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Abstract: A dynamic-gain parameterized controller is proposed to stabilize a class of nonlinear
systems subject to norm-bounded uncertainties. The stabilizing controller is designed as a
standard linear feedback with polynomial dynamic parameters. The expression of the dynamic
parameters is defined from the solution of an Algebraic Ricatti Equation. The pendulum cart
system with other examples are given as illustrative case studies to show the simplicity, the
straightforwardness and the efficiency of the proposed design.
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1. INTRODUCTION

Nonlinear control feedback has known a considerable
progress since three decades and many approaches have
been developed to the control and analysis of inherently
nonlinear systems, see e.g. Isidori [1995], Khalil [2001].
Due to the complex nature of the dynamics of nonlinear
systems the available results are related to some classes
of systems with specific structures. Systems with strict-
feedback and feedforward structures are the most popular
classes of systems that have been extensively studied since
1990s. For systems in strict feedback form, it was shown
that it is possible to dominate the system nonlinearities
by applying high-gain feedbacks. However, for systems in
feedforward form, the suppression of instabilities can be
handled by the construction of bounded-state feedbacks
with arbitrary level of saturation, see e.g. Teel [1992],
Xudong [2003]. Other seminal works that dealt with anal-
ysis and stabilization of feedforward systems are traced
in Tall [2011], Sepulchre et al. [1997], Krstic [2004], Lin
[1995], Krishnamurthy and Khorrami [2007], Arcak et al.
[2001], Xudong [2003], Chen and Huang [2008] and the
references therein.

The nested-saturation control of feedforward systems has
been widely used to prevent finite-time escape to infinity.
A redesign of the nested-saturation feedback algorithm is
given in Arcak et al. [2001] where the feedforward system
is subject to unmodeled dynamics. Using the fact that the
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trajectories of feedforward systems can be generally found
for a given known input then, it is quite possible to predict
the evolution of the system states if a linear feedback
controller is conceived to stabilize the linear part of the
system dynamics. From this important key observation,
the idea of forwarding has been established giving rise
to a systematic Lyapunov approach to stabilization of
nonlinear feedforward systems, see Sepulchre et al. [1997]
for more details. In Krstic [2004] the author showed that
some special classes of feedforward systems can be trans-
formed to the chain of integrators if the system dynamics is
completely known. The dynamic-scaling approach to stabi-
lization of feedforward systems has shown its usefulness in
handling large classes of feedforward systems without any
need to saturate the control law, see Krishnamurthy and
Khorrami [2007]. In all the proposed algorithms the knowl-
edge of the system input plays a key role in the existence
of the stabilizing state-feedback and therefore, eventual
uncertainty in the system input may prevent the system
dynamics to be transformed to certain suitable/canonical
forms and may lead to disastrous escape to infinity in finite
time.

For polynomial systems, the State-Dependent-Ricatti-
Equation (SDRE) approach has shown its usefulness in
controlling complex systems under some conditions of
controllability and observability, see e.g., Shamma and
Cloutier [2003]. However, the proof of stability is not in
general a trivial task. In this paper, we propose a straight-
forward control procedure for a class of uncertain nonlinear
systems where the stability of the closed-loop system is
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assured for arbitrary types of nonlinearities verifying cer-
tain prescribed growth conditions. The control action is set
as a linear state feedback with time-varying parameters.
Irrespective of the number of the uncertain parameters, the
feedback formulation is dependent on one unique adaptive
parameter. Conceptually, the proposed feedback has the
structure of an SDRE-based feedback where the stability
is assured by adaptation of one parameter. Illustrative
examples are provided to highlight the main features,
the strength and the weaknesses of the proposed control
approach.

Throughout this paper, ẋ denotes the first derivative of x
with respect to time. The notation A > 0 (resp. A < 0)
means that the matrix A is positive definite (resp. negative
definite). I is the identity matrix of appropriate dimension
and A′ denotes the matrix transpose of A. λmax(A) and
λmin(A) stands for the largest and the lowest eigenvalue
of A, respectively. We note by ∥ · ∥ the Euclidean norm
of vector or matrices, and δi,j stands for the kronecker
symbol.

