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Abstract: In this paper, optimal linear control techniques are utilised to control a radio-controlled 
helicopter (30 size) in the AeroSIMRC simulation environment. A grey-box time-domain system 
identification method is used to estimate a linear state space model that operates in hover mode. 
Identifying the unknown parameters in the model is highly dependent on the initial values and the input 
data. The model is divided into sub-systems to make estimation possible. The identified state space 
model shows a good measure of fit compared to the simulator’s flight data. A linear quadratic controller 
forms the inner-loop, and an optimised PID outer-loop generates attitude commands from a given inertial 
position trajectory. An observer estimates the unmeasured states such as blade flapping. The controller is 
developed in Simulink® with a plug-in written for the AeroSIMRC flight simulator. The plug-in enables 
Simulink® to control the simulator through a User Datagram Protocol interface for the purpose of model 
and controller validation. The proposed methodology facilitates a low cost test environment for new 
flight control algorithms. The simulation results show that the controller keeps the helicopter stable in the 
presence of considerable environmental disturbances and plant uncertainties. 
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1. INTRODUCTION 

The past decade has seen a dramatic increase in the use of 
unmanned aerial vehicles (UAVs) (Office of the Secretary of 
Defence, 2011), which led to a corresponding increase in 
research on autonomous vehicles. In this regard, rotary 
winged UAVs (RWUAV) offer an especially appealing 
platform for researchers and developers. Their vertical take-
off and landing (VTOL) capabilities make them ideal for use 
in urban environments and research labs. However, 
helicopters pose a unique challenge for control engineers. 
These systems are difficult to model and control since they 
are multiple-input and multiple-output (MIMO), are under 
actuated, open-loop unstable, and significantly coupled, and 
exhibit complex non-linear dynamics.  

Mettler, Tischler, & Kanade (2001) addressed some of these 
modelling challenges by way of system identification. Their 
Comprehensive Identification from FrEquency Responses 
(CIFER®) model is used for helicopter control design in 
numerous studies. One of the key advantages of using system 
identification is that the experimental nature helps the 
engineer to better identify the dominant characteristics of the 
helicopter (Mettler et al., 2001). With regard to control, 
(Kendoul, 2012) states that PID control is still the most 
commonly used control technique in RWUAVs. According to 
(Raptis & Valavanis, 2010), non-linear and adaptive control 
techniques have demonstrated superior performance in 
controlling nonl-inear systems such as helicopters. However, 
(Sanahuja, Castillo, Garcia, & Lozano, 2007) states that non-
linear controllers are difficult to implement and maintain in 

real applications. In (Valavanis, 2007), Castillo presents a 
linear quadratic controller for helicopter control. The 
simplicity of this controller facilitates field application and 
provides improved performance with regard to PID control. 
In (Ribeiro & Oliveira, 2010), a test environment is 
developed for the purpose of autopilot design. The controllers 
are developed in Matlab/Simulink®, and X-plane is used to 
model the aircraft flight dynamics. A stationary model 
aircraft is connected to Matlab® via a microcontroller and 
serial interface. This setup enables students and control 
engineers to develop flight controllers in Matlab®, test the 
controllers in a simulation environment, and observe the 
resulting hardware response. However, the professional 
version of this software can be costly. 

This paper proposes a methodology to develop a low cost test 
environment for RWUAV flight controllers. This enables 
researchers and developers that do not have the required 
hardware and infrastructure with suitable low cost tools to 
perform model validation. In addition, this paper also focuses 
on modelling the simulator helicopter and designing an 
optimal controller for trajectory tracking. To accomplish 
these tasks, the paper is outlined as follows. Section 2 
provides an outline of the proposed methodology. Next, 
Section 3 presents an overview of the system identification 
process and the derived state space model. Following this, 
Section 4 presents the development of the flight controller. In 
Section 5, the controller is validated in the AeroSIMRC 
simulation environment. Some concluding remarks and final 
thoughts are presented in Section 6. 
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Fig. 1. Flight controller development and test methodology. 

2. METHODOLOGY 

Fig. 1 shows the proposed methodology to validate a 
helicopter flight controller in a low cost test environment. 
The success of each individual sub-step is determined by the 
quality of the flight test data. A pilot performs the flight tests 
manually. The data is then used to identify unknown 
parameters in a linear state space model. To make the 
identified model more general and to avoid over training on a 
single dataset, several experiments are combined for 
estimation. During the system identification process, model 
validation is continually performed, and only moves on when 
the difference between the model’s performance and flight 
data is satisfactory. The identified model is then used to 
develop the inner loop of a cascaded controller. Optimal 
linear quadratic control theory is implemented to derive the 
gains for this full state feedback controller. The outer loop 
consists of four optimised PID controllers that generate 
attitude and altitude commands from a given inertial 
trajectory. Information regarding the variance of the 
identified parameters is used to perturb the model from its 
nominal values, and test the controller performance for 
modelling uncertainty. Once the controllers show satisfactory 
performance, the system is validated in AeroSIMRC. 

