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Abstract: Power balancing of internal combustion engines is studied in time and frequency
domains. Speed measurements at the flywheel and the load side are used to estimated the
torque applied to the flywheel. The power contributions during the cylinder-wise work phases
are estimated by integrating the reconstructed torque, and a controller which adjusts the fuel
injections to reduce power unbalances is applied. A convergent power balancing algorithm is
presented for multi-cylinder engines, where the work phases of the individual cylinders may
overlap. This time-domain method is verified against previous frequency-domain approaches.
The analysis shows that for engines with flexible crankshafts, the time-domain method performs
in general differently from frequency-domain cylinder balancing approaches. The feasibility of
the power balancing algorithm is investigated by simulations and full-scale tests on a large diesel
power plant engine.
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1. INTRODUCTION

During the last decades, intelligent control of large-scale
internal combustion engines has been subject to increased
attention. Technological advances have, for example, en-
abled electrical control of cylinder fuel injectors, which
is now a standard feature of common-rail engines and
allows computerized on-line adjustment of both individual
cylinder injection durations and timings. This procedure is
commonly referred to as cylinder balancing, where the in-
jection durations are adjusted to maintain optimal length
with respect to a balancing criterion.

The objectives of cylinder balancing are diverse. A com-
mon target is to minimize torsional vibrations arising
from unbalanced cylinders, which have several undesir-
able properties, such as load fluctuations and decreased
passenger comfort on vessels. Secondly, cylinder balancing
methods can ensure that the mechanical strain on the
engine components, such as the crankshaft, is more evenly
distributed. Thirdly, balancing of the cylinders can have
a significant impact on exhaust gas properties such as the
exhaust temperature and thus serve as a means of emission
control.

Cylinder balancing methods can be divided into two cate-
gories: time domain and frequency domain. Time-domain
methods rely on balancing the cylinder-wise powers, which
are obtained as integrals of the estimated torque (Shim et
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al. (1996)). The time-domain approach to balancing has
been studied within automotive industry, for example in
vehicles with dual mass flywheel (Walter et al. (2008)) and
in multi-cylinder SI engines (Li and Shen (2011)).

In frequency-domain methods, cylinder balancing is per-
formed by minimizing individual frequency components
of the reconstructed torque, of which the low orders are
of particular interest. Frequency-domain balancing stud-
ies include, for example, DFT-based control of cylinder
injections in turbo-charged diesel engine (Macian et al.
(2006)), torsional vibration reduction by adjusting low-

order components of reconstructed torque (Östman and

Toivonen (2008a); Östman and Toivonen (2008b)) and
pattern-recognition of crankshaft angular speed waveforms
using artificial neural networks (Desbazeille et al. (2010)).

As time-domain cylinder balancing methods do not involve
calculation of frequency components, they are typically
computationally less demanding than frequency-domain
methods. Secondly, time-domain methods do not require
specific knowledge about engine phase-angle diagrams,
which the frequency-based methods do. On the other
hand, in frequency-domain methods the harmful vibration
frequency components are reduced directly, whereas this
is achieved only indirectly in time-domain methods.

In this paper, a convergent time-domain power balanc-
ing approach is presented for a large scale medium-speed
engine-generator set, which, in contrast to typical auto-
motive applications, features overlapping cylinder work
phases and for which the flexibility of the crankshaft is
not negligible. In order to study the impact of the flexible
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crankshaft on torsional vibration frequencies, the power
balancing results are analyzed in frequency domain. The
balancing algorithm is evaluated using simulations and
full-scale tests on a 3.5MW seven-cylinder diesel engine.
The results show that power balancing does not imply
the elimination of vibration frequency components when
applied to an engine with flexible crankshaft.

