

single service. Afterwards the service handler creates the

DPWS device with its hosted services. Finally the

service handler starts the DPWS server making the

services accessible from outside the PLC.

e) DPWS interface

To offer the functions as web services a DPWS stack is

needed. Since the .NET Compact Framework has no

build in DPWS stack, an already ported version [Züg10]

from a .NET Micro Framework was used. The DPWS

interface is responsible for providing the web services

handling all the communication with the environment

outside the PLC.

5. CASE STUDY

The concept has been evaluated and demonstrated with a

small setup consisting of a PLC, a bus coupler, and two

industrial field devices in the SmartFactory
KL

.

The used PLC is the same Phoenix Contact PLC (RFC 470

PN 3TX) as the one used during the general implementation

of the SOA concept. An ultrasonic sensor (UB200-12GM-

ES-V1) from Pepperl+Fuchs and a signal lamp from Werma

were attached to digital I/Os of a Phoenix Contact bus

coupler (IL PN BK DI8 DO4 2TX-PAC) which connects to

the PLC via PROFINET bus. Additionally, a 24 V DC power

supply from Phoenix Contact was used to power the whole

setup (see in Figure 4).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2625

The setup was designed in such a way that the signal lamp

turns on whenever an object comes into a specific range of

the ultrasonic sensor. Once the object moves backwards out

of the specific range of the sensor, the lamp turns of again.

To make this a SOA-PLC setup a dedicated computer was

connected to the PLCs 2
nd

 LAN port, which has been used for

development matters throughout the project. The whole

orchestration of the services takes place in the tool JGrafchart

running on a dedicated computer outside the PLC

communicating with the PLC via web services.

Fig. 4. Test setup in the SmartFactory
KL

6. CONCLUSIONS

The presented concept of a SOA-PLC overcomes the current

limitations of existing PLC systems, meeting the demands of

a rapidly changing manufacturing environment, and its

challenging requirements on flexibility and reusability.

By grouping function blocks and encapsulating them into

web services field device functions are made accessible

outside the PLC on higher level of the automation pyramid.

Consequently the control logic of a SOA-PLC is realized no

longer by an inflexible sequential code but by a dynamic

orchestration of services. The orchestration can be done by

any DPWS orchestration tool like JGrafchart on any

conventional PC or even on another PLC. Since the

generation and deployment of the web services are fully

automated once the developed software modules are installed

on the PLC, no extra effort is need during the implementation

of the function blocks except keeping to a specific naming

scheme. The described implementation on the RFC 470 PN

3TX Phoenix Contact PLC running Windows CE 5.x gives

proof of concept.

The promising results of this work offer multiple options for

subsequent research. One of the next logical steps is the

implementation of additional functionality so that the

orchestration of the services can be done right within the

same SOA-PLC which offers the services. Moreover there is

no implementation of any IT security in the SOA-PLC

concept by now which leafs plenty of work for innovative

security concepts like dynamic rights management and

suitable endpoint related security fitting the needs of a SOA.

REFERENCES

Bieberstein, N., et. al. (2005). Service-Oriented Architecture

Compass: Business Value, Planning, and Enterprise

Roadmap. Prentice Hall PTR. Upper Saddle River, NJ,

USA.

Gerber, T., Bosch, H.-C., Johnsson, C. (2013). Vertical

Integration of Decision-Relevant Production Information

into IT Systems of Manufacturing Companies, In:

Service Orientation in Holonic and Multi Agent

Manufacturing and Robotics, Studies in Computational

Intelligence, pp. 263–278. Springer Berlin Heidelberg.

Karnouskos, S., Colombo, A.W., Jammes, F., Delsing, J.,

Bangemann, T. (2010). Towards an architecture for

service-oriented process monitoring and control, In:

Proceedings of the 36th Annual Conference on IEEE

Industrial Electronics Society, IECON 2010. pp. 1385 –

1391, Phoenix, USA.

Mathes, M., Stoidner, C., Heinzl, S., Freisleben, B. (2009).

SOAP4PLC: Web Services for Programmable Logic

Controllers, In: Proceedigns of the 17th Euromicro

International Conference on Parallel, Distributed and

Network-based Processing, PDP 2009, pp. 210 –219,

Weimar, Germany.

Mensch, A. (2011). Introduction to SOA4D projects, URL:

http://www-old.itm.uni-luebeck.de/projects/tekomed/

workshop3/Mensch%202011.%20Introduction%20to%2

0SOA4D%20projects.pdf?lang=de, retrieved January 3,

2013

Ollinger, L., Schlick, J., and Hodek, S. (2011). Leveraging

the Agility of Manufacturing Chains by Combining

Process-Oriented Production Planning and Service-

Oriented Manufacturing. In Proceedings of the 18th

IFAC World Congress. Milan, Italy.

Ollinger, L., Zühlke, D. (2013). An Integrated Engineering

Concept for the Model-based Development of Service-

oriented Control Procedures. In: Proceedings of the

IFAC Conference on Manufacturing Modelling,

Management and Control. MIM 2013, IFAC

PapersOnLine pp. 1441–1446. Saint Petersburg, Russia.

Ollinger, L., Zühlke, D., Theorin, A., Johnsson, C. (2013). A

Reference Architecture for Service-oriented Control

Procedures and its Implementation with SysML and

Grafchart, In: Proceedings of the 18th IEEE

International Conference on Emerging Technologies and

Factory Automation. ETFA 2013, Cagliari, Italy.

Ollinger, L, Wehrmeister, M., Pereira, C., Zühlke, D.

(2013b). An Integrated Concept for the Model-Driven

Engineering of Distributed Automation Architectures on

Embedded Systems, in: Proceedingss of the IFAC

Workshop on Intelligent Manufacturing Systems.

Presented at the IMS 2013, São Paulo, Brazil, 2013.

Tiegelkamp, M., John, K. H.: SPS-Programmierung mit IEC

61131-3. Springer, Berlin, 2009.

Theorin, A., Ollinger, L., and Johnsson, C. (2012). Service-

oriented Process Control with Grafchart and the Devices

Profile for Web Services, In: Proceedings of the IFAC

Symposium on Information Control Problems in

Manufacturing (INCOM 2012), Bucharest, Romania.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2626

Westkämper, E., Zahn, E. (2009). Wandlungsfähige

Produktions-unternehmen: Das Stuttgarter Unter-

nehmensmodell. Springer.

Zeeb, E., Bobek, A., Bonn, H., Golatowski, F. (2007).

Lessons learned from implementing the Devices Profile

for Web Services, In: Proceedings of the Digital

EcoSystems and Technologies Conference 2007, DEST

‘07. pp. 229–232, Cairns, Australia.

Zeeb, E., Moritz, G., Timmermann, D., Golatowski, F.

(2010). WS4D: Toolkits for Networked Embedded

Systems Based on the Devices Profile for Web Services,

in: Proceedings of the 39th International Conference on

Parallel Processing Workshops, ICPPW 2010, pp. 1 –8

Zoitl, A., Vyatkin, V. (2009). IEC 61499 architecture for

distributed automation: The “glass half full” view. IEEE

Industrial Electronics Magazine, Vol. 3, pp. 7–23.

Zühlke, D. and Ollinger, L. (2012). Agile Automation

Systems Based on Cyber-Physical Systems and Service-

Oriented Architectures. Advances in Automation and

Robotics, Vol. 122, Part 1, pp. 567–574, Springer Berlin

Heidelberg, Germany.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2627

