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Abstract: We investigate how the performance of explicit MPC feedback laws is affected by
rounding-based quantization of the control commands. Specifically, we address the problem of
providing a rigorous certificate that a given quantized piecewise affine explicit MPC feedback
is bounded from below and from above by specific functions. These functions are constructed
as to reflect typical control requirements, such as recursive feasibility and closed-loop stability.
We show how to obtain an analytical form of the quantized MPC feedback and how to provide
the certificate by solving a set of linear programs.
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1. INTRODUCTION

Control under quantized feedbacks is an important re-
search field since a majority of control policies is nowadays
implemented on digital platforms, which inherently induce
quantization effects due to finite-precision arithmetics and
employment of analog-to-digital and digital-to-analog con-
versions. Numerous techniques for designing quantized
feedback strategies which provide desired properties (e.g.,
closed-loop stability and/or performance) were proposed
recently, see e.g. Goodwin and Quevedo (2003); Nair et al.
(2007) and references therein. Typically, the approaches
consider the control of linear time-invariant systems by a
linear feedback, quantized by memory-less static quantiz-
ers. When such a setup is considered, Huijun and Tongwen
(2008) have shown how to derive maximum sectors bounds
for which the quantized linear feedback attains closed-loop
stability. In Fu and Xie (2009) the authors have studied
which number of quantization levels is required to attain
stability. If the feedback law is piecewise affine (PWA), and
the system to be controlled contains just one state and
one input, Fagnani and Zampieri (2003) have developed
conditions under which the quantized feedback attains
practical stability in the sense of providing guarantees that
the closed-loop trajectories converge to certain intervals.
A common deficiency of the aforementioned approaches,
though, is that they do not consider constraints on sys-
tem’s states and inputs.

On the other hand, model predictive control (MPC) excels
at providing optimal performance while rigorously enforc-
ing constraint satisfaction. Design of MPC feedback for
systems with quantized inputs is, however, non-trivial.
The problem is typically tackled by devising a hybrid
model (Bemporad and Morari, 1999) of the system where
the system’s inputs are enforced to belong to a finite
alphabet (Picasso et al., 2003; Grancharova and Johansen,
2012). Then the MPC optimization problem can be solved
as a mixed-integer optimization problem (Bemporad et al.,

2002a). However, complexity of such strategies is often pro-
hibitive for application on simple control platforms which
offer only limited computational capabilities. To address
this issue, the concept of explicit MPC was developed (Be-
mporad et al., 2002b). Here, the optimization problem is
solved off-line for all possible initial conditions and the
solution is recorded as a PWA function of state measure-
ments. Then, once the optimal control action needs to be
obtained at each sampling instant, it suffices to evaluate
the function. This can be done efficiently even on simple
hardware platforms. The limitation of traditional explicit
MPC techniques for quantized systems is in the inherent
complexity of the off-line optimization. In particular, the
MPC piecewise affine feedback needs to be obtained by
solving a parametric mixed-integer optimization problem,
where the individual quantization levels are modeled by
binary (or integer) variables. The total number of such
discrete components is then proportional to the prediction
horizon. As the horizon or the number of states increase,
the problems become very challenging to solve. One no-
table exception is the work of Quevedo et al. (2002), in
which the explicit representation of the quantized feedback
is developed directly by employing Voronoi diagrams. The
limitation, however, is that the resulting quantized con-
trol law does not posses a-priori guarantees of recursive
feasibility and closed-loop stability.

