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Abstract: We consider the problem of building a transitional model of an initially uncalibrated
camera network. More specifically, we discuss a Hidden Markov Model (HMM) based strategy in
which the model’s state-space is defined in terms of a partition of the physical network coverage.
Transitions between any two such states are described by the distribution of the underlying
Markov Process. Extending previous work in (Cenedese et al., 2010), we show how it is possible
to infer the model structure and parameters from coordinate free observations and we introduce
a novel performance index for model validation. We moreover show the predictive power of this
HMM approach in simulated and real settings that comprise Pan-Tilt-Zoom (PTZ) cameras.

Keywords: Graph models for networks; Sensor networks; Camera networks; Hidden Markov
Models; Model Identification; Model Optimization.

1. INTRODUCTION

Camera networks play an increasingly important role in
the modern society. The ubiquity of vision-like sensors is
apparent in many contexts were they are widely employed
to operate a variety of professional and recreational tasks.
In a distributed scenario, the knowledge of the topology of
the network by the acting agents is of extreme importance:
the agents have to share information locally and need to
cooperate with neighbors to attain the global performance.
However, in situations where hundreds of nodes are spread
across the environment it is practically impossible to have
a manual setup of the network, and at the same time it is
not convenient to rely on a topology that is a priori defined
during the design phase. There is therefore the necessity
of learning the topology of the network after it has been
deployed.
A relevant problem in this context is to understand how
the sensor scene relates to the environment. In the case
of camera networks, the sensor scene is meant as the
whole of visibility areas obtained through the union of the
cameras’s fields of view. As a practical example, consider
the control room of a surveillance network where hundreds
of cameras monitor a vast indoor or outdoor area with
Pan-Tilt-Zoom (PTZ) or fixed cameras. In this context,
once an event has been detected in a specific area, it
would be desirable to predict which are the cameras that
can provide information on the same event in the near
future. Loosely speaking the problem is that of building a
transitional model over the environment to be monitored,
namely, to split the environment into sensor areas and to
assign probabilities describing the possibility of an event
to move from one area to another.
We refer to this problem as the graph building problem
(Cenedese et al., 2010), since the solution is provided in
? The research leading to these results has received funding from
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terms of a graph where each node represents a sensor area
and the edges stand for the admissible physical transitions
between them. In addition a weight is assigned to each
edge accounting for the probability of the corresponding
transition.
Here we specifically consider the problem of building a
transitional model of an initially uncalibrated camera net-
work deployed in a realistic experimental setting. The
construction of the graph and the estimation of the transi-
tional probabilities is achieved by exploiting camera obser-
vations taken during the calibration phase of the system.
In this phase, information on the network is generated
by letting a known target move across the scene. The
identification problem is then cast within the mathemat-
ical framework of Hidden Markov Models (HMMs) and
the contribution of the paper extends previous work in
(Cenedese et al., 2010) along three directions:
- first, we provide a richer description of areas which are
not covered by any camera (the so-called null states);
- then, we introduce a novel performance index related to
the HMM predictive power;
- finally, we provide performance results for both simulated
and experimental settings that comprise PTZ cameras.
These results show a superior behavior of the novel per-
formance index with the respect to the one considered in
(Cenedese et al., 2010).
State of art: The estimation of graphical models is a
popular research subject (see, e.g., (Jordan, 1999; Bishop,
2006)) where the problem of fitting and selecting models
on the basis of data is tackled for example by resorting
to graph based structures (Markov random field) and to
the formulation of a maximum likelihood optimization
problem with a regularization term.
In the context of camera networks, a variety of tracking
models with graph structure have been studied, see, e.g.,
(Javed, 2003; Zou et al., 2007; Farrell and Davis, 2008) and
also the general discussion in (Mavrinac and Chen, 2013).
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However, the focus is usually put either on statistical
methods to discover relations between non-overlapping
views or on the definition of classifiers to be used for
reconstructing target trajectories.
Differently, (van de Camp et al., 2009) considers a HMM
based approach: under the assumption that the coverage
topology is known (or can be estimated as a preliminary
step) a HMM is learned for each person moving throughout
the scene and is then used to predict movement. A similar
approach is discussed in (Vasquez et al., 2009) where
the authors incrementally learn a Growing HMM. In
(Marinakis and Gregory, 2009) a Markov process is used
to infer the trajectories of multiple targets simultaneously
present in the scene; the so learned process’s parameters
provide a description of the camera network in terms of
a set of disjoint states and the corresponding transition
probabilities.
Organization of the manuscript: Sec. 2 lists the assump-
tions made and introduces the notation used throughout
this paper. Sec. 3 describes the HMM based identifica-
tion procedure. Sec. 4 shows performance results in both
simulated and experimental settings. Sec. 5 collects final
remarks and future directions.

