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Abstract: In this paper, we consider a railway traffic scheduling problem. We aim to find a schedule for 
a train scheduling networks where time duration uncertainties are considered. This problem was 
intensively studied with mixed linear models where trains moving duration are deterministic. In this 
paper, we formulate the problem as a classical one with scenario-based stochastic programming taking 
expected values as objective functions. Then, a new criterion is proposed to quantify scheduling 
robustness in the face of uncertainty. Besides, additional constraints were introduced to make the model 
feasible when unexpected event occurs during scheduling execution. 
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1. INTRODUCTION 

This paper deals with the train scheduling networks 
problems. It consists in finding the arrival and the departure 
times of the lines at certain stages of the network. Depending 
on required objectives, these stages can be referred to public 
station and/or switches. 

Since 1871s, and more specifically since the first train 
schedule conference in Germany, train scheduling planning 
problems have been widely studied (Carey and Lockwood 
(1995); Cordeau et al. (1998)) and several programming 
model have been proposed despite their NP-had characteristic 
(Assad, (1980); Nachtigall and Voget (1997)).  
 
This category of scheduling problems can be shared into two 
classes, as described as follows: 

• Static or Predictive problem 
It consists firstly on allocating resources to all trains in all 
routes. Then, the train sequencing entrains the pre-
specification of the arrival and departure order of trains at 
stations. Finally, a time-table is then resulted. This class aims 
on the minimization of the makespan or the cycle time or on 
the maximization of the traffic frequency (Harrod (2011); 
Higgins et al, (1996); Kraay and Harker (1995)).  

• Dynamic or Reactive problem   
It involves when the train planned schedule cannot be 
respected due to a disturbance handling activity. In this case a 
new timetable should be found while all the problem 
constraints are respected. Generally, the objective function 
consists on the minimization of train delays (Narayanaswami 
and Rangaraj (2013)).   

 
The focus of this paper is to present a new model which can 
be useful for the two problem classes simultaneously. The 
originality’s of this approach consist on the following: 

• Due to train travelling duration’s uncertainties, we present 
a handling scenarios approach. Where additional criterion is 
considered to find the most robust schedule. 

• We define new variables and constraints to control the 
train speed and the train waiting time on stations in order to 
remove a disruption, if any. 

Most previous models are handling either predictive train 
scheduling problem or reactive one. If unexpected event 
happens, a first schedule solution can be determined using 
this first problem class models. This can be reached by 
instantiating known decision variables. Nevertheless, this 
solution is very simple and cannot, at any way, guarantee the 
solution performance.  
Besides, weather conditions can require on trains to reduce 
their speeds on some tracks. In fact, a wheels sliding or a 
wheels skating can happen due to the snow or to the tree 
leaves on the rail in autumn generally. So, this could lead to 
several perturbations in arrival and departure times of the 
timetabling passenger trains. This problem has become 
recurrent in Europe at the approach of winter holidays and 
Christmas while a large number of people take the train to 
travel. Which make rail transport less competitive compared 
to other means of travel (air and ground transportation). 
 
Following to these introductory remarks, Section 2 is devoted 
to the problem statement. Section 3 discusses the 
mathematical problem formulation. The problem solving 
methodology as well as the new model extensions are 
presented in Section 4 and 5, respectively. 
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2. PROBLEM STATEMENT 

In this study, we consider the single track, bi-directional 
railway traffic. Trains have to travel in two directions: from 
right to left (RtoL) and from left to right (LtoR) (called also 
nominal direction in literature (Abbas-Turki et al, 2012)). 
Each right to left direction train is travelling, as soon as 
possible from the starting station (station 1), then it is visiting 
successively m-1 stations, numbered from 1 to m-1, before 
arriving to the end station (station m). While each left to right 
direction train has to start by the final station, and then it is 
visiting the stations: m-1, m-2, …and 2 successively, before 
reaching the starting station. We call single track (or 
segment) the slice of the line confined between any two 
stations. In general, on each train station several tracks 
(called block) are available to allow overtakes and crossings. 

One of the main specificities of such a system is that the 
average train travelling durations values are known and any 
delay can make a network disruption. Moreover, tracks are 
the most critical resource of such lines. Besides, there are no 
multiple-tracks between stations and each station can receive 
more than one train at the same time. 
Fig. 1 shows an example of a line layout with single track 
and bi-directional train movements. 

 

 

 

                                

 

Fig. 1. Example of a single track, bidirectional railway 

This problem can be considered as a job-shop scheduling 
problem with very specific constraints, where each segment 
is considered as a machine and each train as a job. 

