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Abstract: Principal component analysis (PCA) and Partial least square (PLS) are powerful
multivariate statistical tools that have been successfully applied for process monitoring. They
are efficient in dimension reduction and are suitable for processing large amount of data.
Nevertheless, their application scope is restricted to static processes where the dynamics are
ignored. In order to achieve improved monitoring performance for dynamic processes, in this
paper, we propose an effective dynamic monitoring scheme based on the canonical variate
analysis (CVA) technique. Different from the standard PCA- and PLS-based techniques which
rely on mean-extraction for residual generation, the proposed CVA-based scheme takes process
dynamics into account as well. The properties of all three methods are then compared in detail
and finally, the improvements of the proposed method are demonstrated on the well-accepted
Tennessee Eastman benchmark process.

Keywords: Canonical variate analysis, principal component analysis, dynamic process
monitoring, fault detection.

1. INTRODUCTION

Process monitoring and fault diagnosis techniques have
been applied in many areas, such as steel industrial, chem-
ical engineering, electronic engineering and so on. As a
major part of those methods, multivariate statistical pro-
cess monitoring methods (MSPM) have attracted much at-
tention, like principal component analysis (PCA), partial
least square (PLS) and canonical variate analysis (CVA)
[MacGregor et al., 1995, Qin, 2003, Ding et al., 2013]. PCA
is characterized with simplicity and efficiency in processing
huge amount of correlated process data. Typically, a few of
principal components are extracted from highly correlated
process data, and proper test statistics are established
for process monitoring purpose. When using two blocks
of data, PLS aims to find combinations of variables that
are highly correlated. Meanwhile, it selects those linear
combinations in a way that eliminates redundancies in the
data blocks and defines a new set of variables in each block,
which are uncorrelated. A limitation of PCA- and PLS-
based approaches is that they rely on static property and a
prior assumption is that the observations are uncorrelated
in time [Hu et al., 2012, Yin et al., 2012]. By using time-
lagged variables to develop dynamic model, Ku et al. [1995]
proposed a dynamic PCA to deal with this issue.

The CVA technique was originally developed by Hotelling
[1933], it was called canonical correlation analysis. Thanks
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to Akaike and Larimore’s work, CVA method has become a
main tool in system identification [Akaike, 1974, Larimore,
1983]. A model identified employing CVA can develop
several methods for process monitoring. Negiz and Cinar
[1997] proposed a T 2 statistic based on estimated state
variables for a milk pasteurization process. Russell et al.
[2000] studied a residual generation based on state vari-
ables to measure the variations outside the state space. In
order to detect process changes, Juricek et al. [2004] pro-
posed a local approach based on CVA. Further applications
of CVA for process monitoring can be found in [Simoglou
et al., 2002, Odiowei et al., 2010]. We notice that little
attentions have been focused on the residual generation
based on canonical pair. The objective of this paper is
to address residual generation based on canonical pair for
dynamic process monitoring. According to the generated
residual vector, the complete process monitoring scheme is
designed. In order to verify that the proposed CVA-based
scheme can provide improved performance, a comparison
between the PCA, PLS and CVA monitoring schemes is
carried out.

The rest of this paper is organized as follows. In Section 2,
some preliminaries on static process monitoring are firstly
given. Motivated by the state of the art and industri-
al requirements, we then formulated the problem to be
solved. In Section 3, the CVA-based process description
and monitoring are proposed. A brief comparison between
PCA, PLS and CVA is also done. The comparison results
among them on Tennessee Eastman process are shown in
Section 4. The paper ends with conclusions in Section 5.
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2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Preliminaries

For monitoring of static process, PCA and PLS are widely
implemented methods. PCA is an optimal dimensionality
reduction method that captures the significant variability
information in the original data set. Given N observations
of m measurement variables form a training data matrix
X ∈ Rm×N . By normalizing the collected data matrix
X to zero mean and unit variance, a sampled covariance
matrix R is constructed, and by means of singular value
decomposition (SVD), the singular values and the corre-
sponding eigenvector can be given as

R ≈ 1

N − 1
XXT = PΛPT ,Λ = diag(λ1, . . . , λm), (1)

where N is large. λi (i = 1, . . . ,m) are singular values in
descending order, P is the eigenvector matrix.