3. SYSTEM MODELLING 

A parameterised state space model is identified using system 
identification and is based on the structure developed by 
(Mettler et al., 2001). The hybrid nature of the model takes 
into account the forces created by the main and tail rotors due 
to a control input, and also the dynamic coupling between the 
rotor and fuselage. The model implemented in this paper 
contains only the important parameters identified by Mettler 
et al. (2001). To facilitate easier estimation, (Shim, 2000) 
divides this complex model up into simpler sub-systems. 

3.1 Parameterised state space model 

The model parameters are stability and control derivatives. 
Stability derivatives are obtained by linearising the 6 degree-
of-freedom (DOF) helicopter equations of motion using a 
Taylor series expansion and small disturbance theory. These 

derivatives are commonly used in the aerospace community 
to evaluate the flight characteristics of aircraft. Stability 
derivatives give an indication of the change in force and 
moment acting on the aircraft due to a change in flight 
parameter, such as wind speed or blade flapping. Control 
derivatives relate the force and moment acting on the 
helicopter to the control surface deflection caused by inputs. 
The state space model is given by  

 , x Ax Bu  (1) 

with state vector 

 [ ] ,T
fbu v p q a b w r r  x  (2) 

and input vector 

 [ ] .T
lat lon col ped   u  (3) 

The state vector describes the helicopter in the body reference 
frame. Fig. 2 show the variable definitions used in the model. 
The stability derivative matrix is 
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and the control derivatives matrix is 

 

Fig. 2. State vector definitions in the body reference frame. 
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3.2 System identification 

Several techniques are used in the literature such as NASA’s 
SIDPAC (Yuan & Katupitiya, 2011), CIFER® (Mettler et al., 
2001), and the Prediction-Error Minimisation (PEM) for 
parameter estimation (Shim, 2000). However, CIFER®  is an 
expensive program that is typically not a viable solution for 
low cost development. Matlab®, on the other hand, is a 
common development tool in the modelling and control 
community, and therefore, its system identification toolbox 
was considered the ideal choice. The parameter estimation 
algorithm, PEM, is considered since it gives optimal 
solutions; however, it is subject to longer computational 
times. In this case, computation time is not the limiting 
factor, and hence, the PEM algorithm can be implemented to 
enable improved results. However, the large number of 
unknown parameters in the state space model makes 
estimation difficult. Therefore, structured estimation is used 
to help solve this problem by excluding certain parameters 
from the estimation process. In spite of this, the estimation 
algorithm is extremely sensitive to initial values, and might 
therefore, not converge to the correct parameter values. The 
state space model is broken down into smaller sub-systems 
that represent different helicopter dynamics. The model sub-
systems constitutes roll, pitch, heave, and yaw. Once these 
parameters have been estimated, the coupled systems are 
estimated. The roll-pitch and heave-yaw coupled systems 
then provide the initial values for the complete state space 
estimation. Dividing the system into multiple sub-systems 
reduces the computational complexity of the model from 
estimating 30 parameters simultaneously to only computing 
five parameters. The estimated parameters for each sub-
system are used as initial values in the coupled system. 

A similar identification procedure is followed for each sub-
system. Flight data are recorded from AeroSIMRC and then 
loaded into Matlab®. The data are filtered and linear trends 
are removed. This excludes the trim values on the inputs and 
attitude angles. If the correlation between the estimated 
model and validation data is good, the identification 
procedure proceeds to the next sub-system. If the fit is poor, 
the flight is repeated or the model is adapted. The accuracy of 
the model is given by the normalised root mean square error 
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y y
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 (6) 

with ŷ  the model output and y the estimation data.   

Fig. 3. Identified model fit to validation data. 

Evaluation of the model without a controller is difficult since 
it is open loop unstable. Therefore, the estimated model is 
validated with a dataset that is not used in the estimation 
process. The model’s capability to predict the system’s output 
response for 15 steps in advance is employed to determine its 
validity. 