2. POWER BALANCING PROBLEM

The problem considered in this paper is power balancing
of medium-speed combustion engines utilizing speed mea-
surements obtained from the engine and generator. The
objective is to minimize variations in the cylinder-wise
work, which can be performed by adjusting injection du-
rations in each cylinder. The mechanical model discussed
here is a power system driven by a medium-speed internal
combustion engine, used either in a marine installation or
as a stand-alone power system. The model can be divided
into three main parts: the engine, a flexible coupling and
a generator connected to an infinite grid. In automotive
cylinder balancing applications, it is often sufficient to
include the engine only, as the engine-load coupling can be
assumed stiff (Kiencke and Nielsen (2005)). However, for
large medium-speed engines, commonly applied in power
or marine systems, the dynamics of the coupling between
engine and load can in general not be ignored (Östman and
Toivonen (2008a)). For these engines, two-mass models
which include the dynamics of the flexible coupling be-
tween engine and load have been applied (Östman and

Toivonen (2008a); Östman and Toivonen (2008b)).

A two-mass model is often sufficient for describing the
dynamics of an engine with relatively low number of cylin-
ders, in which the flexible crankshaft can be considered
rigid (Desbazeille et al. (2010)). Moreover, in frequency-
domain cylinder balancing methods, such as the ones con-
sidered in (Östman and Toivonen (2008a); Östman and
Toivonen (2008b)), it is usually sufficient to consider low
frequency components, for which rigid crankshafts can be
assumed. In the time-domain power balancing methods
studied in this paper, the effect of higher frequency compo-
nents can, however, not be ignored. Therefore, the dynam-
ics of the crankshaft will be modelled using a lumped-mass
model, in which the crankshaft is represented with a num-
ber of lumped masses interconnected with springs char-
acterized by their stiffness and damping (Genta (1999)).
The crankshaft model used in the simulations is depicted
in Figure 1. The model consists of ten elastically connected
masses (flange, seven cranks, gear, flywheel), and a flexible
coupling between the flywheel and the generator.

Fig. 1. Lumped mass model of crankshaft including flexible
coupling and generator.

The model is described by the coupled differential equa-
tions

Ji(φi)φ̈i +
1

2

dJi(φi)

dφi
φ̇2
i + Ci−1,i∆φ̇i,i−1 − Ci,i+1∆φ̇i+1,i

+Ki−1,i∆φi,i−1 −Ki,i+1∆φi+1,i = Mi(t), (1)

i = 1, 2, . . . , Nmass, where ∆φi,i−1 = φi−φi−1, ∆φ̇i,i−1 =
φ̇i − φ̇i−1, Ji(φi) is the mass moment of inertia of mass
number i (including oscillating mass), Ki−1,i and Ci−1,i

are the stiffness and damping between masses i− 1 and i,
and Mi(t) is the total torque applied at mass i.

The purpose of the power balancing method considered in
this paper is to make the cylinder-wise work contributions
at the flywheel equal. As direct cylinder torque measure-
ments are known to be difficult, the torque is reconstructed
using measurements of flywheel and generator positions
and speeds. Using equation (1) the torque can be estimated
from the relation

M(t) = J1φ̈f + Cg,f(φ̇f − φ̇g) +Kg,f(φf − φg) (2)

where J1 is the constant mass moment of inertia of the
flywheel, and the subscripts ’f’ and ’g’ refer to the flywheel
and generator, respectively. For an engine with a stiff
crankshaft, M(t) is the total engine torque if J1 is taken
as the mass moment of inertia of the engine.

The engine-generated torque M(t) = M(φ(t)) can be
decomposed into a sum of cylinder-wise torques

M(t) =

Ncyl∑
n=1

Mcyl,n(φ, un) (3)

where Ncyl is the number of cylinders and un is the fuel-
injection duration for cylinder n, which determines the
torque Mcyl,n(φ, un) produced by the cylinder during its
work phase. The successive work phases of the cylinders
give rise to a periodically time-varying torque. In cylinder
balancing, the objective is to make the cylinder-wise work
contributions equal.