The number of principal components (PCs) l is determined
by proper criterion and P , Λ are divided into

Λ =

[
Λpc 0
0 Λres

]
,

Λpc = diag(λ1, . . . , λl),
Λres = diag(λl+1, . . . , λm),

P = [PpcPres] , Ppc ∈ Rm×l, Pres ∈ Rm×(m−l).

Based on it, the SPE and T 2
PCA statistics

SPE = xT
(
I − PpcP

T
pc

)
x = xTPresP

T
resx, (2)

T 2
PCA = xTPpcΛ

−1
pc P

T
pcx, (3)

are usually used for process monitoring. Detailed descrip-
tion can be found in [Yin et al., 2012].

Suppose that the process under consideration have nor-
malized quality and process variables data sets Z ∈ Rn×N

and Y ∈ Rm×N , respectively (1 < n < m). The core idea
of PLS is to

set Y1 = Y and recursively compute for i = 1, · · · , γ
w∗

i = arg max
∥wi∥=1

∥∥wT
i YiZ

T
∥∥
E
, (4)

ti = wT
i Yi, pi =

Yit
T
i

∥ti∥2E
, (5)

ri =


w1, i = 1

i−1∏
j=1

(
I − wjp

T
j

)
wi, i > 1 , qi =

ZtTi

∥ti∥2E
, (6)

Yi+1 = Yi − pit
T
i , (7)

where γ is the number of latent variables (LVs) and
determined by cross-validation.

and matrices P,Q,R and T are formed. The correlation
model given by standard PLS algorithm is

Y = TPT + E,
Z = TQT + F = YM + F,M = RQT .

(8)

Based on it, the SPEPLS and T 2
PLS statistics

SPEPLS =
∥∥(I − PRT

)
y
∥∥2
E
, (9)

T 2
PLS = yTR

(
TTT

N − 1

)−1

RT y, (10)

are preferred for process monitoring. Detailed description
can be found in [Yin et al., 2012].

2.2 Problem formulation

From the preliminaries, it is evident that both PCA and
PLS techniques are restricted to static process monitoring.
They are inappropriate to monitor dynamic process due
to autocorrelation exists in measurements. In this paper,
we focus on monitoring dynamic process in steady state.
To this end, a stochastic state space representation is
considered

x(k + 1) = Ax(k) +Bu(k) + w(k), (11)

y(k) = Cx(k) + v(k), (12)

where x ∈ Rl is the state vector, u ∈ Rm is the input
vector and y ∈ Rn is the output vector, and the system
is subject to two uncorrelated, white noises w ∈ Rl and
v ∈ Rn. Matrices A, B, C are real constant matrices with
appropriately dimension.

The major results of this paper are to:

• design a residual generation scheme for the above
dynamic process where
- the effect of inputs has been eliminated.

• monitor the process by
- establish a residual evaluation function and
- determine a proper threshold.

3. A CVA-BASED PROCESS MONITORING SCHEME

3.1 Process description with CVA

Motivated by the state variable analysis by Larimore
[1983], We assume that there exist mappings P , M . So
that

X = PTZp, (13)

MZf = QX + E, (14)

where

Zp(k) =
[
yT (k − s), . . . , yT (k − 1), uT (k − s), . . . , uT (k − 1)

]T
,

Zf (k) =
[
yT (k), . . . , yT (k + sf ), u

T (k), . . . , uT (k + sf )
]T

.

Zp ∈ Rω×N , Zf ∈ Rη×N are two stacked process data
sets, and collected from the process output vector (sensors)
and input vector (actuators) in a time interval which is
divided into the ‘past’ and ‘future’ periods. E denotes the
white noise and X denotes the sample set of the process
canonical correlation variables (state variables). s and sf
are the number of lags, we determine them by the method
mentioned in [Odiowei et al., 2010].