2. SYSTEM DYNAMICS AND CONTROLLER
DESIGN

Consider the feedforward nonlinear system given by:

ẋi = xi+1 +
n∑

j=i+2

φi,j(x, p)xj ;

1 ≤ i ≤ n− 2,

ẋn−1 = xn,

ẋn = u,

(1)

where xi = xi(t), 1 ≤ i ≤ n are the state variables,
u = u(t) is the system input, and u ∈ IR is the unique
control input. The scalar state-dependent nonlinearities
φi,j(x, p) are corrupted by a set of parameters regrouped
in the vector p = [p1 p2 · · · pr]′. To complete the system
description the following assumptions are considered.

Assumption 1. The system nonlinearities φi,j(x, p)xj ; 1 ≤
i, j ≤ n, are identically null when x = 0 and locally
Lipschitz for all x ∈ IRn with φi,j(x, p) = 0 for all i− j +
1 ≥ 0. Furthermore, we assume that there exists a set of
well-known functions φ̄i,j(xi+2, xi+3, · · · , xn), 1 ≤ i, j ≤ n
such that for all x ∈ IRn, we have

|φi,j(x, p)| ≤ φ̄i,j(xi+2, xi+3, · · · , xn), 1 ≤ i, j ≤ n. (2)

Assumption 2. The upper bounds of (pi)1≤i≤r are known.

Assumption 3. System (1) is pointwise controllable in the
sense of Kalman with respect to the input u.

In matrix form system (1) is rewritten as follows:

ẋ = Ax+ φ(x, p)x+Bu, (3)

where the entries of the matrices A ∈ IRn×n, and B ∈
IRn×1 are given by: ai,j = δi,j−1, bi = δi,n; 1 ≤ i, j ≤ n.
Before presenting the main result of this paper, the result
of the following technical Lemma is needed.

Lemma 1. Let X(γ) be the solution of the following Alge-
braic Ricatti Equation:

1

γ
X(γ) +A′X(γ) +X(γ)A−X(γ)BB′X(γ) = 0, (4)

where the entries of the matricesA ∈ IRn×n andB ∈ IRn×1

are given by: ai,j = δi,j−1, 1 ≤ i, j ≤ n, bi = δi,n, 1 ≤

i ≤ n, respectively. Then, the matrix X(γ) that solves the
matrix equation (4) is symmetric and positive definite for
all γ > 0 and verifies the following properties.

i) Let X1 = X(1). Then, the matrix X(γ) is explicitly
given by:

X(γ) =
1

γ
S−1(γ)X1S

−1(γ), S(γ) = diag
(
γn−i, 1 ≤ i ≤ n

)
.

(5)

ii) There exist two constants λ1 and λ2, independent of γ,
such that for γ > 0;

−λ1
γ
X(γ) ≤ d

dγ
X(γ) ≤ −λ2

γ
X(γ). (6)

iii) The matrix
dX(γα)

dγ
is also negative definite for any

natural number α ≥ 1 with γ being positive.

Proof. See the Appendix Section.

The stabilization procedure is summarized in the following
statement.

Theorem 1. Consider the nonlinear system (1) under As-
sumptions 1-3. Let β > 0 be a real constant and let
X(γ) be the solution of the matrix equation (4) where
X1 = X(1), and X ′

chXch being its Choelesky decomposi-
tion. Define

Γ = diag(n− i+ 1, 1 ≤ i ≤ n),

W = (X ′
ch)

−1(ΓX1 +X1Γ−X1)X
−1
ch ,

λ =
1

2 + 4λmax(W )
,

(7)

and let ρ(x) be a locally Lipschitz and positive state-
dependent scalar verifying ρ(x) ≥ 2 sup

p∈Ω
∥Xch φ(x, p)X

−1
ch ∥+

λ with ρ(0) = λ. Then, under the action of the feedback
controller:

u = −θ
2β
3 B′X(θ

2
3 )x,

θ̇ = −3λ θ
1
3 +

3ρ(x)

θ
1
3

, θ(0) > 1
(8)

the system state trajectories x(t) converge to zero for all
bounded initial conditions x0 ∈ IRn. Furthermore, the
adaptation parameter θ(t) is globally bounded over the
interval of time t ∈ [0,+∞[.

