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Abstract: A new algorithm is proposed for computing locally the linearizing output of single-input
and multi-input nonlinear affine system. The algorithm modifies the extended Goursat normal form to
iteratively obtain the successive integrations of one dimensional distributions of control system. The
algorithm takes ideas from both vector field approach of feedback linearization and exterior differential
system tools, hence the name Blended Algorithm. The proposed algorithm leads to a tower like structure
depending upon the number of system inputs. Within individual tower, the coordinates are reduced
one by one by finding the annihilators of vector fields at each step. The process is repeated till the
single vector field is obtained for exact linearizable system. The scheme exhibits reduced computational
complexity over the existing methods and can be extended to address feedback linearization of various
class of control systems.
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1. INTRODUCTION

The feedback linearization problem involves transforming a
nonlinear control system into a linear system with state feed-
back and change of co-ordinates. Simpler linear control laws
can be applied in thus obtained linear system for various con-
trol applications. The main problem is in terms of finding the
‘output function’ which is an necessary and sufficient condition
for the existence of a state feedback and a change of coordinates
transforming a given system into a linear and controllable one.

The linearization problem is one of the rich research area
of control system from last four decades. Although various
methods exist to find feedback linearizable form for single input
non linear systems (Khalil (2002)), (Pomet and Kupka (1995)),
(Respondek and Tall (2006)), (Tall and Respondek (2010))
much work needs to be done in case of multi-input systems.

Existing methods for such problem can be broadly classified
into three categories. The first one is the vector field point of
view in which the concept of relative degree of system was
introduced in (Isidori (1990)) along with linearizing coordinate
transformation which is based on linearizing output function.
The procedure to find zero dynamics of the system was given in
(Isidori (1990)), (Vander Schaft (1990)) and recently explored
by Neilson (2009). The control algorithm for specific classes of
system were developed by (Krstic (2004)) and (Krstic (2005))
but the method is limited to single input systems. Recent efforts
by (Tall (2009)), (Tall (2010a)) are based on extension of
explicit solvability of flow box or straightening theorem to
Frobenius theorem. This exploits the fact that each system
component is dependent on higher variables. The results are
generalised for multi input multi output (MIMO) system (Tall
(2010b)), (Tall (2010c)). For constant rank distribution, the
? We acknowledge World Bank funding under TEQIP Phase-II, Sub compo-
nent 1.2.1.

method provides change of coordinates that simultaneously
rectify vector fields of distribution.

The second category of feedback linearization problem have
been approached in terms of co-distributions (1-forms) exploit-
ing the tools of exterior differential geometry (Shankar Sastry
(1999)). The GS algorithm proposed the exact linearization of
nonlinear systems to Brunovsky normal form under non linear
feedback (Gardner and Shawick (1991)), (Gardner and Shad-
wick (1992)). The GS algorithm can be extended to MIMO
system but is computationally exhaustive and works only for
exact linearization.

The third category is relatively newly developed which com-
bines ideas from both the view points (Mullhaupt (2006)),
(Willson et al. (2009)), (Willson et al. (2011)). In the Quo-
tient Submanifold (QS) method, the one dimensional distribu-
tions and projections along these submanifolds are successively
integrated. The advantage being the original structure of the
distribution is maintained while reduction of base manifold is
performed at each step. However, the Quotient Submanifold
method is not extended for MIMO systems. The proposed
method in the present paper falls in line of third category but
provides a different viewpoint from the quotient submanifold
method as explained in subsequent sections.

The main contribution of this paper lies in proposing a feed-
back linearizing algorithm for general control affine systems for
which the linearizing output is obtained in a computationally
simple way. The Blended Algorithm has been shown to find the
feedback linearizing coordinates for single input control sys-
tems (Rachit et al. (2013)). In the present paper, the algorithm
is extended for multi-input control affine systems. The system
equations are represented in forms using exterior differential
geometry tools. The tower structure is developed depending
upon number of inputs. Within individual tower, the coordinates
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are reduced one by one finding the annihilators of vector field at
each step. The process is repeated to obtain single vector field,
if system is exact linearizable. The coordinate transformation
in context of exterior differential systems corresponds to coor-
dinate transformation along with state feedback in vector field
notation. The algorithm can obtain solutions for all subclasses
of feedback linearizable control affine systems, for example
strict feedforward forms, strict-feedforward nice and feedfor-
ward forms.