Following (Kiencke and Nielsen (2005)), the integral be-
tween two consecutive ignitions of the torque estimate,

En =

TDCn+1∫
TDCn

M(φ)dφ, n = 1, 2, . . . , Ncyl (4)

is taken as a measure of the work contributions of the
cylinders. Here TDCn denotes the angular position corre-
sponding to the top dead center (TDC) of the work phase
of cylinder number n. Notice that, as the deflection of the
crankshaft is very small, the same crank angle φ can be
applied in (4) to all cylinders.

The power balancing problem studied in this paper is to
determine the fuel-injection durations un in such a way
that the torque integrals are equal, i.e.,

En = Ē, n = 1, 2, . . . , Ncyl (5)

where Ē is the mean cylinder-wise work,

Ē =
1

Ncyl

Ncyl∑
n=1

En (6)

In addition, it is required that the power balancing algo-
rithm is decoupled from the speed/load controller, i.e., the
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algorithm should affect only the power unbalance, but not
the total work Etot. The power balancing problem can be
summarized as follows.

Power balancing problem
Determine the fuel-injection durations un so that during
stationary operation the following conditions hold:

Power balance condition: The torque integrals En sat-
isfy (5).

Decoupling condition: The total work Etot = NcylĒ is
not affected, but can be determined independently of
the power balancing.

By (3) and (4), the work contributions {En} depend on
the fuel-injection durations {un}. If the work phases of
the cylinders do not overlap, En depends on un only, but
for a multi-cylinder engine with overlapping work phases,
it will also depend on un−1, . . . (assuming that the cylinder
ordering is taken as the firing order). In the next section,
a control law which achieves power balancing for a multi-
cylinder engine with possibly overlapping work phases will
be presented.

3. POWER BALANCING ALGORITHM

For notational convenience, we introduce the vector of
torque integrals,

E = [E1 · · · ENcyl ]
T

(7)

and the Ncyl × 1 vector 1 with unit elements,

1T = [ 1 1 · · · 1 ] (8)

Then (6) takes the form

Ē =
1

Ncyl
1TE (9)

and the power balancing condition (5) can be expressed
compactly as

E− 1

Ncyl
1 · 1TE = 0 (10)

In view of the power balancing condition it is convenient
to decompose the power integral vector E as

E = Eub +Ebal (11)

where

Eub = PubE, Pub = I− 1

Ncyl
1 · 1T (12)

where Pub is the orthogonal projection onto the nullspace
of 1T, I is the Ncyl-by-Ncyl dimensional identity matrix,
and

Ebal = PbalE, Pbal =
1

Ncyl
1 · 1T (13)

where Pbal is the orthogonal projection onto the range
of 1. In power balancing, only the unbalance component
Eub is controlled, whereas the balanced component Ebal is
controlled by the speed controller.

The powers generated by the cylinders are controlled
by adjusting the fuel-injection durations un. A power

balancing algorithm can be constructed to achieve the
power balancing condition (5) by sequentially updating the
cylinder-wise fuel-injection durations un(k) at iteration k
using the computed power integrals E(k). As the power
unbalance depends only the component Eub of the torque
integral vector, we can apply an integrating control law for
the fuel injection updates according to

u(k) = u(k − 1) +KPubE(k) (14)

where u(k) = [u1(k) u2(k) · · · uNcyl
(k) ]

T
and K is

a gain matrix, which will be discussed below. The class
of power balancing algorithms to be considered can be
summarized as follows.

Power balancing algorithm
Stage 0. Initialization. Set iteration index k = 1.
Stage 1. Measure the speeds φ̇f and φ̇g of the engine
flywheel and the generator over a number of engine
cycles.

Stage 2. If required, preprocess the measured speeds by
low-pass filtering.

Stage 3. Estimate the periodic torque applied on the
crankshaft as a function of the crank angle φ1 according
to Eq. (2).

Stage 4. Calculate the cylinder-wise work contributions
En(k) by integrating the estimated torque, eq. (4).

Stage 5. Adjust the cylinder injections un(k) based on the
work estimates according to (14).

Stage 6. Set k ← k + 1 and continue from stage 1.