Instead of attempting to devise a quantized explicit MPC
feedback directly, in this paper we propose to employ
the real-valued MPC feedback, synthesized for a linear
system subject to real-valued control inputs. The optimal
real-valued feedback is then quantized, a-posteriori, by
a static memory-less quantizer with a finite number of
quantization levels. The main objective of the paper is
to certify that such an a-posteriori quantized feedback
achieves desired properties. If a positive certificate is
obtained, one can safely apply the real-valued feedback,
whose construction is much simpler compared to designing
a quantized feedback directly.
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2. PROBLEM STATEMENT

We aim at controlling linear time-invariant systems in
the discrete-time domain described by the state-update
equation

x+ = Ax+Bu, (1)
where x ∈ R

n are the states, u ∈ R
m are the inputs, and

x+ is the successor state, with A ∈ R
n×n, B ∈ R

n×m, and
the pair (A,B) controllable. The system in (1) is subject
to constraints

x ∈ X , u ∈ U , (2)
where X ⊆ R

n and U ⊆ R
m are non-empty polyhedra.

For the system in (1), the finite-horizon MPC problem can
be formulated as

min
u0,...,uN−1

xT
NQNxN +

N−1
∑

k=0

xT
kQxxk + uT

kQuuk (3a)

s.t. xk+1 = Axk +Buk, (3b)

xk ∈ X , uk ∈ U , xN ∈ T , (3c)

where xk and uk denote, respectively, the state and input
predictions at the k-th step. QN is the terminal penalty, Qx

and Qu are stage penalties, and T ⊂ R
n is the polytopic

terminal set.

It is well known (see e.g. Bemporad et al. (2002b)) that
by applying parametric optimization, the MPC feedback
law 1

u = f(x), (4)
with f : Rn → R

m can be obtained by solving (3) as a
parametric quadratic program. Then f(·) is a piecewise
affine function of the state, given as

f(x) := Fix+ gi if x ∈ Ri, (5)

where Fi ∈ R
m×n, gi ∈ R

m, Ri ⊆ R
n, i = 1, . . . ,M , and

the polyhedra Ri do not overlap.

Assume now that we are given a total of d quantization
levels q1, . . . , qd, qi 6= qj ∀i 6= j. Then the rounding-based
quantized version of (4) is

u = fq(x) := qi if x ∈ Pi, (6)

where

Pi = {x | ‖f(x)− qi‖2 ≤ ‖f(x)− qj‖2, ∀j 6= i}, (7)

denotes the region of the state space where the control
command generated by the real-valued feedback (4) is
closer to the i-th quantization level than to any other level.
In other words, (6) rounds the value of (4) to the nearest
quantization level. Note that each region Pi in (7) can, in
general, be a non-convex and disconnected set. However,
the regions can be decomposed into a finite number D
of connected sets. If f(·) in (4) is a linear function, then
D = d. Otherwise, D ≥ d.

The objective of this paper can be formally stated as
follows:

Problem 1. Given are: the real-valued explicit MPC feed-
back f(·) in (4) and (5), performance bounds V : Rn →
R

m, V : R
n → R

m with dom(V ) = dom(V ) =
dom(fq) = Ω, and the quantization levels q1, . . . , qd. De-
termine whether the quantized feedback (6) satisfies per-
formance bounds

V (x) ≤ fq(x) ≤ V (x), ∀x ∈ Ω. (8)

1 To simplify the notation, we will henceforth assume u ≡ u0 and
x ≡ x0.

�

In Section 4 we will show how to design the bounds V (·),
V (·) as to capture various performance and safety criteria.

The difficulty of solving Problem 1 stems from the fact
that (8) has to hold for all points from the domain Ω. A
further complication is that the quantized feedback fq(·)
is a nonlinear function (cf. (6) and notice that the function
is nonlinear due to presence of IF-THEN logic rules), and
V (·) with V (·) can be nonlinear functions as well.

The condition under which we will provide an answer to
Problem 1 in a non-conservative manner is summarized
next.