Equivalently, the model (11)-(12) can be written as

x(k + 1) = AKx(k) +Bu(k) +Ky(k), AK = A−KC,
(15)

y(k) = Cx(k) + e(k), (16)

for some K that ensures the eigenvalues of AK are all
located in the unit circle to make the system stable, e(k)
is the so-called innovation sequence. It is easily obtained
from (15) that

x(k) = As
Kx(k−s)+

s∑
i=1

Ai−1
K Bu(k− i)+

s∑
i=1

Ai−1
K Ky(k− i), (17)

and thus for a large s

x(k) ≈ PT zp, P
T = [Py Pu] , (18)
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where

Py =
[
As−1

K K . . . AKK K
]
, Pu =

[
As−1

K B . . . AKB B
]
.

The ‘past’ process measurements zp(k) includes the
process input and output data in the time period
[k − s, k − 1].

Let the future output

ysf (k) =
[
yT (k), yT (k + 1), . . . , yT (k + sf )

]T
which removes the futre input, is a part of Zf (k). The
future input vector usf (k) and future noise vector esf (k)
are similar in form as ysf (k).

In order to derive the model (14), the representation of
(15) can be changed as

x(k + 1) = Ax(k) +Bu(k) +Ke(k).

Then, we have

ysf (k) = Γsfx(k) +Hu,sfusf (k) +He,sf esf (k), (19)

where

Γsf =


C
CA
...

CAsf


T

, Hu,sf =


0 0 . . . 0

CB 0
. . .

...
...

. . .
. . . 0

CAsf−1B . . . CB 0

 ,

He,sf =


I 0 . . . 0

CK I
. . .

...
...

. . .
. . . 0

CAsf−1K . . . CK I

 .

(19) can be further written as

Mzf (k) = Qx(k) + E,

where
zf (k) =

[
ysf (k) usf (k)

]
,

M =
[
I −Hu,sf

]
, Q = Γsf , E = He,sf ef (k),

sf is some (large) integer. zf (k) is composed of the ‘future’
process data in the time period [k, k + sf ].

In the context of state space representations, the state
vector given by (13) can be different from the one defined
in (11). In that case, there exists a regular state transfor-
mation.

3.2 CVA-based process monitoring

We assume that(
zp
zf

)
∼ N

([
ε(zp)
ε(zf )

]
,

[
Σzp Σzpzf
Σzfzp Σzf

])
,

where ε(·) represents the expectation operator, Σzp and
Σzf are covariance of the ‘past’ and ‘future’ process data,
respectively. Σzpzf is the cross variance. We suppose that
Zp, Zf are normalized data sets. As analysed by Hotelling
[1933], do an SVD

(
ZpZ

T
p

N−1 )
−1/2(

ZpZ
T
f

N−1 )(
ZfZ

T
f

N−1 )−1/2 =

(ZpZ
T
p )

−1/2(ZpZ
T
f )(ZfZ

T
f )

−1/2 = UΣV T ,

Σ =

[
diag(δ1, . . . , δl) 0
0 0

]
.

(20)

The diagonal matrix Σ contains the singular values in a
descending order. The ratio of cumulative singular values

to the sum of all the singular values (CPV) is employed to
determine l, which is the order of the system [Negiz and
Cinar, 1997]. The state variables are linear combinations
of the mapping matrix P , which is given as:

P = (ZpZ
T
p )

−1/2Ul, L = (ZfZ
T
f )

−1/2Vl, (21)

where Ul consists the first l columns of U . The matrix P
and L satisfy

PTZpZ
T
p P = I, LTZfZ

T
f L = I.

Motivated by Juricek et al. [2004], we applied a projec-
tion method to remove the effects of future inputs. The
normalization is

Ȳf = Yf − (YfU
T
f )(UfU

T
f )−1Uf , (22)

where Yf , Uf are the sub-matrices of Zf . After data nor-
malization, Ȳf ∈ Rτ×N represents N normalized samples
of the output data

ȳf (k) =
[
ȳT (k), . . . , ȳT (k + sf )

]T ∈ Rτ , τ = (sf + 1)n.