In order to determine a control law to achieve power
balancing, we assume that locally, the cylinder-wise powers
depend on the fuel injections linearly, so that

E(k + 1) = E(k) +A∆u(k) (15)

where ∆u(k) = u(k) − u(k − 1). The proportionality
matrix A can be determined experimentally, or using
known gas torque data and the engine model (1).

From (15) it follows that the unbalance component Eub(k)
of the power integral vector is given by

Eub(k + 1) = Eub(k) + PubA∆u(k) (16)

Introducing the linear update law (14), the closed loop is
then described by

Eub(k + 1) = Pub (I+AK)Eub(k)

where we have used the fact PubEub(k) = Eub(k)).
Convergence of the algorithm is determined by the matrix
I + AK. If A is known, an obvious choice is to take
K = −µA−1, where µ is a positive steplength parameter.
Then,

Eub(k + 1) = (1− µ)Eub(k)

and it is seen that convergence to Eub(k) = 0 is obtained
for 0 < µ < 2.

Observe that in the case when the cylinder-wise work
phases do not overlap, assuming identical cylinders and
ignoring the crankshaft dynamics, the matrix in (15) is
diagonal, A = aI, and the control law (14) reduces to

u(k) = u(k − 1)− (µ/a)Eub(k) (17)
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or

un(k) = un(k − 1) + c
(
En(k)−

1

Ncyl

∑
m ̸=n

Em(k)
)
,

n = 1, 2, . . . , Ncyl, where c = −µ/a This is the cylinder
balancing control algorithm given in Walter et al. (2008).
Even when there is overlap between the cylinder work
phases, but A is diagonally dominant, it can be shown
that the step-length parameter µ can be selected so that
(17) gives convergence.

4. FREQUENCY-DOMAIN ANALYSIS

As torque imbalances often give rise to undesired torsional
vibrations in internal combustion engines, it is natural
to pay attention to the relevant frequency components
of the periodically time-varying torque. Consequently,
various frequency-domain approaches have been applied
to cylinder balancing Macian et al. (2006); Östman and

Toivonen (2008a); Östman and Toivonen (2008b). For
these reasons it is of interest to analyze frequency-domain
properties of the power balancing method based on torque
integrals presented in section 3.

In order to relate the power balancing method to cylinder
balancing approaches in which certain frequency com-
ponents of the reconstructed torque are suppressed, the
torque integrals (4) will be expressed in terms of the torque
frequency components. For a four-stroke engine, the torque
M(φ) is 4π-periodic with respect to the crank angle, and
it has a Fourier-series expansion,

M(φ) =

K∑
k=−K

M̂(k) ejkφ/2 (18)

where K corresponds to the highest frequency component
considered. Here, the frequency components p = k/2, k =
1, 2, . . ., which are integer multiples of the work cycle
frequency, are commonly referred to as frequency orders.

Then, the sequence {En} of power integrals defined by (4)
has the Fourier-series expansion

En =

L∑
l=−L

Êl e
j2πl(n−1)/Ncyl , n = 1, 2, . . . , Ncyl (19)

where

L =

{
Ncyl/2, if Ncyl is even
(Ncyl − 1)/2, if Ncyl is odd

and (see Appendix)

Ê0 = M̂(0) 4π/Ncyl (20)

Êl =
∑

m:|l+mNcyl|≤K

M̂(l +mNcyl)
ej2πl/Ncyl −1

j(l +mNcyl)/2
, l ̸= 0 (21)

The cylinder balancing criterion (13) is equivalent to the
frequency-domain condition

Êl = 0, l = ±1,±2, . . . ,±L (22)

By (21), this implies that certain linear combinations of

the torque frequency components M̂(l) and their alias

components M̂(l + mNcyl) vanish. In general it does not
follow from (22) that individual torque frequency orders
vanish. An exception is the case with a rigid crankshaft and
identical equidistant cylinders, in which case the torque
consists of a superposition of cylinder-wise torques which
depend on the corresponding fuel injections un,

M(φ) =

Ncyl∑
n=1

Mcyl(φ− TDCn;un)

