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Abstract:
Future humanoid robots, working beside humans in complex dynamic environments, would
be required to perform a wide repertoire of task. To this end traditional methods for
deriving a control policy won’t succeed, learning approaches are fundamental. Learning from
demonstrations (LfD) techniques have appear as a means for developing intuitive control
methods and generalize a skill based on a set of demonstrations. However, learning appropriate
skills for every conceivable scenario the robot may encounter would still be a daunting
undertaking. In this work we propose a framework for the generation and adaptation of new
robot skills from previously learned skill models. Using previously learned models of a robot
skill, and knowledge of the current task, the models of a skill is adapted to generate a new task
by a merger or combination operation over the given robot skill models.

1. INTRODUCTION

One major goal in robotics research is to develop human-
like robotic systems capable of interacting and collabo-
rating with humans in the same unstructured working
environments. Humanoid robots are particularly suitable
for these duties because they are able to interact with the
environment using the same tools designed for humans,
and can collaborate with humans in several ways (Ambrose
et al. [2000]). Also, it is believed that the most human-like
of robots will be best equipped for reciprocal relationships
with human beings. Since humanoid robots are designed to
resemble a human shape and to poses human capabilities,
they would be ideally suitable for performing tasks and
to safely share the same space and activities with people
without the need to adapt the environments and with
a higher level of acceptance and a more intuitive way
for interaction between human operators and the robotic
agents (Monje et al. [2008]). We envision a world, in a no
too distance future, where humanoid robots and humans
would work, collaborate and interact together sharing the
same space, tools, and activities.

For robots, working alongside humans means dealing with
continuously changing environments and a huge variability
of tasks which they are expected to perform, thus the
robots should have the ability to continuously learn new
skills and adapt the existing skills to new contexts. For
humanoid robots to work with humans in unstructured en-
vironments the robot must be able to perform dynamically
changing tasks that require great adaptations to react to
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new constraints. Programming specialized controllers for
every single task and situation that could be encounter
would not be practical. To develop the capacities expected
from the future humanoid robots flexible and generic con-
trol methods that can adapt to various tasks and robot’s
constraints are necessary. Learning from demonstration
(LfD) or Programming by Demonstration (PbD) (Billard
et al. [2008]), has appeared as one way to respond to this
growing need for intuitive control methods. LfD formulates
user-friendly methods by which a human user can teach to
a robot how to accomplish a specific task.

Learning from demonstrations techniques have appear as a
means for developing intuitive control methods. However,
learning appropriate skills for every conceivable scenario
the robot may encounter would still be a daunting un-
dertaking. In this work we propose a framework for the
generation and adaptation of new robot skills from the
previously learned skill models.

The rest of this paper is structured as follows. In the
next section we present the framework use for learning
skills models. Section 3 presents the propose framework for
generation and adaptation of robot skills from previously
learned skill models. Section 4 describes the preliminary
experimental validation. Finally conclusions are presented
in section 5.

2. LEARNING THE SKILLS MODELS FROM
DEMONSTRATION

The Imitation Learning approaches are focused on the
development of algorithms that are generic in their repre-
sentation of the skills and in the way they are generated.
One common approach creates models of the skills based
on sets of demonstrations performed in slightly different
conditions generalizing overt the inherent variability to
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extract the essential components of the skills (Calinon
[2009]). Employing statistical learning techniques is a pop-
ular trend for dealing with the high variability inherent to
the demonstrations.

Robot skills should follow certain likeable properties such
as autonomous behaviour without explicit time depen-
dency and adaptation of its parameters, flexible learning,
basic stability, coupling phenomena of perception and ac-
tion, compact representation and ease of categorization
of movement trajectories, reusable for similar and related
task, modifiable to new tasks and context not seen during
demonstrations, robustness against both temporal and
spatial disturbances of movement in dynamic environ-
ments.

Encapsulating the dynamics of the movement into a dy-
namical system encoding is a promising approach to learn-
ing movement trajectories (Billard et al. [2008]). Adopt-
ing non-linear dynamics systems theory has applications
in several branches of sciences, like physics, mechanics,
chemistry, electromagnetism, biology, engineering, etc.