Remark 1. The dynamics of θ, as defined in (8), is not
singular at any instant because ρ(x) is strictly positive
even for x = 0 and θ(0) > 1. The equilibrium point of “θ
dynamics” is unique and equal to one for x = 0. Therefore,
under all the above assumptions, the trajectories of θ are
always strictly positive reals.

Proof. The proof of Theorem 1 is given in the Appendix
Section.

Remark that the term −θ
2β
3 B′X(θ

2
3 )x is nothing but,

a State-Dependent-Ricatti-Equation-based controller. In
this paper, the existence of a positive definite matrix X(·)
is completely solved whatever the system nonlinearities;
which is not always possible if the original system (1)
is seen as ẋ = ψ(x, p)x + Bu, where ψ(x, p) ∈ IRn×n

is the state-dependent matrix. Referring to Shamma and
Cloutier [2003], the controllability and the stability issues
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related to SDRE 1 -based solutions is not in general solv-
able even though many stabilizing controllers have SDRE
structure.

3. CASE STUDIES AND SIMULATION

3.1 Stabilization of feed-forward nonlinear system

Consider the feed-forward nonlinear system:

ẋ1 = x2 + p1 x
2
3,

ẋ2 = x3,

ẋ3 = u,

(9)

where p1 is assumed to be unknown time-varying param-
eter. Note that the following example has served as a
historical toy example to illustrate stabilization techniques
for feed-forward nonlinear systems. An additional uncer-
tainty constraint is added to the system by imposing a
time-varying bounded uncertainty, that is: p1 = sin(3 t).
The controller parameters are chosen as: β = 4, ρ(x) =
2∥Xchφ(x, 1)X

−1
ch ∥ + λ. In Fig. 1, the history of all the

states are recorded where we notice the asymptotic conver-
gence of the whole states to the origin with global bound-
edness of the adaptive parameter θ. Extensive simulations
showed that the peaking of the system states depends on
the choice of the parameter β and the initial conditions of
the system.

3.2 Semi-global stabilization of the pendulum-cart system

Let us consider the cart-pendulum system whose dynamics
is given by:

(m1 +m2)q̈1 +m2 l cos(q2) q̈2 = m2l sin(q2)q̇
2
2 + F,

cos(q2)q̈1 + l q̈2 = g sin(q2),
(10)

where F is the applied control input, m1 and m2 are the
masses of the cart and the pendulum, respectively, l is
the length of the pendulum, q1 is the displacement of
the cart, and q2 is the rotation angle of the pendulum.
It has been shown in Tall and Respondek [2005] that for
−π/2 < q2 < π/2, the feedback controller:

F = −u l(m1 +m2 sin
2(q2))/ cos(q2)

+ (m1 +m2) g tan(q2)−m2 l sin(q2) q̇
2
2

(11)

renders the closed-loop dynamics of the cart-pendulum
system in the form:

ẋ1 = x2,

ẋ2 = g tan(x3)−
l u

cos(x3)
,

ẋ3 = x4,

ẋ4 = u,

(12)

where x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2. As
proposed in Tall and Respondek [2005], and by setting the

transformation λ =
√
l/g/g, zi = λ x̃i, 1 ≤ i ≤ 4, v = λ ũ,

where

1 State Dependent Ricatti Equation.

ũ =
g u

cos2(x3)
+ 2g x24

sin(x3)

cos3(x3)
,

x̃1 = x1 + l

∫ x3

0

d s

cos(s)
,

x̃2 = x2 + l
x4

cos(x3)
,

x̃3 = g tan(x3),

x̃4 = g
x4

cos2(x3)

then, the resulting system is given by:

ż1 = z2,

ż2 = z3 +
z3z

2
4

(1 + gz23/l)
3
2

,

ż3 = z4,

ż4 = v.