If the cylinder-wise torque have identical Fourier series
expansions

Mcyl(φ;un) =

K∑
k=−K

M̂cyl(k;un)

the Fourier-series coefficients of the total torque M(φ) can
be expressed as

M̂(k) =

Ncyl∑
n=1

M̂cyl(k;un) e
−jkTDCn/2 ejkφ/2

As
Ncyl∑
n=1

e−jkTDCn/2 =

Ncyl∑
n=1

e−j2πk(n−1)/Ncyl = 0

it follows that selecting the fuel injections so that

M̂cyl(k;un) = M̂cyl(k;um), n,m = 1, 2, . . . , Ncyl,

all k, then all torque frequency orders are zero, M̂(k) = 0,
and the power balancing criterion (22) is achieved. How-
ever, in the general case with a flexible crankshaft, and
possible discrepancies between the cylinders, the power
balancing condition does not imply suppression of indi-
vidual torque orders.

5. EXAMPLES

In this section simulations and full scale engine tests are
presented to demonstrate the performance of the power
balancing procedure applied to an engine with a flexible
crankshaft. The method is specifically evaluated for a
seven-cylinder 3.5MW common-rail Wärtsilä W7L32CR
engine-generator set running at 750 rpm.

5.1 Simulations

The simulations were done on the lumped-mass model (1)
of the engine-generator set using engine-specific gas-torque
data (Östman and Toivonen (2008a)) for the cylinder-wise
torques in equation (3). The firing order of the cylinders is
1-3-5-7-6-4-2, where cylinder 1 is taken as the one closest
to the flywheel (see Fig. 1), and the simulations were
performed at 50% load.

For a seven cylinder engine, the cylinder phases are
720/7 = 102.9 degrees apart, and there is therefore some
overlap between the work phases of two consecutive cylin-
ders, so that the model (15) takes the form (assuming that
the cylinder are numbered according to firing order)

En(k + 1) = En(k) +Ann∆un(k) +An,n−1∆un−1(k),

n = 1, 2, . . . , Ncyl, where Ann > An,n−1 > 0, and with
the understanding that ∆u0 = ∆uNcyl

. For simplicity, the
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controller (17) was applied, where the gain µ was selected
to achieve convergence.

Fig. 2. Normalized cylinder-wise torque integrals En when
the power balancing procedure is applied to simulated
example. The figure shows four iterations of the
algorithm applied to each cylinder.
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Fig. 3. Normalized torque order magnitudes below ignition
frequency in power balancing simulation.

Figure 2 shows the results of a simulation of the cylinder
balancing method. The initial fuel injections were taken
so that the initial power unbalances match those in the
full-scale test (cf. section 5.2). The figure shows the prop-
agation of the normalized torque integrals En/Ē. It is
seen that the cylinder-wise powers at the flywheel are well
balanced in less than five iterations of the algorithm, re-
sulting in a 82% reduction of the standard deviation of the
power unbalances En − Ē. The magnitudes of the torque
order frequency components below ignition frequency are
shown in Figure 3. It is seen that although all frequency
components are reduced, due to the crankshaft dynamics
the reductions are much smaller than that of the power
unbalance.

5.2 Engine tests

The proposed method was tested on a Wärtsilä W7L32CR
diesel engine at the Wärtsilä Vaasa test laboratory. The
engine was connected to a synchronous generator through
a flexible coupling. Speed data were obtained both from
the engine and generator side. Engine speed data was
represented by timer ticks, established between every third
hole on the engine flywheel. This corresponds to 40 timer
ticks per rotation, equalling a measurement every 9th

Fig. 4. Normalized cylinder-wise torque integrals En in
power balancing test. The figure shows four iterations
of the algorithm applied to each cylinder.

crank degree. The timer resolution was 167 kHz. On the
generator side, measurements were down-sampled to 120
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Fig. 5. Normalized standard deviation of power unbalance
in power balancing test.

pulses per revolution from a HBM 7200 pulses/rev speed
encoder. The test was run at 50% engine load.