A Dynamical Systems (DS) approach to skill learning can
offer a fast, simple and powerful formulation for represent-
ing and generating movement plans, learned from demon-
stration. The DS framework allows to comply with the
attractor dynamics of the desired behaviour, modulating
it with a set of non-linear dynamic systems that form an
autonomous control policy for motor control. Statistical
learning techniques can be used to arbitrarily shape the
attractor landscape of the control policy for encoding
within the desired trajectory, going from an initial state to
an end state driven by the attractor dynamics. DS are in-
trinsically robust and can adapt its trajectories instantly in
the face of spatio-temporal perturbations (Khansari-Zadeh
and Billard [2010]). The DS do not explicitly depend on
time indexing and provide closed loop control and are able
to model arbitrary non-linear dynamics (Gribovskaya and
Billard [2009]). The DS can also be easily modulated to
generate new trajectories that have similar dynamics, per-
forming in areas that where not covered during demonstra-
tions (Khansari-Zadeh and Billard [2011]). Use of DS with
statistical approaches permit to develop a representation
of movements, encapsulating the relationships between
variables and variations of the task into the dynamical
systems parameters (Calinon et al. [2012]).

The dynamic system can be generally express as a differ-
ential equation,

ẋ = f(x, θ), (1)

The DS is conceive as a ’kinematic policy’ which generates
target values, in kinematic varibles, e.g., position, velocity,
acceleration (Schaal et al. [2007]), appropriate controllers
are needed to subsequently convert them to motor com-
mands. Explicit time dependency is removed from the
formulation of the DS such that the control policy becomes
an autonomous dynamic system, this is advantageous as
maintaining timing counter or signal adds a burdensome
level of complexity to control, additionally support for such
clocking signal in biological systems is disputed (Schaal
et al. [2007]). Autonomous non-linear dynamical systems
is a powerful mechanism to modulate the control policies

by learning the model of the skill building a stable estimate

f̂ of f based on the set of demonstrations.

Ijspeert et al. [2001] was the first work to emphasize this
approach, by designing a motor representation based on
dynamical systems in order to encode movements and for
later replaying them in various conditions. The approach
conceive the motions as movement primitives and named
it Dynamic Movement Primitives (DMP) (Ijspeert et al.
[2003]).

The original DMP approach operated in a single dimen-
sion using a pre-defined dynamical system as a motion
primitive, where the trajectory of every single DOF was
modulated by its own non-linear function and transforma-
tion system separately. (Gribovskaya and Billard [2009])
investigated a method whereby Gaussian Mixture Models
(GMM) could directly embed the multi-variate dynamics
of a motion. Their work presented a generic framework
that combined DS movement control with LfD to teach a
robot. An iterative procedure was employed to learn a sta-
tistical estimate of an arbitrary multivariate autonomous
dynamical system, through the encoding of the demon-
strated data with Gaussian Mixtures.

2.1 Stable Estimator of Dynamical Systems

A probabilistic framework is employed to build an estimate

f̂ , of the non-linear state transition map f , based on the set
of demonstrations. Gaussian Mixture Models (GMM) are
used to directly embed the multi-variate dynamics through
the encoding of the demonstrated data. GMM define a
joint probability distribution p(ξi, ξ̇i) of the demonstra-
tions as a mixture of the K Gaussian multivariate distri-
butions N k, with πk, µk, and Σk, respectively the prior,
mean and covariance matrix, parameters of the Gaussian
component k. The joint probability distribution, p(ξ, ξ̇),
for the GMM is given by,

p(ξ, ξ̇; θ) =
1

K

K
∑

k=1

πkN k(ξ, ξ̇;µk,Σk)

with µk = {µk
ξ ;µ

k

ξ̇
} and Σk =

[

Σk
ξ Σk

ξξ̇

Σk

ξ̇ξ
Σk

ξ̇

] (2)

To recover the expected output variable
ˆ̇
ξ, given the

observed input in ξ∗. one then can sample from the
probability distribution function p(ξ, ξ̇) in Eq. 2. This
process is called Gaussian Mixture Regression (GMR),
more details can be found on (Calinon [2009]). The GMR
can be express as a non-linear sum of linear dynamical
systems,

ξ̇ = f̂(ξ) =

K
∑

k=1

hk(ξ)(Akξ + bk) (3)
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Guaranteeing the estimates f̂ result in an asymptotically
stable trajectory is one key requirement to provide useful
robot skills. To build a globally asymptotically stable DS
(Khansari-Zadeh and Billard [2010]) proposed a learning
method, called Stable Estimator of Dynamical Systems
(SEDS), establishing a set of sufficient stability conditions.

{

bk = −Ak ξ̄

Ak + (Ak)⊤ ≺ 0
∀k = 1 . . .K (5)

where Ak and bk are defined according to Eq. 4, and ≺ 0
refers to the negative definiteness of a matrix.