3.3 Flight experiments 

Each sub-system is identified by exciting only the input 
channels that affect that sub-system. In this regard, frequency 
sweeps are ideal to facilitate system identification. A chirp 
signal with a small amplitude at low frequencies is used to 
prevent the helicopter from moving out of hover. A typical 
set of inputs, as seen in Fig. 3, is used for model validation. 
As each channel is excited, the pilot uses the other inputs to 
keep the helicopter stable and prevent large translational 
velocities. This process can be automated if a flight controller 
is available (Sguanci et al., 2012). However, it is possible to 
select a set of parameters that closely match the validation 
data, but is not a good representation of the actual helicopter 
dynamics. This problem is minimised by using several sets of 
flight data. The data sets contain not only frequency sweeps, 
but also other flight manoeuvres such as figure 8’s. The 
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estimation algorithm uses the parameter variances in each of 
the experiments to form a weighted mean of all the models. 
This facilitates experimental estimates where there is the least 
amount of uncertainty regarding the parameter’s true values. 

Fig. 3 shows that the correlation between the model estimates 
and the helicopter response is good. The frequency sweeps 
employed are obtained from AeroSIMRC. On average, 
translational velocity predictions perform worse than angular 
rates. When only aerodynamic forces dictate the yaw angle, 
the model cannot make accurate predictions. In addition, 
model performance deteriorates for data sets out of hover. 
The accuracy of the model estimates can be improved by 
taking into account non-linear effects such as servo rate 
limits, complex inflow dynamics, or the ground effect. 

4. FLIGHT CONTROLLER 

The helicopter’s translational motion is much slower than its 
angular motion, which makes it possible to use a cascaded 
controller with the slower outer loop controlling position and 
the faster inner loop for attitude control (Arain & Pota, 2011). 
This configuration is shown in Fig. 4 and is based on the 
control methodology presented by (Valavanis, 2007). The x, 
y, z, and ψ  reference trajectory for the outer loop would 
typically be provided by a guidance controller. The outer 
loop then provides a roll, pitch, heave velocity, and yaw rate 
(ϕ, θ, w, r) reference to the inner loop. A full state feedback 
optimal control law is designed for the inner loop that 
decouples the helicopter dynamics, thereby making it 
possible to control the translational motion with four 
decoupled PID controllers.  

4.1 Attitude control 

The linear-quadratic regulator (LQR) algorithm provides a 
straightforward way to implement a MIMO controller, given 
that a model of the system is available. Stability is guaranteed 
with LQR if modelling errors and disturbances are within 
bounds. An advantage of using LQR for research purposes is 
that it can be expanded to a gain-scheduling controller and an 
adaptive controller (van Schalkwyk, 2008). First, the 
continuous time model is converted to discrete time using a 
zero-order hold with a sampling rate of 50 Hz. The state 

space model is augmented with error states to enable tracking 
of reference inputs (Franklin et al., 2011). The state vector is 
augmented with the integral of the error xI, for which the 
derivative is the tracking error e 
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The augmented system is 
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The control law is of the form 
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To simplify the notation, the augmented system is described 
by 

 ( 1) ( ) ( ),x A x B ua a a a ak k k    (10) 

with the control law 

 ( ) ( ).a a ak k u K x  (11) 

The quadratic cost function is computed by 
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The relative values of Q and R determine the amount of 
control effort that can be used to keep the states at zero. The 
optimal steady state gain Ka can be calculated recursively by 
solving the algebraic Ricatti equation until it converges. The 
performance of the controller is now dependant on the choice 
of the cost function. Bryson’s rule can be used as a first 
iteration to get a stable system running (Bryson, 1975). The 
two weighting matrices Qii and Rii can be determined with 
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Fig. 4. Controller overview. 
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The cost function weights are now dimensionless, and only 
the relative values of the matrices will alter the controller’s 
response. The cost function can now be changed iteratively to 
reach the design criteria. Note that it is important to ensure 
that the actuator physical limits and rate limits are not 
reached since the LQR algorithm does not explicitly account 
for this. In addition, an estimator or observer is required to 
estimate the non-measured states such as rotor flapping. With 
the estimator added to the system, the complete inner loop is 
given by 
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4.2 Trajectory generation 

A PID controller converts the x, y, z, and ψ errors in the body 
reference frame to the appropriate roll, pitch, heave velocity, 
and yaw rates. Reference trajectories are given in the inertial 
reference frame, however, the position errors are calculated 
in the body reference frame. This ensures that the error for x 
decreases by changing the pitch, no matter which way the 
helicopter is facing. The PID controllers are tuned using a 
simplex search method from the Matlab® optimisation 
toolbox. The integral time absolute error (ITAE) is minimised 
as the objective function. The controllers are tuned separately 
until each objective function’s terminating condition is 
reached. The SISO approach followed in the outer loop is 
possible since the LQR controller has decoupled the 
helicopter attitude control. 

