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Abstract: A robust solution to the trajectory tracking control problem for a nonholonomic
wheeled mobile robot should deal with the existence of structural and parameter uncertainties,
external disturbances and operating limitations. The first order sliding control with boundary
layer is a common and suitable solution that can ensure chattering attenuation, but with poor
degree of robustness. Fortunately, higher order sliding mode control can achieves greater degree
of robustness with the reduction of the chattering phenomenon. Based on this knowledge, a
control strategy is proposed using a super-twisting sliding mode control, which enforces a second
order sliding mode, in cascade with an inverse dynamic control with proportional plus derivative
control to solve the problem achieving good robustness. This linear control technique plays an
important role in increasing the robustness by mitigating the influence of neglected dynamics.
Experimental results are explored to show the effectiveness of the proposed strategy.

1. INTRODUCTION

Although a nonholonomic wheeled mobile robots (WMR)
has movement constraints it regards advantages of less
weight and good energy efficiency and is useful in many
applications [Siciliano and Khatib, 2008]. A typical exam-
ple of this kind of system is a differential wheeled mobile
robot (DWMR) [Yang and Kim, 1999, Chwa, 2004, Ferrara
and Rubagotti, 2008, Park et al., 2009], which comprises a
body supported by two free wheels and two simple wheels
actuated by DC motors.

An important control problem for the autonomous robot
locomotion is the tracking of a given feasible trajectory
parameterized in time with robustness despite of paramet-
ric and structural uncertainties, disturbances and system
limitations. Some solutions for this problem have been
addressed by means of sliding mode control (SMC) tech-
nique due to its good performance and robustness. Yang
and Kim [1999] and Chwa [2004] proposed an inverse
dynamic control combined with a FOSMC with BL to
achieve a solution with chattering phenomenon reduction
for a DWMR. The inverse dynamic control compensates
known forces and torques and FOSMC with BL ensures
that trajectories are tracked.

Unfortunately, there is a robustness reduction as a con-
sequence of employing the BL technique that relax the
sliding constraints to mitigate chattering in closed loop
with FOSMC. This phenomenon consists of oscillations
with limited amplitude and frequency on the system states
that occurs when there are (i) neglected dynamics excited
by the high frequency discontinuous switching control sig-
nal or (ii) switching frequency limitation. Yang and Kim
[1999] explored experimental results that have led to high

errors relative to the size of the robot due to neglected
dynamics. In sequence Chwa [2004] explored just simula-
tion with perfect compensation of the system dynamics,
so escaping the elements that causes chattering. In their
work, Park et al. [2009] applies a similar control structure,
but using an additional neural network control to compen-
sate uncertainties in the dynamics. No discussion about
practical problems in terms of experiments are presented
with results limited to simulations, therefore, dismissing
the robustness that a SMC should provide for the closed-
loop system and the chattering problems.

The fact is that BL as others solutions associated with
FOSMC can imply in a disadvantageous trade-off between
robustness and chattering reduction [Utkin et al., 2009].
Some better solutions have been developed by means of a
second order sliding mode (SOSMC) application, that pro-
vides continuous control signals with discontinuous deriva-
tive capable of enforcing the sliding mode constraints and
achieving robustness [Levant, 1993, Fridman and Levant,
2002]. An important result was provide by Levant [1993],
that showed that if there is an imperfection in the switch-
ing control due to system limitations, than higher order
sliding mode is more effective in terms of robustness.

Therefore, in this paper a control strategy based on the
super-twisting sliding mode control (STSMC), a SOSMC
technique that has good numeric performance and do
not depend on the time derivative of σ(x) [Levant, 1993,
Fridman and Levant, 2002] is proposed to solve the tra-
jectory tracking problem for a DWMR. This technique
is used to design a kinematic controller that generates
velocity control signals to compensate trajectory tracking
errors providing robustness. These signals are set as the
references for a dynamic controller that are designed by
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means of an inverse dynamic control with a PD control
to compensate the known forces and torques that actuate
on the robot. As requirement this second controller must
ensure a stable and fast tracking of the references spite
of neglected dynamics to improve the robustness against
chattering. The effectiveness in terms of robustness are
evaluated by experimental results. It should be emphasized
that the authors have already done some effort to achieve
some solution [Elyoussef et al., 2010, 2012], but in those
works the focus was just the kinematics and chattering
analysis, and results were obtained by means of simula-
tions.