The paper is organized as follows: Section II presents the
brief description of linearization problem for single input and
multi-input control systems. The new algorithm is proposed in
Section III with subsections covering application to numerical
examples. The conclusion is presented in Section IV.

2. PREVIOUS WORK

The present section includes the brief overview of feedback
linearization problem in terms of vector field and forms point
of view focusing on multi-input systems and some theory on
exterior differential systems.

2.1 Vector field viewpoint

Consider a multi-input, multi-output system

ẋ = f (x)+
m

∑
i=1

gi(x)ui

y = (y1, ...,ym) = (h1(x), ...,hm(x))
(1)

where x=(x1, ...,xn)∈Rn are state coordinates, u=(u1, ...,um)∈
Rm are control inputs, f ,g1, ...,gm are smooth vector fields and
h1, ...,hm are smooth functions. The system has vector relative
degree r = (r1, ...,rm) at point x0 if Lg j L

k
f hi(x) = 0 for all

i≤ j≤m and 0≤ k≤ ri−2 with Lg j L
ri−1
f hi(x) 6= 0 The relative

degree is exactly the number of times one has to differentiate
the output yi in order to have at least one component of input
vector appearing. The system can thus be represented by

yr = Lr
f h(x)+A(x)u

where
yr = (yr1

1 , .......,yrm
m )T

Lr
f h = (Lr1

f h1, ......L
rm
f hm)

T and A = (LgiL
r j−1
f h j)i, j

If the square matrix A(x) is nonsingular at x0, then the input u
can be expressed in terms of new input ν around the point x0 by

u = A−1(x)ν−A−1(x)Lr
f h(x)

For 1≤ i≤ m,

φ
i
1(x) = hi(x)

φ
i
2(x) = L f hi(x)

... =
...

φ
i
ri
(x) = Lri−1

f hi(x)

Under this feedback and change of coordinates the original
system is transformed into chain of integrators.The system in
new coordinates can be written as

ξ̇
i
1 = ξ

i
2

ξ̇
i
2 = ξ

i
3

... =
...

ξ̇
i
rm = νm

A necessary and sufficient condition for a multi-input multiout-
put system to be transformed into a chain of integrators is that it
has a vector relative degree {r1, .....rm} such that r1+ ....+rm =
n. It is not always easy to obtain such coordinate transformation
as it involves solving partial differential equation.

2.2 Linearization problem definition in Forms

With a slight change in notation, we define a one-form ω by

ω =
n

∑
i=1

ωidxi (2)

system (1) is feedback linearizable, if and only if there exists
a scalar function, namely an integrating factor, r : M→ R such
that

dh = rω (3)
A necessary and sufficient condition for the exactness of the
one-form rω is d(rω)=0. Hence feedback linearizability is
equivalent to the existence of an integrating factor r : M → R
such that

∂ rωi

∂x j
=

∂ rω j

∂xi
1≤ i < j ≤ n (4)

Given an integrating factor r, one can obtain h from (3) and
thus the linearizing feedback and the coordinate transformation
map can be easily constructed. Hence, the problem of obtaining
the desired coordinate change and feedback reduces to that of
obtaining an integrating factor. But solving (4) for r is a difficult
problem.

2.3 Exterior Differential Systems

The theory and results of exterior differential system can be
applied to the problem of feedback linearization. The Pfaffian
systems represents a set of first order ordinary differential
equations.