It is well known that in process monitoring that the
state variables reflect the process operation and behavior
and therefore, process engineers can extract real-time and
significant information from it.

The idea behind the fault detection scheme is sufficient
utilization of the relations amongst the canonical correla-
tion vectors. Let ZP and Ȳf be normalized, recall that by
equ(20-21), it is obvious that

PTZpȲ
T
f L = Σ,

P = (ZpZ
T
p )

− 1
2Ul, L = (Ȳf Ȳ

T
f )−

1
2Vl,

(23)

where P shares the same symbol as in (13).

A standard method for monitoring process using state-
space models is based on the statistical properties of out-
put residual. We define a fair intuitive residual sequence.
Hence, (23) leads to

ΣPTZp = LT Ȳf . (24)

Based on this relation, we define a residual vector

r(k) = LT ȳf (k + sf + 1)− ΣPT zs−1(k) ∈ R, (25)

for building a test statistic. Note that the covariance
matrix of r(k) can be estimated by

(LT Ȳf − ΣPTZp)(L
T Ȳf − ΣPTZp)

T

= LT Ȳf Ȳ
T
f L+Σ2PTZpZ

T
p P − 2ΣPTZpȲ

T
f L

= I − Σ2.
(26)

We assumed the ‘past’ and ‘future’ process data are nor-
mally distributed, the canonical variate residual should
also have a multivariable normal distribution with covari-
ance matrix given in (26 ).The variations in the state space
can be monitored by employing the T 2

r statistic

T 2
r = rT (k)(I − Σ2)−1r(k). (27)

The T 2
r statistic is a combination of each sample in every

dimension with weighted coefficient and compared with
an upper limit (threshold). The threshold Jth,T 2 can be
determined by specifying the type I error probability, α,
of the current T 2

r value exceeding the threshold. And the
threshold is given as

Jth,T 2 =
l(N2 − 1)

N(N − l)
Fα(l, N − l), (28)

with a given significant level α to detect variations (faults)
inside the residual space.
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Table 1. A brief comparison among CVA, PCA and PLS methods

Method Numerical robustness Main applications Computation cost

PCA High Large-scale static process Low: one SVD on m×m matrix
PLS High Static process,KPI-related monitoring Medium: γ times SVD on m×m matrix
CVA Low Steady dynamic process Medium: one SVD on (m+ n)s× (sf + 1)n matrix

The design steps of the process monitoring scheme con-
sisting of off-line training and on-line monitoring, is sum-
marized in the following algorithm.

Off-line training

• Normalize the process data, which delivers Zp, Ȳf .
• Determine the number of lags s and sf .
• Do an SVD

(ZpZ
T
p )

−1/2(ZpȲ
T
f )(Ȳf Ȳ

T
f )−1/2 = UΣV T .

• Determine the system order l and form P,L according
to (23).

• Compute (I −Σ2)−1 and build the test statistic (28).
• Determine the corresponding threshold.

On-line monitoring

• Collect new data for monitoring and normalization.
• Calculate current states and residual sequence.
• Calculate the T 2

r metric according to (27).
• Make a decision according to the detection logic.

T 2
r > Jth,T 2 ⇒ faulty, otherwise fault free (29)

3.3 A comparison among CVA, PCA and PLS methods

In this section, we only focus on the discussion upon
applying PCA, PLS and CVA to fault detection issue.
Previously, we need to claim two requirements: 1) All the
three methods assume the observation signals follow mul-
tivariate normal distribution; 2) Observations of interest
are normalized.

Table 1 indicates a brief comparison among CVA, PCA
and PLS methods, in which numerical robustness, main
applications and computation cost are mainly considered.
In PCA fault detection framework, one SVD of the sample
covariance matrix is the core of this method, which is a
stable numerical solution for matrix decomposition, this
is equivalent to remove the correlation between variables.
In PCA, the measurement subspaces is decomposed into
principal space and residual space, then two test statistics
T 2
PCA and SPE (squared prediction error) are defined.