The constraints we consider here are the following ones: 

(C1)  Each track can receive simultaneously either RtoL 
trains or LtoR trains. 

(C2)  In each station, trains must remain at least a lower 
duration and at most an upper duration. These 
durations can vary from one station to another due to 
station passengers’ frequency. 

(C3)  Between two successive trains moving on the same 
direction, a minimum safety time duration is required. 

(C4)  In each meeting station, minimum meeting time 
duration has to be ensured between the arrival and the 
departure of trains moving in different direction. 
Definitely, passages have to be allowed to change 
from trains. 

The studied problem requires two distinct but dependent 
decisions to be made: (1) scheduling decision-sequence, in 
which trains have to move (priority to move), and (2) station 
waiting decision (real waiting time on stations). The strong 

dependence between these two decisions makes the problem 
very hard to model. Yet, getting motivated by previous 
researches using mixed integer linear programming methods, 
we elaborate a new model; which can solve this train 
scheduling problem to optimality. In this programming 
model, we are looking for optimizing the simultaneous 
travelling durations of several trains moving in different 
directions through a single line. Besides, it can be also useful 
to find a solution when a disturbance occurs.  
In general, the problem solution is presented using graphic 
timetable as shown in Fig. 2.  
 
 
 
 
 
 
 
 
 

Fig. 2. Graphic timetable 

This figure illustrates an example of a single track line layout 
with three stations and three trains (two moving from left to 
right and one from right to left). Slash lines represents the 
train moves while horizontal lines show the waiting times on 
stations. In this example, only one train meeting is carried out 
on station 2 between train 3 and train 2. After the passage of 
the train 1, train 3 reaches station 2, wait there until the track 
1 becomes available and the minimum meeting time takes in. 
Then, it leaves station 2 to station 1. While train 2 spends the 
lower bound of its required waiting time on station 2 and go 
to station 3. 
In the following section, we formally describe the problem 
and formulate it as a mixed integer linear programming 
model. 

3.  MATHEMATICAL FORMULATION 

A definition of notations used in this paper is necessary in 
order to describe the elaborated models. So, let’s define the 
following parameters and variables:  
 
Problem Parameters 

1. n total number of trains. 

2. n1 trains that move in the LtoR direction. 

3. n2 trains that move in the RtoL direction. 

4. m total number of stations. 

NOTE 1:  

- Stations are indexed from 1 to m. 

- To simplify the following notation, we denote by i
�

 a train 

moving in LtoR direction and by i
�

a train moving in RtoL 
direction. 
   

Stations 

1 m 2 3 k m-1 

LtoR direction RtoL direction 

Train 1 Train 2 Train 3 

Track 2 

Station 2 

Track 1 

Station 1 

Wainting time  
on station 2 

Time 

Station 3 
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5. ,k k

i i
Uptd Lwtd� �  The upper and lower bounds 

travelling time of a LtoR train i to 
run through the track between the 
stations k and k+1.  

6. ,k k

i i
Uptd Lwtd� �  The upper and lower bounds 

travelling time of a RtoL train i to 
run through the track between the 
stations k and k-1.  

7. ,k k

i i
Upwt Lwwt� �  The upper and lower bounds waiting 

time of LtoR train i on station k.  

8. ,k k

i i
Upwt Lwwt� �  The upper and lower bounds waiting 

duration of RtoL train i on station k. 

9. 
, ,

,k k

i j i j
Sfte Sfte� � � �  The safety time durations between 

the arrival of two trains (i and j) of 
the same direction to station k: 

,

k k k

i j i j
Sfte e e= −� � � � ; 

,

k k k

i j i j
Sfte e e= −� � � �  

10. 
, ,

,k k

i j i j
Sfts Sfts� � � �  The safety time durations between 

the departure of two trains (i and j) 
of the same direction from station k: 

,

k k k

i j i j
Sfts s s= −� � � � ; 

,

k k k

i j i j
Sfts s s= −� � � �  

11. 
, ,

, ,

,

,

k k

i j i j

k k

i j i j

Mmt Mmt

Mmt Mmt

� � � �

� � � �

 
The minimum durations for the 
meeting of two trains (i and j) on 
station k.   

12. M  Very big number (+∞). 

13. ,k k

i i
Dd Dd� �  Date when a disturbance occurs in 

the network for train i on or after 
visiting station k-1. 

14. ,k k

i i
� �δ δ  Disturbance duration.  