(13)

For β = 4, λ1 = 10, g = 9.8, l = 1 and x(0) =
[
1 2

π

4
3
]′
,

1 ≤ i ≤ 4, the feedback is

v = − x1

θ
16
9

− 4
x2

θ
10
9

− 6
x3

θ
4
9

− 4 θ
2
9x4. (14)

The dynamics of the adaptation θ is dependent on ρ(z),
that is chosen as

ρ(z) = 2
√
10

√
l3z32z42

(gz32 + l)
3 +

1

21
. (15)

In Fig. 2 the trajectories of z-state system under the

feedback v = −θ
2β
3 B′X(θ

2
3 )z, are represented. In order

to avoid the singularities of state transformation, the
feedback (14) can be only applied when the absolute value
of the pendulum angle is less than π

2 .

3.3 Stabilization of a system of arbitrary structure

Consider the nonlinear system:

ẋ1 = x2 + x23,

ẋ2 = x3 +
x1√
1 + x21

x24,

ẋ3 = x4,

ẋ4 = u,

(16)

where u ∈ IR is the control input. The system dynamics
(16) is neither in feedback canonical form nor in feedfor-
ward form. The nonlinearities of system (16) verify all
the required Assumptions 1-3. Thus, by choosing β = 6,
λ1 = 10, and ρ(x) as

8 max

(
|x3|+

∣∣x3√x12 + 1− 3x1x4
∣∣

√
x12 + 1

,
|x1x4|√
x12 + 1

)
+

1

42

(17)
the controller is then given by:

u = − x1

θ
4
3

− 4
x2

θ
2
3

− 6x3 − 4 θ
2
3x4,

θ̇ = −3λ θ
1
3 +

3ρ(x)

θ
1
3

, θ(0) > 1.
(18)

For the initial condition x0 = [−4 3 0.5 1]′ and θ(0) = 1.1,
we have recorded the history of the states in Fig. 3.
By performing extensive simulations with different initial
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conditions, we have seen that the amount of peaking of x1
and x2 is dependent on the initial conditions of x3 and x4
and the selected value of β. For large initial conditions of
x3(0) and x4(0) the state x1 converge to zero after a long
period of time with a slow peaking.

4. CONCLUSION

This paper gives a straightforward method for the stabi-
lization of a class of nonlinear systems subject to unknown
state uncertainties. It has been shown that systems with
feedforward structure fall in the studied class system and
the efficiency of the control feedback is confirmed by nu-
merical simulations. One of the advantages of the proposed
control strategy is that all the uncertain parameters are
handled by adaptation of only one parameter. This in turn
reduces the number of the control-state variables to be
used in feedback, and makes the feedback design similar
to well-known stabilization techniques of linear systems.
The proposed design can be also extended to other types
of nonlinear systems, where the system nonlinearities φi,j ;
i − j + 1 < 0 involve the whole state vector. Connection
between the proposed approach and previous designs of
SDRE-based controllers is highlighted.

Appendix A. Proof of Lemma 1.

Let

E(γ) = −A− 1

2γ
I. (19)

Note that for all γ > 0 the matrix X−1(γ) verifies the
following Lyapunov equation:

X−1(γ)E′(γ) + E(γ)X−1(γ) = −BB′. (20)

Since the matrix E(γ) is Hurwitz for all γ > 0 then, from
the Lyapunov theory, there exists a symmetric and positive
definite matrixX−1(γ) that solves the Lyapunov equation.

i) Note that X1 verifies the following ARE:

X1 +A′X1 +X1A−X1BB
′X1 = 0. (21)

To prove the first item of Lemma 1, let us pre- and post
multiplying the ARE (21) by S−1(γ). This yields

S−1(γ)X1S
−1(γ) + S−1(γ)A′X1S

−1(γ)

+ S−1(γ)X1AS
−1(γ)− S−1(γ)X1BB

′X1S
−1(γ) = 0.