Fig. 5 shows a 3D figure 8 trajectory with wind disturbances 
in AeroSIMRC. The figure shows that the controller keeps 
the helicopter stable in winds of up to 8 m/s. This 
demonstrates that the controller can perform well even for 
out-of-design operating conditions.  

5. TEST ENVIRONMENT 

To test the proposed methodology as well as the flight 
controller, a third party simulation package can serve as a 
testing platform. Game simulators are mostly used by 
enthusiasts to practice flying, whereas engineering flight 
simulators provide engineers with suitable tools to test new 
aircraft systems. Due to budgetary constraints, a game 
simulator is used which facilitates a low cost test 
environment. Three game simulators are commonly found in 
literature, Microsoft Flight Simulator, FlightGear, and X-
plane. These three simulators provide external interfaces for 
software-in-the-loop (SITL) and hardware-in-the-loop 
(HITL) simulations. However, they are designed for full-size 
aircraft simulations and not radio-controlled (RC) aircraft. In 
contrast, RC helicopter simulators used by hobbyists such as 
Phoenix and AeroFly do not have interface capabilities. In 
this regard, AeroSIMRC provides interface capabilities and is 
specifically created for training RC pilots. 

The simulation methodology is depicted in Fig. 6. Simulink® 

and Matlab®  have built in functions to handle serial, UDP, 
and TCP communication. User Datagram Protocol (UDP) is a 
low overhead, error-correction less transmission protocol that 
is ideal for real time operation and communication between 
applications. UDP is used to transmit data between the plug-
in and Simulink®. The interface plug-in is called on every 
AeroSIMRC program cycle. AeroSIMRC then packages 
helicopter sensor measurements and sends it to Simulink® via 
the plug-in. The plug-in creates a binary stream of data, 
which is then sent to Simulink®  through UDP. The data is 
unpacked in Simulink®  and the helicopter states can be 
estimated. The new control inputs are calculated using the 
estimated states. The helicopter inputs are packaged and sent 
back to AeroSIMRC via the plug-in using UDP. The plug-in 
receives the binary stream, unpacks it into the appropriate 
structure, and passes it to AeroSIMRC. AeroSIMRC does not 
continue operation until it has received new control 
commands from Simulink®. The disadvantage in using game 
based simulators is that they were not designed for control 
system development. AeroSIMRC always attempts to 
maintain real time operation. If it cannot internally calculate 
the model dynamics fast enough, it will slow down the 

-20
0

20

-60
-40

-20
0

5

10

15

20

25

 

x (m)

Inert ial posit ion

y (m)
 

z 
(m

)

AeroSIMRC
Reference

0 50 100 150

-60

-40

-20

0

20

Tim e (s)

In
er

tia
l 

po
si

ti
on

 (
m

)

 

 
x

EF

y
EF

z
EF

0 20 40 60 80 100 120
-15

-10

-5

0 v
z
v
y

v
x

Tim e (s)

In
er

tia
l 

w
in

d 
ve

lo
ci

ty
 (

m
/s

)

Fig. 5. 3D figure 8 trajectory with wind disturbances in 
AeroSIMRC (Grey: Reference. Black: Flight data). 
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simulation rate. This causes a change in the simulated time 
between function calls to the plug-in, which changes the 
sampling rate perceived in Simulink®. This can cause the 
system to become unstable. Therefore, to enforce a specific 
simulation rate, an in-game video is recorded during 
simulation. The video frame rate then serves as the system 
sampling rate. 

 

Fig. 6. Simulation flow methodology. 

6. CONCLUSIONS 

A simple low cost methodology is developed to test a 
helicopter flight controller. By using system identification, an 
accurate model is obtained without the need for in-depth 
knowledge of helicopter theory. Optimal linear quadratic 
control is ideal for fast attitude dynamics without being too 
complex for the development of an initial flight controller. 
An optimised PID translational controller provides the 
reference states needed for trajectory tracking. AeroSIMRC 
provided a low cost alternative to X-Plane as a platform for 
testing RC flight controllers. 

The test environment can be upgraded to include hardware-
in-the-loop capabilities. This will make it possible to develop 
the embedded flight controller and test hardware integration 
before the first real test-flight (Ng et al., 2005). In addition, 
the controller can be improved by employing a time-invariant 
LQR controller which will improve the inner loop response 
(van Schalkwyk, 2008). An adaptive controller capable of 
performing 3D manoeuvres should be the next goal. The 
focus should then shift to guidance and navigation 
(Kendoul, 2012). 
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