 
Problem Decision Variables 

15. k

i
Rtd� , k

i
Rtd�  Real travelling time of a LtoR and a 

RtoL train i from station k to the 
following one.  

16. k

i
Rwt� , k

i
Rwt�  Real waiting time of a LtoR and a 

RtoL train i on station k. 

17. k

i
s�  Start moving time of a train i from 

station k to station k+1. 

18. k

i
s�  Start moving time of a train i from 

station k to station k-1. 

19. ,k k

i i
e e� �  End moving time of a train i from 

station k. 

20. k

i
Tgs� , k

i
Tgs�  Term gain speed from station k-1. 

21. k

i
Tgw� , k

i
Tgw�  Term gain waiting on station k. 

22. 
,

k

i j
S� �  1    if (  < ) 

0   otherwise

k k

i j
s s= 



� �

 

23. 
,

k

i j
E� �  1    if (  < ) 

0   otherwise

k k

i j
e e= 



� �

 

24. 
,

k

i j
S� �  1    if (  < ) 

0   otherwise

k k

i j
s s= 



� �

 

25. 
,

k

i j
E� �  1    if (  < ) 

0   otherwise

k k

i j
e e= 



� �

 

26. 
,

k

i j
S� �  1    if (  < ) 

0   otherwise

k k

i j
s s= 



� �

 

27. 
,

k

i j
E� �  1    if (  < ) 

0   otherwise

k k

i j
e e= 



� �

 

NOTE 2: - We assume that trains travel on a single track line 
layout in bi-directional movements. In addition, all trains 
have to pass through all stations. Moreover, re-routing is not 
allowed and safeties as well as lower time durations have to 
be respected.  
- It is important to mention that the following mathematical 
formulation is a train movement’s model: where decision 
variables define the starting dates of all the train moves from 
each station k and their end dates ( 1, ,k k k

i j i
s s e +
� � � and 1k

j
e −
� ). 

NOTE 3: We denote by ɶx  the new decision variable value 
of x  when a regulation is performed after a disturbance. In 

other words ɶx  is the new value of x after a new scheduling. 

 
Problem Formulation 
 

� �1 2

1

i 1,n 1,n

:   =  + m
max i j

j

Minimize C e e
∈ ∈
∑ ∑� �

� �
� �� �

 (1)  

 

� � �1 21, , 1, 1,k m i n and j n∀ ∈ ∈ ∈
� �

� � �
� � �  

 

 1k k k

i i i
s Rtd e− + =� � �  (2)  

   

 1k k k

j j j
s Rtd e+ + =� � �  (3)  

   

 k k k

i i i
Lwtd Rtd Uptd≤ ≤� � �  (4)  

   

 k k k

j j j
Lwtd Rtd Uptd≤ ≤� � �  (5)  

   

 k k k

i i i
e Rwt s+ ≤� � �  (6)  

   

 

k k k

i i i
Lwwt Rwt Upwt≤ ≤� � �

 (7)  

   

 

k k k

j j j
Lwwt Rwt Upwt≤ ≤� � �

 (8)  

   

 
, ,

.k k k k

j i j i i j
s Sfts s S M+ ≤ +� � � � � �  (9)  
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, ,

(1 ).k k k k

i i j j i j
s Sfts s S M+ ≤ + −� � � � � �  (10)  

   

 
, ,

.k k k k

j i j i i j
e Sfte e E M+ ≤ +� � � � � �  (11)  

   

 
, ,

(1 ).k k k k

i i j j i j
e Sfte e E M+ ≤ + −� � � � � �  (12)  

   

 
, ,

.k k k k

j i j i i j
s Sfts s S M+ ≤ +� � � � � �  (13)  

   

 
, ,

(1 ).k k k k

i i j j i j
s Sfts s S M+ ≤ + −� � � � � �  (14)  

   

 1

, ,
.k k k k

j i j i i j
e Sfte e E M−+ ≤ +� � � � � �  (15)  

   

 1

, ,
(1 ).k k k k

i i j j i j
e Sfte e E M−+ ≤ + −� � � � � �  (16)  

   

 
, ,

.k k k k

j i j i i j
s Mmt e S M+ ≤ +� � � � � �  (17)  

   

 
, ,

(1 ).k k k k

i i j j i j
e Mmt s S M+ ≤ + −� � � � � �  (18)  

   

 
, ,

.k k k k

j i j i i j
e Mmt s E M+ ≤ +� � � � � �  (19)  

   

 
, ,

(1 ).k k k k

i i j j i j
s Mmt e E M+ ≤ + −� � � � � �  (20)  