In Section 2 the control problem is formulated. The design
of controllers is presented in Section 3. Experimental
results are presented in Section 4. Finally, in Section 5
conclusions and perspectives are discussed.

2. PROBLEM FORMULATION

2.1 Preliminaries

A typical example of a DWMR is depicted in Figure
1, which is an assembly of mechanical, electronic and
electric systems. It comprises a body supported by four
wheels, among which two are actuated by DC motors and
the other two are free wheels, and also all the necessary
devices to achieve autonomous motion, like drives, sensors
and computer. Another important characteristic to be
considered is the physical limitations, for example, in
velocity, torque, sampling. Therefore, a precise model
would be hard to develop and complex from the point of
view of control design. Because of that a simple model
that represent the main dynamics and kinematics of the
DWMR, namely, the posture model, is extensively used
in literature Yang and Kim [1999], Chwa [2004], Ferrara
and Rubagotti [2008], Park et al. [2009]. An posture model
with uncertainties was introduced by Park et al. [2009]:

ξ̇ = S(ξ) η (1)

M0(ξ)η̇ = −C0(ξ, ξ̇) η +B0(ξ) τ − ψ(ξ, η) (2)

in that the kinematics is represented in (1) and the dynam-

ics in (2), for which: (i) M0(ξ) and C0(ξ, ξ̇) denote known
smooth nominal functions; (ii) ξ = [x y θ]T is the posture
vector in the plane, with the robot localization, (x, y), and
orientation, θ; (iii) η = [v w]T is the velocity vector, with
longitudinal velocity, v, and rotational velocity, w; (iv)
and τ = [τr τl]

T torque vector, with the torque in the
right wheel, τr, and left wheel, τl (see Figure 1). The term
ψ(ξ, η) defined as

ψ(ξ, η) = ∆M(ξ)η̇ + ∆C(ξ, ξ̇) η + τd (3)

represents uncertainties associated to imperfect knowledge
of physical parameters, unmodeled dynamics of actuators
and sensors, and external disturbances. The Jacobian
matrix are defined as:

S(ξ) =

[
cos(θ) 0
sin(θ) 0

0 1

]
, (4)

and the nominal inertial, Coriolis and input transforma-
tion matrices, respectively, M(ξ), C(ξ, ξ̇) and B(ξ) are
defined as in Elyoussef et al. [2012].
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Fig. 1. DWMR representation and coordinate systems.

2.2 Problem Statement

Given the robot structure and assuming its posture and
velocities known, the objective is to achieve a robust tra-
jectory tracking control by means of SMC, that overcomes
the lack of robustness provide by the commonly used
FOSMC with BL [Yang and Kim, 1999, Chwa, 2004, Park
et al., 2009] and avoids chattering.

Hence, the aim is accomplished by proposing a control
structure that uses a SOSMC, the STSMC, for the design a
robust kinematic controller and an inverse dynamic control
with a PD for a dynamic controller design that achieves a
stable fast velocity tracking, as depicted in Figure 2(a).

Definition 1. In this work, a geometrically feasible trajec-
tory is that one the robot can execute by means of its
basic movements, i.e the combination of longitudinal and
rotational displacements in the case of the DWMR, and
that the initial conditions are equal to the robot ones, or
start in front of the robot for forward movements or behind
the robot for backward movements, moreover, the initial

orientation must generates errors smaller than ±π
3

.

3. CONTROL DESIGN

Let the control synthesis be treated separately by present-
ing first, the design of the dynamic control and then the
design of the kinematic control.

3.1 Dynamic Control

The objective of the dynamic controller is to compensate
the known torques and forces described in (2) and ensure
fast tracking of the velocity error ηe = ηc − η (see Figure
2(a)), therefore the uncertainties are set to zero for this
design purpose and will be considered just for control gain
adjust and the design of the kinematic controller. Now, let
calculus of the inverse dynamic control be considered as
presented by Spong et al. [2006], Elyoussef et al. [2012],
that is:

τ = B(ξ)−1
(
C(ξ, ξ̇)η +M(ξ)ū

)
, (5)

which when applied to the system (2) results in:

η̇ = ū. (6)

The vector ū = [ūv ūw]T is a new control input that will be
designed as PD control to achieve fast convergence of ηe.
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Fig. 2. Control diagrams.