(22)

Using the fact that S−1(γ)A′ = γA′S−1(γ), S−1(γ)B = B
then, (22) takes the form:

S−1(γ)X1S
−1(γ) + γA′S−1(γ)X1S

−1(γ)

+ γS−1(γ)X1S
−1(γ)A

− S−1(γ)X1S
−1(γ)BB′S−1(γ)X1S

−1(γ) = 0.

(23)

By dividing Eq. (23) by γ2 we conclude immediately that
X(γ) = S−1(γ)X1S

−1(γ)/γ is the solution of (4).

ii) Let γ1 > γ2 > 0, and let X(γ1) and X(γ2) be the
solutions of (4) for γ = γ1, and γ = γ2, respectively. Then,

− γ−1
1 X−1(γ1) + γ−1

2 X−1(γ2)−
(
X−1(γ1)−X−1(γ2)

)
A′

−A
(
X−1(γ1)−X−1(γ2)

)
= 0.

(24)

The last matrix equation can be rewritten as (X−1(γ1)−
X−1(γ2))E

′(γ1) + (X−1(γ1)−X−1(γ2))E(γ1) = −(γ−1
2 −

γ−1
1 )X−1(γ2). Since the matrix (γ−1

2 − γ−1
1 )X−1(γ2) > 0

and the matrix E(γ1) is Hurwitz then, we conclude that
the matrix X−1(γ1) − X−1(γ2) > 0; which means that
X(γ1) < X(γ2). Consequently, the ratio:

X(γ1)−X(γ2)

γ1 − γ2
< 0. (25)

If we take γ1 = γ+δγ and γ2 = γ it can be concluded that

lim
δγ→0

X(γ + δγ)−X(γ)

δγ
=
dX(γ)

dγ
< 0. (26)

Let Υ(γ) = S−1(γ)/γ. Using the result of item i) then,

dX(γ)

dγ
=

1

γ2
S−1(γ)X1S

−1(γ)

+

(
dΥ(γ)

dγ

)
X1S

−1(γ) + S−1(γ)X1

(
dΥ(γ)

dγ

)
.

Noting that

dΥ(γ)

dγ
= − Γ

γ2
S−1(γ), (27)

where Γ is defined as in the statement of Theorem 1.
Consequently,

dX(γ)

dγ
= Υ(γ)

(
X1 − ΓX1 −X1Γ

)
Υ(γ). (28)

As a result, the matrix X1−ΓX1−X1Γ < 0 which implies
that the matrix W0 = ΓX1 + X1Γ − X1 > 0. By taking

λ1 = λmax

(
X ′−1

ch W0X
−1
ch

)
, λ2 = λmin

(
X ′−1

ch W0X
−1
ch

)
; we

arrive to the result

−λ1
γ
X(γ) ≤ dX(γ)

dγ
≤ −λ2

γ
X(γ). (29)

iii) This result is a direct consequence of the result of item
ii), because for any α ≥ 1, we have

dX(γα)

dγ
= αγα−1 dX(γα)

dγα
< 0, (30)

and

−αλ1
γ
X(γα) ≤ dX(γα)

dγ
≤ −αλ2

γ
X(γα). 2

Appendix B. Proof of Theorem 1. Let γ = θ
1
3 . By

associating the Lyapunov function: V (x, γ) = x′X(γ2)x/γ
to the closed-loop dynamics:

ẋ = Ax+ φ(x, p)x− θ
2β
3 BB′X(θ

2
3 )x.

Then,

V̇ (x, γ) = − γ̇

γ2
x′X(γ2)x+

2

γ
x′X(γ2)ẋ+

γ̇

γ
x′
dX(γ2)

d γ
x.

(31)

We have
2

γ
x′X(γ2)ẋ =

2

γ
x′X(γ2)

(
A− γ2βBB′X(γ2)

)
x

+
2

γ
x′X(γ2)φ(x, p)x.

(32)

By using the information of the system dynamics we have
the following bound
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2

γ
x′X(γ2)ẋ

≤ 1

γ
x′
[
A′X(γ2) +X(γ2)A− 2γ2βX(γ2)BB′X(γ2)

]
x

+
2

γ
x′X(γ2)φ(x, p)x.