Furthermore, standard PLS algorithm possesses high nu-
merical robustness, because it avoids directly compute
the inverse covariance matrix by recursively computing
latent variables. As the correlation model (4) described,
the original idea behind PLS fault detection is to identify
combinations of variables that are highly correlated by
using covariance information. In practice, product quality
variables are usually difficult to measure or delay-sampling
compare with process variable, so the quality variable will
not be directly used in on-line monitoring as shown in
(9) and (10). When taking quality variable into account,
PLS is preferred as aiming to detect the faults in process
variables that are mostly related to quality variable or key
performance indicator (KPI) [Ding et al., 2013].

One major limitation of PCA and PLS is that they do not
take autocorrelation into account. The CVA-based method

can efficiently solve this problem by using the state-space
representation. However, the CVA-based method has a
low numerical robustness, due to the inverse of covariance
matrix ZPZ

T
P and Ȳf Ȳ

T
f . The basic idea of CVA is to

construct state variables directly from past variable Zp and
future variable Zf . The estimated state variable is treated
as a linear combination of past variable, like X = PTZP .
Several statistics have been developed by Russell et al.
[2000], Juricek et al. [2004], all have obtained efficient
monitoring results. The proposed CVA method developed
on a residual generation based on canonical variable pair.
Due to the orthogonality of canonical pair, the residual
vector r(k) possesses good statistical property, and the
T 2
r statistic can efficiently monitor the steady dynamic

process.

4. BENCHMARK STUDY

Tennessee Eastman Process (TEP) benchmark is a well-
accepted platform designed to simulate the real chemical
producing process. It has been extensively employed to
show the applicability of various academic approaches.
It could be universally found of its technical description
in a large number of publications [Russell et al., 2000,
Yin et al., 2012]. In this section, we will demonstrate
the application of CVA to fault detection on the TEP
simulator developed by Richer et al. [1996]. The simulator
is online available at the website 2 . There are six operating
modes defined in [Downs and Vogel, 1993] for the TEP. In
this application study, the process is running under mode
one and the decentralized control strategy developed in
[Richer et al., 1996] is adopted. The sampling time is set
to be three minutes and the simulation time 48 hours,
which generates 960 samples of data for each scenario.
All the 20 faults defined by Downs and Vogel could
be realized in the TEP simulator. The whole data set
consisting of 52 variables with 960 samples may cause
tremendous computation cost and memory problem, thus
it is of great benefit to divide them into several groups, and
each group covers explicit input-output information. The
group-divided results could be seen in [Ding et al., 2009].
In this study, the manipulated variables (XMV 1-11) are
applied as the inputs, two blocks of outputs are designed
in Table 2. To demonstrate the effectiveness of the new
approach, the well-applied PCA and PLS based methods
are taken into account as the comparison objects.

In the training phase, two types of input-output patterns
are trained with CVA. The needed parameters are deter-
mined, see Table 3. sf = s is predefined a priori, and
the process order n could be achieved imitating PCA-
like manner, see reference [Odiowei et al., 2010]. Finally,
threshold-setting comes from popular T 2 based approach
with a significance level 0.05.

2 http://depts.washington.edu/control/LARRY/TE/download.html
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In the first scenario, the block one output variables (Re-
actor feed analysis) are considered. Taking fault 12 as the
first case study, Fig. 2 sketches the PCA-based detection
results, from which both two detection index could not
function well for this fault. Turn to PLS based detection,
see in Fig. 2, it appears to be the same terrible like
PCA-based one. However, CVA-based result, see in Fig.
3, behaves good, as it significantly improve the detection
rate.