   

 
, ,

k k

i j i j
S E=� � � �  (21)  

   

 
, ,

k k

i j i j
S E=� � � �  (22)  

   

 
, ,

k k

i j i j
S E=� � � �  (23)  

   

 m m

i i
e s=� �  (24)  

   

 1 1

j j
s e=� �  (25)  

   

 �, , , , , ,
; ; ; ; ; 0,1k k k k k k

i j i j i j i j i j i j
S E S E S E ∈� � � � � � � � � � � � ��  (26)  

   

 
In this model, the objective function consists in minimizing 
the makespan Cmax. This variable, as given here, can be 
defined as the total time needed for all trains to reach their 
terminals. Constraints (2)-(3) guarantee the fact that: before 
arriving to the destination station each train has to spend its 
required travelling time (i.e. the most frequent duration). This 
duration must be confined within lower and upper bounds as 
traduced by constraints (4)-(5). Constraint (6) defines the 
stations waiting dates that must be respected. These durations 
have to be bounded, as defined by constraints (7)-(8). Before 
starting to move, each train must be sure that the minimum 
safety time duration between him and the previous one using 
the same track is maintained. This statement is translated by 
constraints (9)-(12) for LtoR trains and by constraints (13)-
(16) for RtoL trains. While constraints (17)-(20) are used to 
ensure the minimum required time duration at a station 
between the arrival and the departure of two trains moving in 
different directions. Constraints (21)-(23) define the 
precedence rule: if a train i leaves first a station k, it must 
reach first the destination station (before train i+1). 
Consistency constraints are given by (24) and (25), while 
binary decision variables are defined by (26). 
 

Problem Complexity 
The complexity of this problem is related to the number of 
trains, directions and stations (or/and tracks). For this 
proposed scheduling model, there are a total of 

1 2 1 2 1 2(27 4 4 )m n n n n n n+ + + +  constraints. Besides, there are 

four types of decisions variables: a total of 1 24 ( ) 1m n n+ +  

integer variables and 1 26mn n  binary variables to find. 

 
Problem Formulation limits 
This model can be used in general to find a timetabling for a 
single track line layout, with bi-directional train movements 
problem. Nevertheless, due to some unexpected events, train 
traffic can be disturbed. Consequently, a new, quick and 
robust schedule solution should be found. 
For this aim, we propose: firstly, a new solving methodology 
for the problem on hand, using metrics that takes into account 
the scheduling characteristics under train transportation time 
uncertainty and we illustrate it by an example. Secondly, an 
evolution of the previous model is performed to make it able 
to find efficient schedule solution, when an unforeseen event 
happens. This aim can be achieved using two flexibilities 
provided by such problems: speed train control and train 
waiting time control. These studies will be presented 
consecutively, in the following sections. 
 

4.  PROBLEM SOLVING METHODOLOGY 

Getting motivated by such transportation scheduling 
problems and previous robustness studies in optimization 
literature and more precisely in job-shop scheduling problems 
(Harding and Floudas (1997); Vin and Ierapetritou (2001)), 
we propose a scenario based stochastic problems 
methodology. The robustness, as defined for same problems, 
measures the resilience of the schedule objective to vary 
under uncertain parameters and disruptive events. Moreover, 
as explained above, the weather can have a big impact on the 
train time travelling durations and consequently on the 
disturbance network.  
Therefore, the train travelling durations can be assumed to 
vary by P% about their nominal values. Realistically, this 
probability may be calculated for each line track and each 
period of the year, on the basis of the historic of railways 
transportation companies like SNCF in France. Hence, the 
performance of the schedule can be evaluated in terms of the 
makespan required while random transportation durations are 
satisfied. 
The proposed robustness evaluation methodology can be 
resumed in the following steps: 
 

Step 1. Consider a random of the train transportation times 
in the freedom degree interval. 
 

Step 2. Solve the deterministic problem, for all the 
considered scenarios, with the following new objective 
function: 

 .s s
s S

p Cmax
∈
∑  (27)  

Where: - ps is the probability of a scenario s.  
             - Cmaxs is the makespan of a scenario s. 
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Step 3. Solve the same problem as in Step 2, using the 
following function as objective: 

   

( ) ( )2 2
. . .s s s s s s

s S s S s S

p Cmax p Cmax p Cmax
∈ ∈ ∈

+ −∑ ∑ ∑  (28)

 
 

 

Step 1 and Step 2 can be considered enough to find the best 
solution under the considered uncertainties while solution 
stability is not guaranteed. That’s why, on step 3, we use the 
standard deviation, as a metric for robustness evaluation, to 
determine the more resilient schedule. 
 