Assumption 2. We assume that the performance bounds
V (·) and V (·) are piecewise affine functions

V (x) := αi,1x+ αi,0 if x ∈ Ri, (9a)

V (x) := αi,1x+ αi,0 if x ∈ Ri, (9b)

with αi,1 ∈ R
m×n, αi,0 ∈ R

m, and the polyhedra Ri,
i = 1, . . . ,M are the same as in (5). �

Remark 3. Although the procedures of this paper are
applicable to multivariable systems with multiple inputs
(m > 1), to simplify the presentation we will henceforth
assume that all functions in (8) are scalar-valued. Note
that with m > 1, (8) can be split into a set of m
relations where each of them has to be satisfied to certify
that a vector-valued quantized feedback fq(·) meets the
prescribed performance bounds. �

3. CERTIFICATION OF QUANTIZED FEEDBACKS

In this section we show how to compute a true/false answer
to Problem 1, provided that the bounding functions V (·)
and V (·) satisfy the condition in Assumption 2.

3.1 Analytical Form of the Quantized Feedback

We start by developing an analytical form of the quantized
feedback fq(·) in (6), provided we know the analytic
expression for the real-valued explicit MPC control law
f(·) in (5). In particular, we devise regions P1, . . . ,PD,
along with the quantization level active in each region,
such that fq(·) is given as a piecewise affine constant
function of the form

fq(x) := ci if x ∈ Pi, (10)

where ci ∈ {q1, . . . , qd} for i = 1, . . . , D, and Pi are
polyhedra in R

n.

Consider the k-th polyhedron Rk of the real-valued feed-
back f(·) where f(x) = Fkx+ gk is the local feedback law.
Then the subset of Rk where the control action u = f(x)
is rounded towards the i-th quantization level qi is given
by

Pk,i = {x ∈ Rk | ‖f(x)− qi‖2 ≤ ‖f(x)− qj‖2, ∀j 6= i}.
(11)

Recall that Rk is assumed to be a polyhedron and f(x)
is an affine function ∀x ∈ Rk by (5). Then Pk,i is
a polyhedron. To see this, note that the inequalities
that constitute Pk,i involve non-negative functions. Hence
squaring both sides does not change the sign and we obtain

(f(x)− qi)
T (f(x)− qi) ≤ (f(x)− qj)

T (f(x)− qj), (12)
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which simplifies to

2f(x)T (qj − qi) ≤ qTj qj − qTi qi. (13)

Note that (13) has to hold ∀j 6= i. Finally, since f(x) =
Fkx+ gk for all x ∈ Rk per (5), and because q1, . . . , qd are
known and fixed, expressions in (13) become

2(Fkx+ gk)
T (qj − qi) ≤ qTj qj − qTi qi, ∀j 6= i, (14)

which are d− 1 linear inequalities in x. Then Pk,i is given
by

Pk,i = {x | 2(Fkx+ gk)
T (qj − qi) ≤ qTj qj − qTi qi, ∀j 6= i},

(15)
which furthermore needs to be intersected with Rk. More
generally, Pk,i is the i-th cell of the Voronoi diagram (Au-
renhammer, 1991) of the points q1, . . . , qd, where each cell
is intersected withRk. It follows directly from properties of
Voronoi diagrams that, for a fixed k, int(Pk,i)∩int(Pk,j) =
∅ and ∪iPk,i = Rk. Naturally, the sets Pk,i can be empty
for some i ∈ {1, . . . , d}. However, there always exists at
least one index i for which Pk,i is not empty.

The analytic representation of the quantized feedback
in (6) can be obtained per Algorithm 1. The algorithm
iterates over polyhedra Rk which define the real-valued
feedback f(·) in (5). Next, for each Rk the i-th cell
of the Voronoi diagram is computed in Step 4. If the
intersection of the cell with Rk is non-empty, it is added
to the set of polyhedra P, the counter is updated, and the
“active” quantization level associated to Pk,i is recorder.
Upon exit, the algorithm generates polyhedra P1, . . . ,PD

of fq(·), along with information of which quantization level
is active in each region. We remark that the upper bound
on the total number of regions generated by Algorithm 1
is D = dM .