Learning the parameters of the GMM proceeds as a
constraint optimization problem, ensuring that the model
satisfy global asymptotic stability of the DS at the target
(Khansari-Zadeh and Billard [2011]). For the optimization
objective a function based in the log-likelihood,

min
θ

J(θ) = −
1

T

D
∑

i=1

T
i

∑

t=o

ln p((ξt,i; ξ̇t,i) | θ) (6)

where p((ξt,i; ξ̇t,i) | θ) is given by Eq. 2 and T =
∑D

i=1
Ti

are the total number of points in the demonstration
dataset. ξ is a state variable that can unambiguously
described the motion, this could represent positions, ve-
locities, accelerations, forces, etc. Here the choice is made
to represent the motions in kinematic coordinates, the
Cartesian space, with the assumption that appropriate
controllers are available to convert the kinematic variables
to motor commands. ξ is chosen as the translation compo-
nent of a motion of the end-effector, a vector of Cartesian
coordinates x ∈ R

3.

By being time-invariant and globally asymptotically stable
at the target, the DS estimated with SEDS are able to
respond immediately and appropriately to perturbations
that could be encountered during reproduction of the
motion (Khansari-Zadeh and Billard [2011]).

3. ROBOT SKILL ADAPTATION AND GENERATION
OF NEW MODELS

Despite the LfD approaches clear advantages, it would
still be impractical for the human operator to teach the
robot the skills for every needed task and for every foreseen
situation, since the number of demonstrations the human
must provide to the robot to generate a new model of a skill
could turn it into a tiresome and time-consuming process
and it wouldn’t be possible to cover every needed task
and every situation. Hence, it is important to be able to
enhance the LfD with the capacity to adapt and generate
new skill models. It is necessary to extend the classical LfD
approach of learning a skill model in a way that allows the
adaptation of a robot previously learned motion skills to
new unseen contexts.

To reproduce a task adapted for an unseen context the
robot must be given knowledge of the state of the en-
vironment and the constraints of the task. Using both,
the already learned model of a skill, and the extracted
constraints information of the current task, the model of
the skill can be adapted to reproduce the task. Figure 1, il-
lustrates the process for enhancing classical LfD approach
to generalize a skill to allow adapting a robot previously
learn skills models.

Demonstration Model of a skill Reproduction

Exteroceptive

Input

Extraction 

of  Task 

Constraints

Adaptation 

of  Model

Fig. 1. Augmenting the LfD approach for the generaliza-
tion of a skill to allow adapting a robot previously
learn skills models.

The robot skills learned with the methodology described in
Section 2 would present stable trajectories that accurately
reproduce the demonstrated motion dynamics. The robot
skills models were learned by employing a DS approach.
The learned robot skills models would form a set of basic
primitives of action. An approach based on movement
primitives relies on possessing available sequences of motor
commands, executed in a certain order, to accomplish a
given motor task. Evidence exist from human and animal
experiments supporting the believe that sets of motor
primitives are used to build a basis for voluntary motor
control (Schaal [1999]).

To generate complex motions from a learned set of basic
primitive skills and be able to reproduce various complex
task behaviours, methods for operating and manipulating
upon the primitives are needed. The robot skills must be
adaptable to conditions of its operating environment. Also,
the action primitives approach must be able to generate
new skills by merging two or more primitives into a new
skill, multiple desired robot skills may be composed from
superposition of various primitives. Another important
property is the combination of the robot skills models to
generate new models that encompass a larger spectrum of
the attractor dynamics.

3.1 Merger of Robot Skills Models

The learned DS models encode specific motion skills,
which can be seen as building blocks used to generate
more complex motions. Multiple desired robot skills may
be composed from sequencing or superposition of various
primitives skills. The modularity of the DS approach is
essential as it would allow to control a wider repertoire
of movements from a smaller set of basic skills (Schaal
[1999]).

Intuitively one could consider an approach to merging two
or more models of a skill simple by adding and averaging
together their learned parameters θ = (π, µ,Σ) in order
to obtained a new skill model. While this approach may
work for some cases it is important to note that direct
superposition of the skills does not allow to control the
manner in which the new model is generated and it would
not guarantee its stability.

Muelling et al. [2013] presented a framework to generalize
learned motor primitives to a wider range of situations
using a mixture of motor primitives approach. First a
set of elementary movements were learned from a human
teacher by kinaesthetic teaching. Subsequently, the system
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generalizes these movements to a wider range of situations
using a mixture of motor primitives approach. Their result-
ing policy enabled the robot to select appropriate motor
primitives as well as to generalize between them.