2. ASSUMPTIONS AND NOTATION

Throughout this paper we consider the following environ-
mental model. The camera network operates in a bounded
2D domain D ⊂ R2 and occluding objects in the scene
are modeled as static 2D shapes with piece-wise linear
boundary: the object’s “walls”.
The network comprehends m cameras labeled by the in-
dices 1, . . . ,m. A “fixed” camera has position and orienta-
tion both constant in time. PTZ units, instead, can con-
trol their angular position within certain pre-determined
angular limits. The (un-occluded) Field-Of-View (FOV)
of camera i, Fi ⊂ D, is modeled as a circular sector with
origin at the point 0i. The coverage of camera i, Ci ⊆ Fi, is
defined as the subset of points of the corresponding camera
FOV which are not occluded in the view of that camera.
Since all walls are occluding it follows that a point x ∈ Fi
is also in Ci if and only if the segment 0ix does not intersect
any wall in the environment. For a PTZ camera, both
FOV and coverage sets are time-dependent. We define the
domain of the camera with index j, Dj , to be the conical
sector obtained as the union of all the FOVs that are
plausible for j.
Targets are point-like entities that are free to move in D on
any trajectory, ψ : R → D, that is a continuous function
of time and such that its image does not intersect any wall
in the environment (physical feasibility). A target with
trajectory ψ is said to be detectable by camera i at time t
if ψ(t) ∈ Ci.
It is assumed that no a priori geometrical information
on the environment is available to the network and that
cameras cannot rely on self-localization techniques. During
the calibration phase, topological information is generated
by letting a known target move across the scene. The
corresponding observational datum at time t is a binary
ordered tuple, Ot ∈ {0, 1}m, obtained by aggregating
detection events from all sensors in the network. The i-

th element of Ot is set to 1 if the target is detectable at
t by camera i, and is zero otherwise. We denote by OT1 =
(Ot1 , . . . ,OtT ) a (time-)ordered T-tuple of observations.
We will abuse this notation by writing τ in place of tτ and
Oτ in place of Otτ .
In Sec. 4 we focus our analysis on the prototypical outdoor
environment depicted in Fig. 1(a). The scenario mimics an
actual deployment where a rectangular area, comprising
two buildings, is surveilled by fixed (cameras 5 and 6) and
PTZ cameras (cameras 1-4): such a model comprises both
overlapping and isolated camera domains and occlusions,
relating the network’s sensors in a non-trivial way. A few
remarks on the setting are in order. In the figure, gray
lines starting from the cameras’ origins denote the FOVs
for fixed cameras and patrolling limits for the PTZ units.
The FOV of each PTZ camera has been set to 10◦ degrees
while the maximum panning speed has been limited to ten
degrees per second in absolute value.
Remark: We stress that here we are not interested in
solving the computational vision problem of how the
camera sees the object of interest, but we are rather
interested in if the camera sees it. We are thus considering
a simplified framework and also do not deal explicitly with
communication, synchronization and other issues.

3. THE HIDDEN MARKOV MODEL APPROACH

We now proceed to discuss how it is possible to infer a
HMM description of the network in the framework out-
lined in Sec. 2. Let us recall that a HMM is a Markov
process in which the system state is not directly observ-
able, it is hidden, while an output, dependent on the state,
is directly accessible and can be used to infer the system’s
trajectory. The basic elements of a HMM are (Rabiner,
1989; Rabiner and Juang, 2003)
• the system state space, S = {S1, S2, . . . , SN}; in the
following we let qt denote the state at time t.
• the output alphabet V = {v1, v2, . . . , vM}; the ele-
ments of V are called observation symbols.