Algorithm 1 Construction of the quantized feedback
in (6)

1: D ← 0, P ← {}, c← {}
2: for each k = 1, . . . ,M do
3: for each i = 1, . . . , d do
4: Compute Pk,i per (15)
5: if Pk,i ∩Rk 6= ∅ then
6: D ← D + 1
7: P ← P ∪ {Pk,i ∩Rk}
8: c← c ∪ {qi}
9: end if

10: end for
11: end for

3.2 Certification of Bounded Performance

With the analytic form of the quantized feedback (10) in
hand, we will next show how to formulate the certification
problem (8). Our first main result is that the certifica-
tion of performance bounds in (8) can be approached
by investigating the minima/maxima of the performance
bound functions V (·) and V (·) when x is restricted to all
non-empty intersections Pi ∩Rj , where Pi is a particular
polyhedron of the piecewise constant quantized feedback
fq(·) in (10), and Rj is a region of the piecewise affine
performance bounds in (9).

Theorem 4. Let the quantized feedback fq(·) in (10) be
given, along with piecewise affine performance bounds

V (·), V (·) of (9). Furthermore, denote v(x, αj) = αj,1x +
αj,0 and v(x, αj) = αj,1x + αj,0 for j = 1, . . . ,M . Then

V (x) ≤ fq(x) ≤ V (x) for all x ∈ Ω, i.e., (8) holds, if and
only if

max
x∈Pi∩Rj

(ci − v(x, αj)) ≤ 0 ≤ min
x∈Pi∩Rj

(ci − v(x, αj)) (16)

is satisfied for all i = 1, . . . , D, j = 1, . . . ,M for which
Pi ∩Rj 6= ∅. �

Remark 5. Note that the optimization problems in (16)
are always feasible since we assume that x is constrained
to belong to a non-empty set Pi ∩Rj . �

To exploit Theorem 4 to certify satisfaction of (8) for all
x ∈ Ω we thus need to solve up to D times M prob-
lems (16), each of which involves solving two optimization
problems. In practice, the number will be less, since only
non-empty intersections Pi ∩ Rj need to be considered.
The complete certification procedure is reported as Algo-
rithm 2. Checking whether Pi ∩ Rj = ∅ in Step 3 can be
performed at the cost of solving one linear program, see
e.g. Borrelli (2003).

Algorithm 2 Certification of performance bounds in (8).

1: for each i = 1, . . . , D do
2: for each j = 1, . . . ,M do
3: if Pi ∩Rj 6= ∅ then
4: Solve the maximization/minimization problems

in (16)
5: if (16) is not satisfied then
6: return (8) not satisfied
7: end if
8: end if
9: end for

10: end for
11: return (8) satisfied ∀x ∈ dom(fq)

In a more general sense, Theorem 4 provides necessary and
sufficient conditions for satisfaction of (8) for arbitrary
bounding functions V (·), V (·), e.g. for piecewise quadratic
or piecewise polynomial functions. Then, however, the
main difficulty there is that the optimization problems
in (16) can be non-convex. Determining globally opti-
mal solutions to non-convex problems is computationally
challenging. With V (·), V (·) restricted to piecewise affine
functions, on the other hand, the problems in (16) are
linear programs that can be solved in polynomial time. To
see this, note that the objective functions are linear in x,
and the constraints are linear as well, since Pi ∩ Rj are
polyhedra. Therefore the problems in (16) can be solved
even in large dimensions with off-the-shelf optimization
packages, such as CPLEX or GUROBI, or even with open-
source alternatives such as GLPK or CDD.

4. CONSTRUCTION OF PERFORMANCE BOUNDS

In this section we present construction of performance
bounds V (·), V (·) in (8) that reflect typical control re-
quirements, such as recursive satisfaction of state/input
constraints and closed-loop stability. We focus on construc-
tion of piecewise affine bounds V (·), V (·) for which validity
of (8) can be certified in a non-conservative manner by
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solving a series of linear programs in (16). The develop-
ment will be based on the assumption that the constraints
in (2) are polytopic.