Illustrative Example 

In this example three trains must travel on a line with 4 
stations including the starting and the ending stations. Train 1 
and 2 travel on LtoR direction, while train 3 travels on RtoL 
direction. The travelling time durations are assumed to vary 
from 0% to 25% about their nominal values. These 
distributions are given in table 1 (see step 1). 
 

Table 1.  Train travelling time durations distribution 

Train Track Travelling time / Probability 

1
�

 
1 45 / 0.40 46 / 0.60 - 
2 31 / 0.45 28 / 0.55 - 
3 50 / 1.00 - - 

2
�

 
1 47 / 1.00 - - 
2 27 / 0.35 32 / 0.65 - 
3 49 / 0.65 52 / 0.35 - 

3
�

 
1 45 / 1.00 - - 
2 26 / 0.25 30 / 0.30 34 / 0.45 
3 40 / 0.80 43 / 0.20 - 

 
The parameter Probability in this table could define the 
frequency of spending these time durations over a period of 
time. This probability can vary from one season to another 
due for example to weather conditions. The number of 
considered scenarios is 96 (2*2*1*1*2*2*1*3*2). And the 
remaining problem parameters used for simulations are given 
as follows: 5k

i
Lwwt =� ; 

,
1k

i j
Sfte =� � ; 

,
2k

i j
Sfts =� � ; 

,
3k

i j
Mmt =� � . 

By adopting (27) as objective function of the model, the 
makespan of all scenarios varies from 428 to 453 t.u. and the 
most expected values of the makespan is 445 t.u. This 
makespan is defined in literature as the deterministic value of 
the makespan (Vin and Ierapetritou (2001)). It determines the 
most likely schedule to be followed, where probabilistic 
travelling time durations are considered.  
Besides, 441,5 t.u. is the average makespan over all 
scenarios. 
 
 
 
 
 
 
 
 
 
 
 

 

To quantify robustness, we use the standard deviation metric 
and we integrate it in our objective function as given in (28). 
Simulation results show that the most robust schedule is for 
the makespan of 446 t.u. 
Graphic timetable of the makespans 445 t.u. and 446 t.u. are 
reported on figures 3 and 4, respectively. Moreover, we use 
direct graph models to characterize the difference between 
slight and heavy robustness (see Fig. 5). 
In figure 5, we model priority moving constraints for the 
above two schedules. As we can notice, schedule 1 presents 
more precedence constraints than schedule 2. In fact, in 
schedule 2, train 1 leaves station 3 before the arrival of train 
2. Moreover, the safety time duration for the starting move of 
train 2 is achieved before it arrives to the departure station 
which makes it free to move at any time. Thus, schedule 1 is 
a slight robust schedule whereas schedule 2 is a heavy robust 
one. 

5.  NEW MODEL EXTENSIONS 

Such as several previous approaches (Cordeau et al. (1998)), 
the proposed linear programming model of sections 3 is 
incapable to face disruptive events when there is a 
perturbation on the train network. Thus, in this section we 
propose to make it able to find new feasible and performing 
schedules if conflicts occur due to one or several delays. For 
this aim, we propose to add new constraints to solve these 
inconsistencies. 
Two alternatives solutions are possible: 
• The first one consists on the propagation of the delay on 
all the over train travelling dates. For example, if a 
disturbance k

i
�δ  happens at Dd  for a train i. All the 

transportation movements scheduled before Dd are not 
altered. Despite the others, they have to be delayed by k

i
�δ . 

This solution can be applied but the optimality is not 
guaranteed. Moreover, the propagation of the delay can have 
a snowball effect. Therefore, the train delays and the refund 
fees of railway companies will increase drastically.  
• The second solution consists on applying a regulation 
policy, where all the starting move dates of all the trains are 
updated. To get this solution, we apply a train speed control 
and a train waiting time control strategies. These strategies 
can be traduced in our linear programming model by the 
following constraints: 
 � 	1k k k k k

i i i i i
s Rtd Tgs eδ− + + − =� � � � �  (29)  

 
 

  

 
 
 
 
 
 
 
 
 
 
 91  143 

Station 4 

Station 3 

Station 2 

Station 1 
Time 169 83 78 50 45 2 

 133 89  40 

Fig. 3. Graphic timetable (Cmax= 445 t.u.) 