• the state transition probability distribution, the ma-
trix A ∈ RN×N whose elements are given by the
probabilities

aij := P [qt+1 = Sj | qt = Si ] , 1 ≤ i, j ≤ N .

• the observation symbol probability distribution, the
matrix B ∈ RM×N with entries

bj(vi) := bij := P [Ot = vi | qt = Sj ] ,
when 1 ≤ i ≤M , 1 ≤ j ≤ N .

• the initial state distribution (i.e. at t = 1), π ∈ RN

πi := P [q1 = Si] , 1 ≤ i ≤ N .

A HMM with state space S is denoted in compact form
by the tuple λ = (A,B, π).
In the formulation of (Cenedese et al., 2010), the process’s
parameters are estimated following a two-step approach:
1) Initial structure discovery: static observations are used

to establish a strong correspondence between the net-
work’s coverage cells and the HMM state space. The
distributions A and B are inferred from the same data.

2) Parameter re-estimation and discovery of additional
states: the initial HMM formulation is adjusted by an
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iterative re-estimation procedure. By exploiting also
the dynamics of the to-be-learned (output) trajectory
some states are selected for a splitting procedure that
reveals initially “hidden” states.

In the remainder of the paper we assume that a string of
observations, say OT1 for some T > 0, is available. We note
that, in this effort, we focus on the problem of estimating
the transition probabilities disregarding all self-loops. We
thus explicitly discard any information on permanence
times so that Ot 6= Ot+1 for all t = 1, . . . , T − 1.

3.1 Initial Structure Discovery

The initial structure of the HMM is inferred starting from
a coverage overlap model of the network, i.e. an abstract
(coordinate-free) topological description of the (physical)
camera network (on this topic see, e.g., Mavrinac and Chen
(2013) and references therein). More precisely, a coverage
overlap model establishes a set of distinguishable states
in terms of coverage overlaps (or equivalently, in terms of
the overlaps-induced coverage cells) and a set of relations,
so that any two such states are related if there exist a
physically admissible transition between them. Note that
the information contained in this graph-like description is
mapped in a natural and lossless way to HMMs.
We now notice that each binary observation Ot repre-
sents a signature of the states. More specifically, different
observations reveal that the corresponding states of the
system are distinguishable. Following an Ockham’s razor
interpretation of the available data we are thus lead to
the following scheme. For each unique observation O ∈
OT1 = {O1, . . . ,OT }, we introduce a new state, so that
the HMM’s state space is effectively defined by a one-
to-one mapping from the set of coverage cells that have
been discovered during calibration. Similarly, the set of
admissible transitions constraining the Markov process is
inferred from the set of transitions in OT1 .
Since coverage areas may not be connected, additional
care must be taken with respect to how blind areas are
modeled. To this aim, we endow the HMM with fictitious
null states: the target is in a null state at time t if its
not detectable by any sensor in the network at time t. As
in Cenedese et al. (2010), this situation can be formally
described by introducing a single null state, that accounts
for the whole unmonitored area and corresponds to null
observations of the kind Ot = 0. This approach leads, in
general, to a loose description in the sense that the inferred
model allows paths that are not admissible in the physical
environment. In this paper, we propose a novel approach
that estimates multiple null states each corresponding
to a different blind area between some non overlapping
camera coverages. In the new scheme, the discovery of
null states is performed by scanning all the triplets in the
observational string and by introducing a new state when
a transition through an unmonitored area is witnessed.
More precisely, we associate to the string Ot+2

t = (a, 0, b)
for some a, b ∈ {0, 1}m, a unique null-state corresponding
to the blind area in-between the coverage cells associated
to a and b. We notice that here we just wish to enable
a formal description of the proximity relations between
coverage cells. In this approach, two observations (a, 0, b),
(b, 0, a), lead thus to the definition of the same null state.