The desired control is detailed in Figure 2(b), in frequency
domain. Thus, the control signal ūv(s) and ūw(s) are
generated by the PD controllers:

Cv(s) =
v(s)

ūv(s)
= kpv +

kdv Nv

1 + Nv

s

Cw(s) =
w(s)

ūw(s)
= kpw +

kdw Nv

1 + Nw

s

,

(7)

with the proportional gains, kpv and kpw , the derivative
gains, kdv and kdw , and the derivative filter parameter
gains Nv and Nw being positive and adjusted to achieve
stability with good time response performance. The adjust
of Nv and Nw plays an important role to accelerate the
system response in spite of the neglected dynamics and
avoid there excitation and the chattering phenomenon.

3.2 Kinematic Control

The kinematic control is developed using a strategy in that
the DWMR is supposed to track a reference robot with the
same kinematic behavior [Kanayama et al., 1990]:

ξ̇r = Sr(ξr)ηr (8)

in that ξr = [xr yr θr]
T is the reference posture vector,

ηr = [vr wr]
T is the linear and angular reference velocities

vector and the matrix Sr(ξr) has the same structure as
S(ξ) in (4).

An error dynamics can be calculated as shown by
Kanayama et al. [1990] as:

ξ̇e = f(ξe, ηc, ηr) =

[
wc ye + vr cos(θe)− vc
−wc xe + vr sin(θe)

wr − wc

]
, (9)

for which the posture tracking error was defined as

ξe =

[
xe
ye
θe

]
= RRA(θ) (ξr − ξ), (10)

with the measurement of θe in the interval −π ≤ θe ≤ π
and RRA being the rotation matrix from A to R.

Remark 1. The effect of the uncertainties and external
disturbance that affect the system can be considered

as a term h(ξ, t) = [hxe(ξ, t) hye(ξ, t) hθe(ξ, t)]
T

added
in the right-hand side of error dynamics, Equation (9).
Now, recalling the invariance principle for SMC, described
by Utkin et al. [2009], and assuming that the h(ξ, t) is
matched by control signal ηc, then one can conclude that
if the system (9) is enforce to an sliding motion under some
desired constraints, it will be ideally invariant to h(ξ, t).

Based in Remark 1 and if it possible: (i) to find a sliding
surface σ(ξe) = 0, with σ(ξe) ∈ <2, that implies in a

desired stable sliding motion for (9) and (ii) to design a
switching control law:

η =

{
ψ+
i (ξe) if σi(ξe) > 0

ψ−i (ξe) if σi(ξe) < 0
(11)

that enforces the system (9) to the manifold M(ξe) =
{ξe ∈ <n : σ(ξe) = 0}, then the system (9) will be
stable and ideally invariant to matched uncertainties and
external disturbances.

Unfortunately, in practical implementation there are ne-
glected dynamics and sampling frequency limitation that
causes the chattering phenomenon. The commonly used
FOSMC with BL can avoid chattering but robustness
degree decrease substantially in some cases.

Hence, the STSMC, a SOSMC where a continuous control
signal with discontinuous derivative is used to enforce a
sliding motion second order in the manifold S(.) = {x ∈
<n : σ(.) = σ̇(.) = 0} is better choice to design the
kinematic controller, because it ensures better effectiveness
in terms of robustness against parameter and structural
uncertainties and sampling frequency limitation [Levant,
1993, Fridman and Levant, 2002, Ferrara and Rubagotti,
2008].