4.1 Recursive Satisfaction of State and Input Constraints

For the system in (1) with constraints as in (2), the positive
control invariant set is given by

C = {x0 | ∃π : Axk +Bπ(xk) ∈ X , π(xk) ∈ U , ∀k > 0},
(17)

where π : Rn → R
m is a feedback strategy, and xk and

uk are the states and inputs at the discrete time step k.
Under mild conditions, the set C is a polytope and can
be computed by a set recursion (Blanchini, 1999; Dórea
and Hennet, 1999). The important property of the control
invariant set is that for any x ∈ C there always exist a
control action u ∈ U that keeps the state update x+ inside
of the state constraints, i.e., x+ ∈ X for all time. Let us
denote by

Cxu = {(x, u) | x ∈ C, u ∈ U , Ax+Bu ∈ C} (18)

the set of all state-input pairs for which the state update
x+ ∈ C. Therefore for any x and u satisfying (x, u) ∈ Cxu
we have that: 1) x ∈ X , 2) u ∈ U , and 3) Ax + Bu ∈ X .
Therefore if u is selected such that (x, u) ∈ Cxu, recursive
satisfaction of state and input constraints is enforced.
Since Cxu is a polytope, it can be represented by

Cxu = {(x, u) | Gx+Hu ≤ h}. (19)

Then the bounds V (·), V (·) that reflect recursive satisfac-
tion of state and input constraints can be computed as
follows:

V (x) = {minu | Gx+Hu ≤ h}, (20a)

V (x) = {maxu | Gx+Hu ≤ h}. (20b)

The problems in (20) are parametric linear programs with
optimization variables u ∈ R

m and parameters x ∈ R
n:

Lemma 6. (Borrelli (2003)). The solution to (20) are piece-
wise affine function

V (x) := αi,1x+ αi,0 if x ∈ Ri, (21a)

V (x) := αi,1x+ αi,0 if x ∈ Ri, (21b)

where Ri are non-overlapping polytopes 2 in R
n. �

To construct V (·), V (·) in (21), one needs to solve the
parametric linear programs (20). This can be achieved e.g.
by the Multi-Parametric Toolbox (Herceg et al., 2013).

Remark 7. The worst-case complexity of parametric linear
programs in (20), i.e., the upper bound on the number
of polytopes Ri in (21), is exponential in the number of
constraints, which in turn depends on dimensions of u and
x. However, recent development (Gupta et al., 2011) in
the theory of parametric optimization allows to solve such
problems even in large dimensions, say over 50. �

4.2 Closed-Loop Stability

Let a piecewise linear convex Lyapunov function L : Rn →
R for the system in (1), i.e.,

L(x) := max
i

ℓTi x (22)

2 The polytopes in (21a) and (21b) are the same since both problems
in (20) have identical constraints.

with ℓi ∈ R
n, i = 1, . . . , V be given. Then any feedback

policy π(x) that guarantees

L(Ax+Bπ(x)) ≤ γL(x), ∀x ∈ dom(π), (23)

for some 0 ≤ γ < 1 trivially provides closed-loop stability
as it forces the Lyapunov function to decrease along the
state trajectories, see e.g. Lazar et al. (2008). The minimal
and maximal control actions, as a function of the states x,
which render the closed-loop stable in the sense of (23)
can thus be obtained by

V (x) = {minu | L(Ax+Bu) ≤ γL(x), u ∈ U}, (24a)

V (x) = {maxu | L(Ax+Bu) ≤ γL(x), u ∈ U}. (24b)

With L(·) as in (22), problems (24) can be formulated
and solved as parametric mixed-integer linear programs
in decision variables u and parameters x by introducing
additional binary variables to model the maxima in (22)
as follows:

Proposition 8. (Kvasnica et al. (2012)). The maximum
among linear functions of x, i.e., z = maxi ℓ

T
i x, is modeled

by

−M(1− δi) ≤ z − ℓTi x ≤M(1− δi), (25a)