In order to generate a new skill base on the merger of
several robot skills models previously learned, we first re-
view a coupled of useful mathematical properties from the
SEDS (Khansari-Zadeh and Billard [2011]) formulation
chosen to learned the skills,

if f(ξ) is SEDS, and α > 0 ∈ R

ξ̇ = αf(ξ) is SEDS

consider M SEDS models f i(ξ), i ∈ 1..M

ξ̇ =

M
∑

i=1

αif i(ξ);αi > 0 is SEDS

(7)

Intuitively one could consider an approach to merging two
or more models of a skill simple by adding and averaging
together their learned parameters θ = (π, µ,Σ) in order to
obtained a new skill model through a linear superposition.
The models would represent the distributions f1(ξ) and
f2(ξ) respectively as from Eq. 2. A weighted sum of these
densities would give the merged model,

f(ξ) = αf1(ξ) + βf2(ξ) (8)

The weights α and β scale the prior of the components to
give the new GMM.

The merger of the robot skills models can be carry out
with a model combination approach expressed in mixtures
of experts model,

p(t|x) =
K
∑

k=1

πk(x)pk(t|x) (9)

The SEDS models encoded into a GMM is already a
form of model combination approach. Here, recalling the
expression of the non-linear weighting function hk(ξ), as
in Eq. 4, it can be found it shares a similar formulation
with the expression of the weights for the gating function
as from Eq. 9, in which the mixing coefficients πk(x) of
the gating function is given by the non-linear weighting
function hk(ξ), and the pk(t|x) density are given by the
linear DS Akξ + bk from Eq. 3.

The process for the merging of robot skills would first
joined the GMM of the robot skills into a single model.
Then a new weighting function h̃(ξ) for the single model
must be build out of the original weighting terms hk(ξ)
from the merged models, ensuring the Gaussian with the
biggest weight in every region of the trajectory provide the
largest influence over the new GMM model in that region
and that the new weighting function h̃(ξ) still meets the
constraints 0 > hk(ξ) > 1 and

∑

hk(ξ) = 1. Figure 2
illustrate the result of merging two robot skills to generate
a new skill model. Then a new weighting function h̃k(ξ)

would be given by h̃k(ξ) = αk(ξ, h)hk(ξ) where αk(ξ, h)
is a scalar function that weight the original hk(ξ) of the

models, and ensures the constraints of h̃(ξ).

ξ 2

ξ1
−100

−50

0

50

100

150

ξ 2

ξ1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

−200 −150 −100 −50 0 50

Fig. 2. Generation of a new model of a skill by merging
previously learned skill models. Two or more basic
models of a skill can be merge (top) to generate a
new complex model (bottom).

3.2 Combination of Robot Skills Models

One important gain from the combination of robot skills
comes from increasing the accuracy of the generalize
behaviour. The convergence of the motion to the target
is ensured, yet, due to the lack of information for points
far from demonstrations a model may reproduce some
trajectories that are not consistent with the usual way of
doing the task. The generation of a model by combining
robot skills is necessary in order to improve the task
execution.

The more direct and intuitive approach would relied on
providing the robot with more demonstrations over regions
not covered before. By showing the robot more demon-
strations and re-training the model with the new data,
the robot should be able to successfully accomplish the
task (Khansari-Zadeh and Billard [2011]). However, this
approach would not seem to be the most flexible and
general and the robots performing task in the real world
cannot be expected to relied on available teacher to provide
them with more demonstrations whenever their knowledge
of a task don’t suffice.

The work of Shukla and Billard [2012] focused on combin-
ing several learned DS, with distinct attractors, resulting
in a multi-stable DS. Their work presented an Augmented-
SVM model, which inherits region partitioning ability
of well know Support Vector Machine (SVM) classifiers
and is augmented with novel constraints derived from the
individual DS.

In this work in order to generate a new skill made of
the combination of several Robot Skills Models previously
learned, we developed a method by which combine differ-
ent skill models. Two different SEDS models, M̄1

RS ,M̄
2

RS
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Fig. 3. Combining the dynamics of several skills into a
single task model.

can be combine just by concatenating their parameters,
such that the parameter of the new model can defined as

π =
[π1;π2]

(π1 + π2)
, µ = [µ1µ2] and Σ = [Σ1Σ2]. Them, an area

of influence for the DS attractor is defined based on the
non-linear weighting function hk(ξ) of the SEDS models
expressed as a non-linear sum of linear dynamical systems
as in Eq. 3. A new weighting function h̃(ξ) = αk(ξ, h)hk(ξ)
for the single model must be build out of the original
weighting terms hk(ξ), as in the merging of the models,
however in this case the influence of the hk(ξ) terms over
the trajectory must come at any time from only one model,
therefore the αk(ξ, h) function must have a completely
different form that for merging the robot skill models.
Figure 3 illustrate the result of combining two robot skills
to generate a new skill model.