Let the kinematic control design starts considering error
dynamics (9) to define constraints in vector of surfaces
form with the same control input dimension that implies
in a stable sliding motion with good performance. It should
be emphasized that uncertainties are not part of this first
design step and are considered later. Therefore, a sliding
surface σ(ξe) = [σv(ξe) σw(ξe)]

T = 0, with σv(ξe) related
to vc and σw(ξe) to wc, must be designed to constraint
the state trajectories of (9) to a stable sliding motion.
Using an iterative process of choosing restrictions and
evaluating the resulting sliding mode dynamics, by means
of the equivalent control method [Utkin et al., 2009], the
selection of the sliding surfaces have been refined to:

σ(ξe) =

[
σv(xe)

σw(ye, θe)

]
=

[
k1xe

k2ye + k3 sin(
θe
2

)

]
= 0, (12)

with k1, k2 and k3 being control parameters. The compo-
nent σv(xe) was chosen only as function of xe because it
is associated with vc, which acts only in the dynamics of
xe. Therefore, ye and θe were left to be treated by the

component σw(ye, θe). The sinusoidal term sin(
θe
2

) was

necessary to achieve a desired stable sliding mode dynam-

ics as demonstrated in sequence. Moreover, the ratio
θe
2

ensures that sin(
θe
2

) is equal zero just for θe = 0 in the

interval of interest −π ≤ θe ≤ π.
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Theorem 1. By choosing the sliding surfaces (12) to the
error dynamics (9) and considering η = ηc (fast velocity
tracking and uncertainties compensation), the following
sliding mode dynamics is obtained:

θ̇e = −2 k2 sin(θe)vr

k3 cos( θe2 )
. (13)

Proof. The equivalent control ηeq = [veq weq]
T , which

satisfies the condition σ̇ =
∂σ(ξe)

∂ξe
· f(ξe, ηc, ηr) = 0 [Utkin

et al., 2009], is calculated as:

veq =weq ye + cos(θe)vr

weq =
1

2

k3 cos( θe2 )wr + 2 k2 sin(θe) vr

Gw(xe, θe)
,

(14)

with:

Gw(xe, θe) = k2 xe +
k3
2

cos(
θe
2

). (15)

The sliding mode dynamics (13) is determined by substi-
tuting the equivalent control (14) in (9) and simplifying
by taking into account that σ = σ̇ = 0 in sliding mode.

Theorem 2. Given the measurement of θe in the interval
−π ≤ θe ≤ π and the adjust k3 > 0 then: if vr > 0 the
system (13) is asymptotically stable for k2 > 0; and if
vr < 0 the system (13) is asymptotically stable for k2 < 0.

Proof. Consider the Lyapunov function:

Vsm(θe) =
1

2
θ2e , (16)

which time derivative is calculated as:

V̇sm(θe) = −2 k2 θe sin(θe) vr

k3 cos( θe2 )
. (17)

Note that V̇sm(θe) is negative if the sign of k2 and vr
are equal for −π ≤ θe ≤ π except for θe = 0, in which
Vsm(0) = 0.

Corollary 3. The values of θ̇e and V̇sm(θe) in θe = ±π can
be calculated using the L’Hospital’s rule as:

lim
θe→±π

θ̇e = ∓4 k2
k3

vr. (18)

lim
θe→±π

V̇sm(θe) = ∓4π k2
k3

vr. (19)

Remark 2. Measuring θe in the interval −π ≤ θe ≤ π

implies that 0 ≤ cos(
θe
2

) ≤ 1, and taking to account the

adjust of k2 described in Theorem 2, the Definition 1 and
the posture error definition (10), that imply that xe is
positive for forward movements and negative for backward
movements, then Gw(xe, θe) > 0 for a SMC for which the
switching variable σv(xe) is driven monotonically to zero.

Remark 3. The sliding motion clearly does not depend on
k1, however, for simplicity it is assumed that k1 > 0.
On other hand, the convergence of this dynamics can be

adjusted by the ratio
k2
k3

, that should adjusted ensure good

convergence and avoid unnecessary control effort.

Now, let the control signal ηc be design by means of
STSMC algorithm presented by Levant [1993], Fridman
and Levant [2002] to achieve a second order sliding motion
in the manifold S(ξe) = {ξe ∈ <3 : σ(ξe) = σ̇(ξe) = 0}, for

σ(ξe) = 0 defined in (12). In this step, the uncertainties
represented by h(ξe, t) are considered to formulate an
auxiliary control system defined by the variables y1 =
σ(xe), y2 = σ̇(xe), z1 = σ(ye, θe) and z2 = σ̇(ye, θe):

ẏ1 = y2
ẏ2 = Fv(xe, ye, θe, vr, wr, wc, ẇc)− Gv v̇c (20)

with:

Fv(·) =k1 ẇc ye − k1 w2
c xe − k1 sin(θe)vr wr

+ 2 k1 sin(θe) vr wc + k1 cos(θe)v̇r + k1
d

dt
hxe

(ξ, t)

Gv =k1,
(21)

and:

ż1 = z2
ż2 = Fw(ye, θe, vr, wr, vc, wc)− Gw(xe, θe)ẇc,

(22)

with:

Fw(·) = −k3
4

(
sin(

θe
2

)(wr − wc)2 − 2 cos(
θe
2

) ẇr

)
−k2

(
w2
c ye + vr cos(θe) (2wc − wr)− sin(θe) v̇r

−vc wc) + k2
d

dt
hye(ξ, t) +

k3
2

d

dt

(
cos(

θe
2

)hθe(ξ,t)

)
Gw(xe, θe) = k2 xe +

k3
2

cos(θe).

(23)

Given that there are the following limits:

‖Fv(·)‖ ≤ Cv, ‖Gv(·)‖ = k1 > 0,

‖Fw(·)‖ ≤ Cw, 0 < Ψm ≤ ‖Gw(·)‖ ≤ ΨM ,
(24)

then the following STSMC algorithm:

vc = v1 + v2 wc = w1 + w2

v1 = av
√
‖y1‖sign(y1) w1 = aw

√
‖z1‖sign(z1)

v̇2 = bv sign(y1) ẇ2 = bw sign(z1)

(25)

with the gain adjust:

a2v ≥
4Cv
k21

(bv + Cv)

(bv − Cv)
, bv ≥

Cv
k1

a2w ≥
4Cw
Ψ2
m

ΨM (bw + Cw)

Ψm(bw − Cw)
, bw ≥

Cw
Ψm

,

(26)

ensures finite time convergence for the systems (20) and
(22). The convergence proof can be found in the work of
Levant [1993], that stability conditions were refined by
Fridman and Levant [2002]. Therefore the desired sliding
motion is guaranteed achieving the robust tracking control
for the DWMR.

Remark 4. The conditions (24) are reasonable under the
delimitation of the feasible trajectories, Definition 1 and
the existence of operating limitations. Note also that the
limits for Gw(xe, θe) (24) agree with Remark 2.

4. RESULTS

4.1 Preliminaries

In this section, some experimental results and analysis are
presented to demonstrated the performance and robust-
ness of the proposed strategy. The kinematic controller
based on a FOSMC with BL [Elyoussef et al., 2012]:
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Fig. 3. Powerbot

vc = ρv
y1

‖y1‖+ εv

wc = ρw
y2

‖y2‖+ εw

(27)

is considered for comparative study with proposed one.

The study are concentrated in the analysis of the linear
distance error signal between reference and actual posture,

e(xe, ye) =
√
x2e + y2e , and angular error signal, θe, and

their RMS values performed by the robot, when it is
tracking circular trajectories, which are commonly in the
literature [Yang and Kim, 1999, Chwa, 2004, Park et al.,
2009]. Two different trajectories are used, namely: (i) C1

with vr = 0.5 m/s and wr =
π

10
rad/s, (ii) C2 with vr = 1

m/s and wr =
π

5
rad/s.

The platform Powerbot depicted in Figure 3 is considered
for the tests. This DWMR have mass m = 120 kg,
dimensions 0.90× 0.66× 0.48 m and two wheels actuated
by two DC motors with maximum torque of 20.45 N.m.
Its load capacity is 100 kg and its input variables are the
longitudinal velocity vc, with a maximum value of 2.1m/s,
and the rotational velocity wc, with a maximum value of
5.24 rad/s. Unfortunately, the platform is closed and there
are internal PID controllers that tracks these inputs with a
sampling time of 5ms. Thus, only the PD controller can be
considered as dynamic controller for the implementation.
Actually, this displeased situation is commonly found in
the literature of robotics as in Yang and Kim [1999],
Spong et al. [2006]. The kinematic controllers (STSMC
and FOSMC with BL) are implemented in an application
running on the embedded computer that operates with
sampling of 15ms.