ℓTj x ≤ ℓTi x+M(1− δi), ∀j 6= i, (25b)
∑V

i=1 δi = 1, (25c)

where δi ∈ {0, 1}, i = 1, . . . , V are binary variables, M is
a sufficiently large positive constant, and (25a)−(25b) are
enforced for all i = 1, . . . , V . �

With the help of Proposition 8, problem (24a) can be
rewritten as

V (x) = {minu | y ≤ γz, u ∈ U}, (26)

where z is related to maxi ℓ
T
i x via (25), and y models

maxi ℓ
T
i (Ax+Bu) via the same relations. Note that when

L(·) in (22) is a piecewise linear function of x, L(Ax+Bu)
is a piecewise linear function of x and u.

As shown in Borrelli (2003), the solutions V (x) and V (x)
to (24) are piecewise affine functions of x as in (21). The
local affine expressions, as well as the associated regions of
validity, can be obtained by the Multi-Parametric Toolbox.

5. EXAMPLES

5.1 Illustrative 1D Example

To illustrate the procedure, consider the system x+ = Ax+
Bu with A = 0.9, B = 1, X = {x | − 5 ≤ x ≤ 5},
U = {u | − 1 ≤ u ≤ 1}. The system is controlled by the
state-feedback regulator u = Kx with K = −0.2. It is easy
to verify that such a feedback achieves recursive satisfac-
tion of input and state constraints and attains closed-loop
stability. Next, we investigate whether constraint satisfac-
tion and closed-loop stability are achieved by a-posteriori
quantizing the real-valued feedback f(x) := Kx using
three quantization levels: q1 = −0.9, q2 = 0, q3 = 0.8.
To do so, we have first derived the analytical form of fq(·)
in (10). This was achieved by applying Algorithm 1, which
produced

fq(x) :=







0.8 if − 5 ≤ x ≤ −2,

0 if − 2 ≤ x ≤ 2.25,

−0.9 if 2.25 ≤ x ≤ 5

(27)
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0

0.5

1

x

u

Fig. 1. Real-valued feedback u = Kx (dashed red line) and
its quantized version u = fq(x) in (27) (solid black
function) for the example in Section 5.1.

Fig. 2. Results for feasibility verification in Section 5.1: the
set Cxu in gray, V (·) as the blue dashed function, V (·)
as the red dash-dotted function, and the quantized
feedback in (27) as the black function.

after 0.02 seconds. The real-valued feedback f(·), as well
as its quantized version (27), are shown in Fig. 1.

To verify whether fq(·) of (27) maintains recursive satis-
faction of input and state constraints, we have proceed as
in Section 4.1. First, the control invariant set C = {x | −
5 ≤ x ≤ 5} was calculated by (17). Subsequently, the
set Cxu in (19) was constructed and represented as a
polyhedron per (20). Finally, the bounding functions V (·),
V (·) were computed by solving (20) as parametric linear
programs. After 0.5 seconds we have obtained

V (x) :=

{

−0.9x− 5 if − 5 ≤ x ≤ −4.444,

−1 if − 4.444x ≤ x ≤ 5,
(28a)

V (x) :=

{

1 if − 5 ≤ x ≤ 4.444,

−0.9x+ 5 if 4.444 ≤ x ≤ 5.
(28b)

The set Cxu, along with functions V (·), V (·), and fq(·), are
shown in Fig. 2. As can be observed, the value of fq(x) is

always between V (x) and V (x) for all x ∈ C. Hence fq(·)
of (27) provides recursive satisfaction of state and input
constraints. To give a rigorous certificate that such an
observation is indeed true, we have applied Algorithm 2 to
fq(·), V (·) and V (·). By solving a total of 4 linear programs
in (16), which took 0.03 seconds, a positive certificate for
Problem 1 was indeed obtained.