Figs. 1(b)-1(c) show the coverage models obtained through
the above procedures for the network of Fig. 1(a). We
labeled each node with the identifier of the corresponding
coverage cell: a label ‘1-4’ denotes the cell given by the
intersection of FOVs (or domains if a PTZ unit is involved)
from cameras 1 and 4, i.e. F1 ∩ F4. The symbol ‘∼’
stands for a transition to or from an unmonitored area.
We notice that the quality of this initial description is
influenced by the number and spatial distribution of the
detection events that have been considered. If, as in this
case, the network comprises also PTZ cameras, there is the
additional difficulty that small coverage overlaps become
increasingly difficult to map.
Assume then that the initial HMM state space has been
determined. A unique observational symbol is now asso-
ciated to each coverage cell. All null-states, instead, emit
the same symbol 0. The HMM’s output dictionary is taken
thus to be a subset of {0, 1}m and we are left with the
determination of the initial process parameters. To this
aim, we note that an intuitive direction is to choose them
so as to maximize the probability of observing OT1 , i.e.,

λ0 ∈ arg max
λ=(A,B,π)

P
[
OT1 | λ

]
. (1)

However, the optimization manifold is usually complex
and no analytical way to infer such λ0 is known (see, e.g.,
Rabiner (1989)). Here we choose to define a possibly sub-
optimal initial model by exploiting the following frequen-
tist estimates. Define for all 1 ≤ i, j ≤ N

Ti
(
OT1
)

:= number of visits to state Si in OT1 ,

Ti→j
(
OT1
)

:= number of transitions Si → Sj in OT1 .

Let then for all 1 ≤ i, j ≤ N and 1 ≤ h ≤M

aij =


Ti→j

(
OT1
)

Ti
(
OT1
) if Ti

(
OT1
)
> 0

0 otherwise ,

bhi =
{

1 if h = i, Si is not a null state
0 otherwise .

Moreover let the null states emit the symbol 0 with
probability one. The first phase is concluded by modeling
the unknown state prior with a uniform distribution

πi = 1
N

, 1 ≤ i ≤ N .

3.2 Parameter learning and node splitting identification

The optimization manifold of problem (1) usually is char-
acterized by multiple local maxima and, in fact, no tech-
nique can reach the optimum without recurring to exhaus-
tive search. There exist, however, several gradient ascent
methods that return a locally optimal choice of HMM
parameters (see Rabiner (1989) and references therein),
among which is the Baum-Welch algorithm (Baum et al.,
1970; Welch, 2003). Starting from the current estimate
λ = (A,B, π) the latter provides a new model, say λ̄ =
(Ā, B̄, π̄), that satisfies (by construction) the property

P
[
OT1

∣∣ λ̄] ≥ P
[
OT1 | λ

]
, (2)

with equivalence only if the optimization procedure has
reached, through iterations, a local maximum. This opti-
mization algorithm plays a central role in the identification
scheme proposed here.
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Fig. 1. (a): Schematic representation of the camera network considered in Sec. 4. The synthetic random trajectory used
for performance evaluation in simulations is depicted as a red polygonal line. (b) and (c): The coverage overlap
models, with a single null state and multiple null states respectively, inferred from a string of observations with
T = 250.

Once a first instance of the HMM model has been re-
trieved, some of the states undergo a splitting procedure
in order to disclose the presence of initially hidden states,
which are replaced by two or more novel states. This
procedure is devised exploiting the dynamics of the ob-
servation, taking into account also past and future states,
as in Cenedese et al. (2010).
We observe that this splitting procedure only supports the
identification of hidden states, which results in adding a
new row and column to matrix A, while, concerning matrix
B only the number of columns is modified, as the number
of observations does not change (specifically the column
corresponding to the node Si splits into one for S′i and a
new equal column for S′′i ). Since the numerical values of
transition probabilities to and from the new states are not
known, a re-estimation pass (based on the observations)
of the augmented matrices A and B is required. The
new model is thus optimized trough the Baum-Welch
algorithm.

3.3 Model validation

To measure the performance of the identification proce-
dure, it is introduced the following normalized correct
prediction probability:

η = T

√√√√T−1∏
t=0

P [ŷt+1 = yt+1 | yt0 ] = T

√
P
[
OT1 | λ

]
, (3)

which corresponds to the (geometric) average probability
of making the correct prediction for a specific sequence
of observations OT1 based on the identified model λ. This
index can be interpreted as a sort of efficiency. In fact it
is easy to see that η ∈ [0, 1] for any observation sequence
OT1 and model λ, and clearly, higher values indicate better
predictive capabilities. The strategy is thus to evaluate the
performance index (3) for the validation datasets during
the identification iterations and to use the feedback from
the computed fits to stop the procedure as soon as over-
fitting is detected, i.e. when these validation fits start
decreasing (see Cenedese et al. (2010)).
Unfortunately, an issue arises with the formulation in
(3) since the index η vanishes as soon as a validation
trajectory OT1 contains a transition that is not allowed

by λ, independently of how well the model describes
the rest of the sequence. Conversely, the performance
indicator should remain informative even in presence of
few low-probability transitions. In this perspective, we
now introduce a different index ρ related to how well the
identified model can predict which sensor is able to provide
information on the future position of the target.
Given a setting withm cameras, define the following multi-
function S(i) : {0, 1, . . . ,m} → P({0, 1}m) (P denotes the
power set)

S(i) =


{O ∈ {0, 1}m : the i-th component of O is 1}

if i ∈ {1, . . . ,m} ,
0 ∈ {0, 1}m if i = 0 .

For i = 1, . . . ,m, S(i) is the set of observational sym-
bols that the network can generate when the target is
detectable by camera i. S(0) instead represents a fictitious
“sensor” with coverage extending over the whole unmoni-
tored area. With this definition the Maximum Likelihood
(ML) estimator of the future sensor is given by

ψ̂t+1 = arg max
i∈{0,1,...,m}

P
[
Ôt+1 ∈ S(i)

∣∣ Ot1 , λ] . (4)

Then, the outcome ψ̂t+1 = 0, is interpreted as the predic-
tion that the target will exit the monitored area at time
t + 1, i.e. the model predicts that the most likely symbol
at time t + 1 is 0. Let δt be the indicator function of the
event [Ot ∈ S(ψ̂t)] and define the new performance index

ρ :=
∑T−1
t=1 δt+1

T − 1 , (5)

namely the ratio of “correct” predictions over the number
of transitions in the dataset. ρ takes values in [0, 1]: ρ = 1
is achieved only if the model is able to perfectly predict
all future sensors based on the past, while when ρ = 0 the
model cannot correctly infer any of the predictions (4).
In general, the closer is this index to one, the better are
the HMM prediction capabilities.We adopt for ρ the same
stopping criterion described above.
Remark: The probability P [Ot1 ; λ] can become zero, e.g.
if the validation trajectory contains an output transition
that is not admissible in the HMM. In these cases the
estimation procedure must be restarted, in the sense that
when computing these estimates for times t̄ ≥ t past
observations until t− 1 should be discarded, i.e.
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ψ̂t̄+1 = arg max
i∈{0,1,...,m}

P
[
Ôt̄+1 ∈ S(i)

∣∣∣ Ot̄t , λ] , for t̄ ≥ t .

4. SIMULATIONS AND EXPERIMENTS

To analyze the performance of this HMM identification
approach, we study the evolution of indices η and ρ (re-
spectively (3) and (5)), for both synthetic and experi-
mentally gathered observations. Moreover we compare the
situations where the initial HMM structure is defined using
either just one or multiple null states. To this aim, we focus
to the specific case study of Fig. 1(a), where a network
of both fixed and PTZ cameras performs the perimeter
patrolling of a building structure or a generic area (see
Sec. 2 for the details). This synthetic setup mimics the
experimental testbed installed in the Autonomous Navi-
gation Laboratory of the Dept. of Information Engineer-
ing of the University of Padova, in terms of disposition
and parameters of fixed and PTZ cameras. For a first
performance assessment, the target trajectories have been
randomly artificially generated in the simulation scenario
(as shown in Fig. 1(a)), while for a further experimental
validation they are acquired from measurements in the real
testbed.
The results of this analysis are summarized in Fig. 2, where
the first two columns (subfigs. (a)-(b)-(d)-(e)) refer to the
synthetic scenario whereas the third column (subfigs. (c)-
(f)) is related to the experiments in the actual testbed.
Also, in the first row (subfigs. (a)-(b)-(c)) it is considered
a single null state to describe the situation when the target
is not observable by the network, while in the second
row (subfigs. (d)-(e)-(f)) the multiple null case is taken
into account. In these plots, a solid black line indicates
the performance of the training dataset while colored
dashed lines refer to the performance relative to validation
data. Loosely speaking, the performance indexes η and
ρ measure the capability of the model to describe the
observational data and the detected trajectories: the HMM
model is obtained by learning the scene through the
training data, and is then applied to different validation
sequences to check its consistency and robustness.
We previously discussed how η can vanish if the validation
data cannot be explained in terms of the estimated HMM.
A similar issue arises with the adoption of the node-
splitting procedure: when a state is split, the following
parameter re-estimation step might lead to a new model
with a different set of admissible paths (of length 2).
Presently this situation is not controlled by the procedure
and may cause η to evaluate at near zero values (for
the validation datasets) as the identification algorithm is
iterated. This effect is shown in Figs. 2(a) and 2(d).
We notice how, on the one hand, the training fits improve
steadily as new hidden states are discovered. On the other
hand, the evolutions of η relative to the validation se-
quences are rather uninformative: they all eventually van-
ish giving little insight on the model’s predictive power. In
other words, in these cases η fails to be a trustful indicator
of performance. In Figs. 2(b) and 2(e), instead, we plot the
evolution of performance index ρ, for the same synthetic
observation strings. Similarly to the previous case, as the
iterations occur, the evolution of the fits computed for the
training string, sees ρ first increasing and then remaining