40 78 123 133 

173 128  91 86 83 54 50 45 2 Time 
Station 1 

Station 2 

Station 3 

Station 4 

143 

Fig. 4. Graphic timetable (Cmax= 446 t.u.) 

Station 4 Station 3 Station 2 

Fig. 5. Schedules robustness analysis 

1

22

1

3

1

2

3 3

3

22 2

11 1

3 3

Schedule 2 
(Cmax=446)  

Schedule 1 
(Cmax=445)  
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 0 k k k

i i i
Tgs Rtd Lwtd≤ ≤ −� � �  (30)  

 � 	1k k k k

j j j j
s Rtd Tgs e+ + − =� � � �  (31)  

 0 k k k

j j j
Tgs Rtd Lwtd≤ ≤ −� � �  (32)  

 	 	k k k k

i i i i
e Rwt Tgw s+ − ≤� � � �  (33)  

 0 k k k

i i i
Tgw Rwt Lwwt≤ ≤ −� � �  (34)  

   

Constraints (29), (31) and (33) have to be used instead of 
constraints (2), (3) and (6). And new time windows 
constraints ((30), (32) and (34)) have to be added. 

Let’s detail and analysis these new constraints.    
We assume that a disruption happens when a train i leaves a 
station k-1, then the arrival date of this train at station k will 

be equal to: � 	1k k k k

i i i i
s Rtd eδ− + + =� � � � in spite of equality (2). 

Moreover, due to ground topology and thanks to train 
technology evolution, a first control strategy can be applied. 
In fact, each train can increase its speed on some segments of 
its course. Generally, this speed is not deterministic but 
confined on a speed interval: limited by a lower and an upper 
bound. So, using this problem specificity, we introduce a new 
parameter called term gain speed ( k

i
Tgs� ) to determine the 

gain that it can be reached when the train speeds are well 
controlled. Consequently, equalities (29) and (31) have to be 
used instead of constraints (2) and (3). 
Besides, train speed limits have to be respected. For this aim, 
we introduce the new constraints (30) and (32). 
The second control strategy proposed in our linear 
programming model is the waiting time control technique. In 
fact, for this class of scheduling problem, a waiting time is 
defined on each train station. This time duration can be 
decreased, to absorb the time disruption, provided that a 
minimum waiting duration on each station is respected. These 
statements are traduced by constraints (33) and (34). 
To illustrate the effectiveness of our new model, we propose 
the following example. 
 
Illustrative Example 
Let’s consider the same example as in section 3. However, 
the following parameters are considered:  
10 15k

i
Rtd≤ ≤� ; 5 15k

i
Rwt≤ ≤� ;

,
1k

i j
Sfte =� � ;

,
2k

i j
Sfts =� � ;

,
3k

i j
Mmt =� � ; 15k

j
Rtd =� ;10 15k

j
Rtd≤ ≤� ; 5 15k

j
Rwt≤ ≤� ;

,
1k

i j
Sfte =� � ;

,
2k

i j
Sfts =� � ;

,
3k

i j
Mmt =� � ; 0 2k

i
Tgs≤ ≤� ; 0 2k

j
Tgs≤ ≤�  

Let’s define the following cases study. 
Case 1. No disturbance. Using the elaborated linear 
programming model, while disruption and gains are omitted, 
the optimal solution is obtained for a Cmax of 147 t.u. as 
reported on figure 6. 
Case 2. A disturbance of 5 t.u. for train 3 at time Dd=10. 
Thanks to the speed and waiting time control strategies, the 
optimal solution remains the same (see Fig. 6) 
Case 3. Moreover the departure of train 2 is delayed to 25. 
As illustrated on figure 6, only the train where disturbance 
has occurred was delayed. But, we gain about 2,3% on the 
Cmax , which cannot be neglected, compared to the solution 
where control strategies are not applied. 

In conclusion, on these cases study, we illustrate by a scholar 
example the effectiveness of the proposed control strategies 
to find a performing schedule solution when an expected 
event happens. 
 

 
 

 

6. CONCLUSION 

In the aim to optimize a train traffic scheduling problem 
under time travelling uncertainty, we have proposed a 
scenario based stochastic problems methodology to solve the 
problem. Moreover we have defined new objective function 
criteria to quantify the schedule robustness. Besides, we have 
extended the proposed linear programming model to solve 
the problem on hand where unexpected event happens. For 
this aim, we have developed two control strategies based on 
train speed and waiting time duration on stations.  
Future work is to extend the elaborated model to more 
complex line configurations’. 
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