(33)

Using (4) along with inequality (33) then,

2

γ
x′X(γ2)ẋ ≤ − 1

γ3
x′X(γ2)x

+ (−2γ2β + 1)x′X(γ2)BB′X(γ2)x/γ

+
2

γ
x′X(γ2)φ(x, p)x.

(34)

Since X(γ2) = S−1(γ2)X1S
−1(γ2)/γ2; where S(q) =

diag(qn−i, 1 ≤ i ≤ n) then,

2

γ
x′X(γ2)φ(x, p)x

≤ 2

γ

∥∥∥∥XchS
−1(γ2)φ(x, p)S(γ2)X−1

ch

∥∥∥∥x′X(γ2)x

≤ 2

γ5
sup
p∈Ω

∥∥∥∥Xchφ(x, p)X
−1
ch

∥∥∥∥ x′X(γ2)x

≤ ρ(x)

γ5
x′X(γ2)x.

(35)

From the dynamics of θ, one can easily extract the dynam-
ics of the scalar γ, that is,

γ̇ = −λ
γ
+
ρ(x)

γ3
. (36)

As a consequence, the term: −2γ2β+1 < 0 ∀ t, and hence,

2

γ
x′X(γ2)ẋ ≤ − 1

γ3
x′X(γ2)x+

ρ(x)

γ5
x′X(γ2)x

+ (−2γ2β + 1)x′X(γ2)BB′X(γ2)x/γ.

(37)

This immediately implies that

γ̇

γ
x′
dX(γ2)

d γ
x ≤ − λ

γ2
x′
dX(γ2)

d γ
x ≤ 2λλ1

γ3
x′X(γ2)x

(38)
From (31) and taking into account (35), (37) and, (38), it
is then possible to have a negative bound of the Lyapunov
function V (x, γ), that is

V̇ (x, γ) ≤ − 1

2γ2
V (x, γ). (39)

From the dynamics of the adaptive parameter “θ”, see
Eqs. (8), one can conclude that for ρ(x) > 0 and θ = 1,
the derivative of θ is always positive, which means that for
any initial condition θ(0) > 1, the parameter θ ≥ 1 for all

t ≥ 0. Since V̇ (x, γ) < 0 then the whole state are globally
bounded. As matter of fact, the boundedness of the
adaptive parameter θ is dependent on the boundedness of
ρ(x). This property can be checked by setting the following

radially unbounded Lypapunov function: Vθ = θ
4
3 , and

show that: V̇θ = −4λ θ
2
3 + 4ρ(x); hence, V̇θ = −4λ

√
Vθ +

4ρ(x). This characterizes the Finite-Time-Input-to-State
Stability 2 of θ with respect to ρ(x). Since “x” converges

2 See Reference Hong et al. [2008] for more details on finite-time-
input-to-state stability.
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Fig. 3. The system states (xi)1≤i≤4 and the adaptation θ

to zero then, it is obvious that θ remains bounded by the
ISS property. This ends the proof. 2
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forwarding: a new recursive nonlinear robust design.
Automatica, 33(5):979–984, 1997.

J. S. Shamma and J. R. Cloutier. Existence of SDRE
stabilizing feedback. IEEE Transactions on Automatic
Control, 48(3):513–517, 2003.

I. A. Tall. Strict feedforward control systems, linearisabil-
ity, and convergent normal forms. International Journal
of Control, 83(10):1994–2011, 2011.

I. A. Tall and W. Respondek. Smooth and analytic normal
and canonical forms for strict feedforward systems. In
Proceedings of the 44th IEEE Conference on Decision
and Control, and the European Control Conference,
Spain, 2005.

A. Teel. Feedback stabilization: Nonlinear solutions to
inherently nonlinear systems. Ph.D. Thesis, UCB/ERL
M92/65, University of California, Berkeley, CA, USA,
1992.

X. Xudong. Universal stabilization of feedforward nonlin-
ear systems. Automatica, 39(1):141–147, 2003.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4151