4. PRELIMINARY EXPERIMENTS

To validate the proposed methods for generating new skills
from previously learned models by merging or combining
robot skills models we choose a very simple scenario in
which the robot is required to grasp a plastic cup, see
Figure 5.

The robot skills models were learned in a LfD frame-
work using the SEDS algorithm from Khansari-Zadeh and
Billard [2011]. The demonstrations were recorded from a
human teacher by employing the Microsoft Kinect sensor,
see Figure 4.

At first two skills were taught to the robot for learning
to grasp the cup place at its right and at its left side,
see Figure 5. Then an additional skill is taught to grasp
the cup, in front of it, place in a top shelf, Figure 6. The
contemplated task request for the robot to grasp the cup
at any possible placement in the top shelf, as long as it is
inside the robot’s arm workspace.

This task would be unachievable with robot skills learned
so far, since the skill to grasp the cup at the left and
right of the robot are taught for a placement of the cup

Fig. 4. Visual Demonstrations Teaching of a Skill: (left) A
human teacher performs a demonstration. (right) The
generated skeleton of the human recorded demonstra-
tion.

Fig. 5. Robot grasp learned skill: (left) Cup place at the
left of the robot. (right) Cup place at the right of the
robot.

Fig. 6. Robot grasp learned skill: Cup placed centred in
top shelf.

in the bottom shelf and the skill reproduction would not
generalize well to the target new position. To grasp the
cup, placed in the top shelf, at either side of the robot
the skill to grasp the cup at the top shelf center must
be merge with either the grasp cup left or grasp cup
right, respectively, to generate the required new robot skill
model. Being able of expanding a robot set of learned skills
is clearly an important issue as robots will be asked to
perform an increasingly number of activities and learning
and programming every possible skill into the robot is
infeasible.

Finally, to generalize across the whole working space of
the top shelf the three models of the robot skill, for
right, left and center, top shelf grasping, are combined
into a single model of the attractor dynamics. In order
to expand the robot skill set and increase its range of
action to encompass a larger spectrum of the attractor
dynamics the Robot Skills Models must be combinable into
new models. This allows to carry out more complex task
than those presented during demonstrations, generalizing
the models of the skills to regions outside their original
demonstrations. To generalize the skill across the whole
working space of the shelves in the “cupboard” the three
models of the robot skill, for right, left and center, grasping
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Fig. 7. Robot grasp learned skill: (top) The combine skill
model allows a more complex attractor dynamics.
(left) The cup placed at the right of the robot. (center)
The cup is place at the front of the robot. (right) The
cup is place at the left of the robot.

motion on a shelf, are combined into a single model of
the attractor dynamics. Figure 7 illustrates the complete
behaviour out of the generate new skill models.

5. DISCUSSION

This work described the process by which, using the
already learned model of a skill, a robot skill can be
adapted to reproduce a new task. Modes are presented
for the merger and combination of the robot skill models.

Humanoid robots are required to perform a wide reper-
toire of task working beside humans in complex dynamic
environments. Efforts to generate robotic skills can only
have a real implementation value for developing humanoid
robotic systems if the models of the skill can be operated
upon to generate new behaviours of increasing levels of
complexity.

Multiple desired robot skills may be composed from su-
perposition of various models. Section 3.1 presented the
generation of a task model by merging robot skills. Skills
can be generated by merging two or more models into a
new skill.

Section 3.2 presented the generation of a task model by
combining robot skills. Models of a skill can be combined
to generate new models that encompass a larger spectrum
of the attractor dynamics.

New skills can be generated by merging two or more
models in order to expand the robot skill set and increase
its range of action, multiple desired robot skills may
be composed from superposition of various models. The
combination of skill models allows to carry out more
complex task than those presented during demonstrations,
generalizing the models of the skills to regions outside
their original demonstrations. One important gain from
the combination of robot skills comes from increasing the
accuracy of the generalize behaviour.

The experiment described in 4 provide a indication of
the value the methods developed in this work can have
to generate and adapt new robot skills from previously
learned skill models, and expand the applicability of the
learned models of the skill, and the robot skill learning
framework.
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