The results from a full-scale test of the power balancing
algorithm are shown in Figures 4 and 5, which show
the propagation of the cylinder-wise torque integrals and
the standard deviation of the power unbalances En − Ē
during four iterations of the algorithm. It is seen that the
reductions achieved in power unbalance match well with
those obtained in simulations with the corresponding ini-
tial power unbalances (Figure 2). The results demonstrate
a clear decrease in the cylinder-wise work unbalances, with
the standard deviation of the cylinder unbalance decreas-
ing by 85% after four iterations, cf. Figure 5.

6. CONCLUSION

Power balancing algorithms for multi-cylinder internal
combustion engines have been studied. The procedure
uses speed measurements to reconstruct the torque at the
flywheel. The integrals of the reconstructed torque over
the cylinder-wise work phases are taken as a measure of
the powers at the flywheel associated with the different
cylinders. The cylinder-wise fuel injections are controlled
in such a way that the estimated powers are balanced,
while not affecting the total power. A convergent balancing
algorithm has been presented for the general case, where
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the different cylinder work phases may overlap. Simu-
lations and full-scale engine tests on a 7-cylinder diesel
engine demonstrate the efficiency of the algorithm.

In practice, the proposed algorithm should be applied
during steady-state operation with a constant load. After
load changes, it may be necessary to rerun the algorithm
to eliminate possible power imbalances.

Whereas frequency-domain cylinder balancing requires on-
line computation of a Fourier transform and information
about phase angles associated with the relevant frequency
components, the time-domain power balancing method
requires only numerical integration of the estimated torque
and information about the ignition points of the cylinders.

However, some of the advantages of the time-domain
approach are lost if the cylinder balancing should be done
using the lowest frequency components only, for example
because the crankshaft dynamics cannot be ignored at
higher frequencies. A frequency-domain analysis of the
procedure shows that power balancing implies suppression
of torsional frequency components only in the special
case where the cylinders are identical and the crankshaft
dynamics can be ignored.

A possible approach to engines with flexible crankshafts
would be to apply the power-balancing algorithm to low-
pass filtered signals. However, when considering only the
lowest frequency components the cylinder-wise torque con-
tributions will be spread out in time (or crank angle). This
spreading of the torque contributions will complicate the
time-domain power balancing procedure. The development
of time-domain power balancing methods to such cases will
be left for future studies.

ACKNOWLEDGEMENTS

The authors wish to thank the personnel at the Wärtsilä
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Appendix A. PROOF OF (20), (21)

Consider a T -periodic signal y(t) with Fourier-series ex-
pansion

y(t) =

∞∑
k=−∞

Ŷ (k) ej2πkt/T

Define the integrals

En =

nT/N∫
(n−1)T/N

y(t)dt, n = 1, 2, . . . , N

Then,

En =

nT/N∫
(n−1)T/N

( ∞∑
k=−∞

Ŷ (k) ej2πkt/T

)
dt

= Ŷ (0)T/N +

∞∑
k=−∞,k ̸=0

Ŷ (k)
ej2πk/N −1
j2πk/T

ej2πk(n−1)/N

As

ej2π(k+mN)/N = ej2πk/N , all integer m

we can decompose the sum by setting k = l+mN , where
l takes values ≤ N/2 (excluding l = 0), and m from −∞
to +∞. This gives

∞∑
k=−∞,k ̸=0

Ŷ (k)
ej2πk/N −1
j2πk/T

ej2πk(n−1)/N =

L∑
l=−L,l ̸=0

∞∑
m=−∞

Ŷ (l +mN)
ej2πl/N −1

j2π(l +mN)/T
ej2πl(n−1)/N

and it follows that

En =
L∑

l=−L

Êl ej2πl(n−1)/N

where

Êl =
∞∑

m=−∞
Ŷ (l +mN)

ej2πl/N −1
j2π(l +mN)/T

, l ̸= 0

and

Ê0 = Ŷ (0) T/N

from which (20) and (21) follow by setting T = 4π and
N = Ncyl.
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