4.2 Experiments

In this section the experimental results in that Powerbot is
required to track the trajectories C1 and C2 are explored.
The gains of PD controllers are adjusted as kpv = 40,
kpw = 40, kdv = 20 and kdw = 20 as indicated by the fac-
tory. Although, it is not possible implement compensation
of the dynamics, sufficient analysis results are obtained
studying two different control structures comprising the
embedded PD controllers in cascade with the kinematic
controller based on: (i) the FOSMC with BL (27), (ii) and
the STSMC (25). For both controllers the surface gains
were adjusted as k1 = 1, k2 = 5 and k3 = 2 considering
Remark 3.

The results for the control structure with the FOSMC with
BL were obtained considering the controller parameters
(27) being adjusted as ρv = ρw = 1 and εv = εw = 0.1.

Substantial values of εv = εw to enlarge the BL and
reduced control effort were necessary to enforce a sliding
mode. Performing trajectory C1, the error signals e(xe, ye)
and θe (see Figures 4(a) and 4(b)), converged, respectively,
to values around 10 cm and 7 × 10−2 rad, which are
reasonable.

0
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x e
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e
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[m
] e(xe,ye)

5 10 15 20
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12

×10−2

(a) Error e(xe, ye)
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0

0.1

0.2

0.3

t [s]
θ e

[ra
d]

θe

5 10 15 20

6
8

×10−2

(b) Error θe

Fig. 4. Experimental results for the control strategy using
the FOSMC with BL - Trajectory C1.

On the other hand, the error signals e(xe, ye) and θe
obtained with trajectory C2, depicted in Figures 5(a) and
5(b), converged, respectively, to values around 65 cm and
0.45 rad, which are not good taking into account the
dimensions of Powerbot. The gains readjustment were not
successful due to system limitations.

0

0.5
0.7

1

e(
x e
,y

e
)

[m
] e(xe,ye)

(a) Error e(xe, ye)

0 5 10 15 20
0

0.2

0.45
0.6

0.8

t [s]

θ e
[ra

d]

θe

(b) Error θe

Fig. 5. Experimental results for the control strategy using
the FOSMC with BL - Trajectory C2.

Now let the results for the STSMC control structure be
considered. The control gains were adjusted as av = 0.7,
bv = 0.1, aw = 0.5 and bv = 0.1 to ensure sliding motion
and good performance. The first test with trajectory C1
resulted in the errors signals e(xe, ye) and θe depicted in
Figures 6(a) and 6(b), which converged to values around
5 mm and 5× 10−3 rad, hence smaller than that obtained
using the FOSMC with BL.
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Fig. 6. Experimental results for the control strategy using
the STSMC - Trajectory C1.

Differently from the case where the FOSMC with BL failed
to track the trajectory C2, using STSMC, the errors signals
e(xe, ye) and θe converged to values around 1 cm and
1 × 10−3 rad as depicted in Figures 7(a) and 7(b), which
is a satisfactory result in terms of robustness.
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Fig. 7. Experimental results for the control strategy using
the STSMC - Trajectory C2.

In Table 1 the results obtained with the experiments are
summarized with the RMS values of e(xe, ye) and θe. In all
situations structure with the STSMC has smaller errors,
showing more effectiveness in terms of robustness.

Table 1. RMSE (Root Mean Square Error) of the trajec-
tory tracking errors from the experimental results.

Trajectory Variable SMC with BL STSMC

C1
e(xe, ye) 0.1010 4.1× 10−3

θe 0.0668 6.1× 10−3

C2
e(xe, ye) 0.6785 8.8× 10−3

θe 0.4426 1.31× 10−2

5. CONCLUSIONS AND PERSPECTIVES

In this work, a control structure comprising a dynamic
controller, designed with the inverse dynamic control tech-

nique and the PD control technique, in cascade with a
kinematic controller, designed with a SOSMC, namely,
STSMC, were successfully proposed as a robust solution
for the trajectory tracking control problem for a nonholo-
nomic mobile robot by means of a SMC. The results were
demonstrated with experimental analysis.

The main future work is to extend the PD-super-twisting
second order sliding mode tracking control for a class of
nonholonomic underactuated systems. An stability analy-
sis based singular perturbation theory of the whole control
loop is another objective to refined stability conditions.
As well as, considering dynamic limitations to generate
feasible trajectories to achieve better performance. Finally,
there is scheduled some hardware updated for Powerbot,
to allow the implementation the inverse dynamic control.
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