Table 2. Selected Outputs

Block name Variable name variable number

Reactor feed analysis Component A XMEAS(23)
Component B XMEAS(24)
Component C XMEAS(25)
Component D XMEAS(26)
Component E XMEAS(27)
Component F XMEAS(28)

Product analysis Component D XMEAS(37)
Component E XMEAS(38)
Component F XMEAS(39)
Component G XMEAS(40)
Component H XMEAS(41)

Table 3. Parameters in training phase

No. m l sf s N n

1 6 11 12 12 468 59
2 5 11 17 17 463 70
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Fig. 1. PCA-based detection for fault 12 with group 1
output variables
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Fig. 2. PLS-based detection for fault 12 with group 1
output variables

Associate with the second scenario, the block two outputs
(Product analysis) are utilized instead. Fig. 4 plots PCA’s

8 16 24 32 40 48
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150
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Time (Hours)

T2
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Fig. 3. CVA-based detection for fault 12 with group 1
output variables

performance, of which functionality is yet not improved
compared with the first scenario. So do in PLS-based
results in Fig. 5. Similarly, it has be considerably enhanced
by the present CVA-based approach, referred in Fig. 6.
CVA-based method proposed in this paper, has strongly
improved the detection result.
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Fig. 4. PCA-based detection for fault 12 with group 2
output variables
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Fig. 5. PLS-based detection for fault 12 with group 2
output variables

Finally, with respect to all well-defined 20 faults, the
fault detection rates are summarized for PCA-, PLS-
and CVA-based methodologies, and are shown in Table
4. Referring the figures, it can evidently draw that the
proposed approach overweigh the PCA- and PLS-based
methods.
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Fig. 6. CVA-based detection for fault 12 with group 2
output variables

Table 4. Fault detection rate comparison be-
tween CVA, PCA and PLS

No.
Output block 1 Output block 2

CVA PCA PLS CVA PCA PLS

1 0.9963 0.9975 0.9975 0.9963 0.9988 0.9988
2 0.9950 0.9900 0.9990 0.9900 0.9875 0.9900
3 0.1061 0.0437 0.1336 0.1350 0.0649 0.1311
4 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988
5 0.1911 0.0587 0.1286 0.0849 0.0624 0.1236
6 0.9988 0.9988 0.9988 1 1 1
7 0.9875 0.9900 0.9988 0.9988 0.9988 0.9988
8 0.9990 0.9913 0.9913 0.9925 0.9900 0.9913
9 0.1511 0.0924 0.1760 0.0974 0.0836 0.1686
10 0.6729 0.8402 0.8302 0.9438 0.8277 0.8165
11 0.9838 0.9600 0.9626 0.9900 0.9413 0.9663
12 0.6954 0.4657 0.4382 0.8190 0.4145 0.4507
13 0.9888 0.9863 0.9875 0.9913 0.9838 0.9863
14 0.9950 0.9026 0.9064 0.9950 0.8739 0.9114
15 0.1111 0.0737 0.1136 0.1099 0.0524 0.1061
16 0.0936 0.0437 0.1049 0.0424 0.0549 0.0999
17 0.9650 0.9164 0.9213 0.9650 0.8801 0.9164
18 0.9613 0.8677 0.3146 0.7203 0.2797 0.2884
19 0.9950 0.9963 0.9975 0.9950 0.9888 0.9775
20 0.9863 0.9818 0.9800 0.9913 0.9738 0.9775

5. CONCLUSIONS

In this paper,we have proposed a CVA-based method
for dynamic process monitoring by constructing residual
with canonical variate. Different from the standard PCA-
and PLS-based techniques which rely on mean-extraction
for residual generation, the proposed CVA-based scheme
takes process dynamics into account. In addition, the
proposed scheme is tested on an industrial benchmark
of TEP and compared with the standard PCA and PLS
methods. As for the dynamic TE simulation, the proposed
method shows better performance than PCA and PLS in
effectiveness and superiority. Note that the fault detection
scheme is no need to identify the state-space matrices, only
need to find the canonical correlation defined by P and L.
The detection delay is inevitable, because this scheme uses
a immediate relation between output and input process
data. As for this, comparison study the proposed schemes
with other scheme based on identified state-space in the
aspect of fault detection delay will be further extended.
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