Then we have investigated whether fq(·) in (27) provides
closed-loop stability. To do so, we have first constructed
functions V (·) and V (·) by solving parametric mixed-
integer problems in (24) with the Lyapunov function given
as the Minkowski function of the control invariant set

−5 0 5

−1

−0.5

0

0.5

1

x

u

Fig. 3. Results for stability verification in Section 5.1:
functions V (·) (blue dashed), V (·) (red dash-dotted)
from (24), and the quantized feedback fq(·) in (27).

C. The piecewise affine functions were constructed in 1
second and each of them was defined over 4 polyhedra.
The resulting bounding functions, along with fq(·), are
shown in Fig. 3. As can be observed from the figure, all
values of fq(x) is always bounded by V (x) and V (x), hence
the quantized feedback (27) provides closed-loop stability.
A rigorous certificate of such a property was obtained
by applying Algorithm 2, which required solving 4 linear
programs for 4 non-empty intersections Pi ∩Rj .

5.2 Inverted Pendulum on a Cart

Next we consider an inverted pendulum mounted on a
moving cart. Linearizing the nonlinear dynamics around
the upright, marginally stable position leads to the follow-
ing linear model:









ṗ
p̈

φ̇

φ̈









=







0 1 0 0
0 −0.182 2.673 0
0 0 0 1
0 −0.455 31.182 0













p
ṗ
φ

φ̇






+







0
1.818
0

4.546






u, (29)

where p is the position of the cart (constrained by |p| ≤
1.5), ṗ is the cart’s velocity (with |ṗ| ≤ 1.5), φ is the pen-
dulum’s angle from the upright position (with |φ| ≤ 0.35),

and φ̇ denotes the angular velocity (restricted to |φ̇| ≤ 1.5).
The control input u, constrained to |u| ≤ 1, is propor-
tional to the force applied to the cart. System (29) was
converted to (1) by assuming sampling time 0.1 seconds.
For the discrete-time system we have first constructed the
real-valued feedback in (5) by solving the MPC problem
in (3) with the prediction horizon N = 4, and penalties
Qx = diag(10, 1, 10, 1), Qu = 0.1. Moreover, the terminal
penalty QN was selected as the solution to the algebraic
Riccati equation, while T is the LQR terminal set. By
solving (3) parametrically, the feedback u0 = f(x0) was
obtained as a piecewise affine function defined over 187
polytopes in R

4.

Then we have investigated the properties of the quan-
tized version of f(·) by assuming quantization lev-
els {−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1}. Here, the
quantized controller fq(·) in (10) was first obtained by
applying Algorithm 1 to f(·). After 5.7 seconds we have
obtained the quantized feedback in (10) which was defined
over 557 polytopes. A comparison of closed-loop perfor-
mance of the real-valued MPC feedback f(·) versus its
a-posteriori quantized version fq(·) is shown in Fig. 4.
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Fig. 4. Simulation results for the example in Section 5.2.

Subsequently, we have applied the procedure of Section 4.1
to check whether fq(·) achieves recursive satisfaction of
state and input constraints for an arbitrary controllable
initial condition. The computation of the invariant set C

in (17), along with construction of the performance bounds
per (21), took 16.1 seconds in total. Here, the functions
V (·), V (·) were both defined over 36 regions. Finally,
Algorithm 2 was executed to check validity of (8). A
positive certificate was obtained in 3.7 seconds. Therefore
the a-posterior quantized feedback fq(·) will never violate
state/input constraints.

As can be observed from Fig. 4(b), for at least one initial
condition the quantized feedback does not push all sys-
tem’s states asymptotically to the origin. Therefore fq(·)
does not provide guarantees of asymptotic closed-loop
stability. This conclusion was verified per the procedure of
Section 4.2. Here, we have first constructed the bounding
functions by solving the parametric mixed-integer linear
programs in (24). After 640 seconds we have obtained
piecewise affine functions V (·) and V (·) defined over 714
polytopes in R

4. The subsequent execution of Algorithm 2
took 1.8 seconds to find a violation of (16), hence certifying
a negative answer to verification of closed-loop stability
properties.
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