stable. Remarkably, Fig. 2(b), witnesses the same quali-
tative behavior even for the validation datasets. Moreover
the strategy to exploit multiple null-states shows improved
initial performance while the final models achieve roughly
the same values for ρ. The identification procedure leads
thus to HMMs that exhibit good overall predictive perfor-
mance as measured through the ρ index, which confirms
to be more consistent than η and can be thus employed as
a performance indicator.
Finally, experiments have been conducted on the real
camera network testbed. For practical reasons, here the
underlying physical trajectory, from which the strings
of observations are derived, is an eight shaped curve
looping around the two buildings and the motion is more
constrained. Example evolutions of performance index ρ
are presented in Figs. 2(c) and 2(f). Both figures show how
the predictive performance of the HMM increases through
iterations and, remarkably, the evolutions follow the same
qualitative behavior of the simulated case. However, the
final HMMs achieve better performance in this case. This
is due to the fact that the constraints given by the physical
testbed yield less randomness and variability if compared
to the simulated scenario. I.e., the target movements
employed to provide the observational strings in this case
lead to intrinsically better predictable future positions.
As for the single-null versus the multiple-null strategies,
we observe that the latter shows better performances in
all the considered case at the cost, though, of a higher
complexity of the model, which poses a trade-off between
prediction capability and model dimensionality.

5. CONCLUSIONS

In this work, we have considered the problem of building
a transitional model of an initially uncalibrated camera
network, extending previous work in (Cenedese et al.,
2010). We have shown how it is possible to estimate
a HMM based description of the network starting from
coordinate free measurements of target activity and to
validate our approach we have shown performance results
from both simulated and real settings comprising fixed and
PTZ cameras.
More specifically performance has been measured by two
indices: the first related to the model’s efficiency at pre-
dicting future outputs; the second instead is based on a
predictor of which sensor is most likely to provide infor-
mation on the future position of the target. Results of
both synthetic and experimental nature exhibit a qualita-
tively similar behavior and show good overall performance;
nonetheless, the second index, related to the prediction of
the next useful sensor, appears more stable and shows a
more consistent dynamics.
The approach appears thus as a promising tool for the
estimation of transitional models in real camera networks,
and hence this suggests to pay further attention to these
techniques. More specifically we plan to better study the
online estimation of the network structure, also consid-
ering the interplay between the learning of the model
and suitable patrolling techniques that favor the former.
Finally, a more extended validation in large testbed would
be beneficial to get more insight into the performance of
the procedure in real-world settings.
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(a) T = 500. (b) T = 500. (c) T = 150.

(d) T = 500. (e) T = 500. (f) T = 150.

Fig. 2. Performance indices η and ρ as a function of the iteration step in the identification procedure. Evolutions in the
upper row correspond to models where the unmonitored area is modeled by a single null node; in the lower row,
instead, each blind area is mapped to a different null state. (a)-(b)-(d)-(e): synthetic observational data (target
movement of Fig. 1(a)). (c)-(f): data gathered from the real camera network.
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