Single input control system representation:

The control system of the form
ẋ = f (x)+g(x)u, x ∈M (5)

can also be thought of as a Pfaffian system of codimension 2 in
Rn+2. The corresponding ideal is generated by the codistribu-
tion

I = {dxi− fi(x,u)dt : i = 1,2, ....n}
The n+ 2 variables for the Pfaffian system corresponds to the
n states,one input and time t. For the special case of the affine
system (5) the co-distribution becomes

I = {dxi− ( fi(x)+gi(x)u)dt : i = 1,2, ....n}
The differential ideal is the subset of algebraic ideal generated
by Pfaffian system which satisfy the Frobenius condition. This
differential subideal can be found by taking the derived flag of
the Pfaffian system. Let I(0) = {ω1, ........,ωs} be the algebraic
ideal generated by independent 1-forms ω1, ........,ωs. We de-
fine I(1) as
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I(1) = {λ ∈ I(0) : dλ ≡ 0 mod I(0)} ⊂ I(0)

the ideal I(1) is called the first derived system. If I(0) = (∆0)
⊥,

then I(1) = (∆0 +[∆0,∆0])
⊥. one may inductively continue this

procedure of obtaining derived systems and define

I(2) = {λ ∈ I(1) : dλ ≡ 0 mod I(1)} ⊂ I(1)

or in general, I(k+1) = {λ ∈ I(k) : dλ ≡ 0 mod I(k)} ⊂ I(k)
this procedure results in a nested sequence of codistributions

...I(k) ⊂ I(k−1) ⊂ ......⊂ I(1) ⊂ I(0) (6)

Decomposition of system I into a tower gives the derived flag
which has the tower like structure. The structure of jth tower is
as follows

I(0) : ω1 ω2 .... ... ωs
I(1) : ω1 ω2 ... ωs−1

.. .. ..

.. ..
ω1 ω2

I(s) : ω1

If we define ∆0 = (I(0))⊥, ∆1 = (I(1))⊥, and in general ∆k =

(I(k))⊥, then I(k) = ∆⊥k then Ik+1 = (∆k + [∆k,∆k])
⊥. The se-

quence of decreasing codistributions (6), called the derived flag
of I(0), is associated with the sequence of increasing distribu-
tions, called the filtration of ∆0,

...∆k ⊃ ∆k−1 ⊃ ·· · ⊃ ∆1 ⊃ ∆0 (7)

If the dimension of each codistribution is constant then there
will be an integer N such that I(N) = I(N+1). This integer N is
called the derived length of I. A basis of 1-forms ωi for I is
said to be adapted to the derived flag if a basis for each derived
system I( j) can be chosen to be some subset of the ωi’s. The
codistribution I(N) is always integrable by definition since

dI(N) ≡ 0 mod IN

The codistribution I(N) is the largest integrable subsystem in
I. Therefore, if I(N) 6= {0} then there exist functions h1, · · · ,hr
such that {dh1, · · · ,dhr} ⊂ I.

Multi-input control system representation:
The multi-input control system of the form (1) can be repre-
sented as a Pfaffian system of codimension m+ 1 in Rn+m+1.
The n+m+1 variables for the Pfaffian system corresponds to
the n states, m input and time t. For the special case of the affine
system (1) the co-distribution becomes,

I = {dxi− ( fi(x)+∑
m
j=1 gi j(x)u j)dt: i = 1,2, ....n}

The decomposition of system into a tower gives the derived
flags of the system. For system (1) the system will be decom-
posed in m towers. Collecting all the m towers for system, the
top rows taken together generate I and succeeding rows taken
together generate the derived flag of I.

I(0)− ω1
1 ω1

2 .. ω1
k j

.. .. ωm
1 ωm

2 .. ωm
km

: : :
: ωm

1
I(s−1)− ω1

1 ω1
2

I(s)− ω1
1

Extended Goursat Normal Form. Let I be a Pfaffian system
on Rn+m+1 of codimension n+m+1. If there exists a set of gen-
erators, α

j
i ; i = 1, · · · ,s j; j = 1, · · · ,m for I and an integrable

one form π(= dt) such that

dα
j

i ≡−α
j

i+1∧π mod I(s j−i), 1≤ i≤ s j−1,
dα

j
s j
6≡ 0 mod I,

(8)

Then there exists a coordinate system z1,z2, · · · ,zs such that I is
in extended Goursat normal form:

I = dz j
i − z j

i+1dz0; i = 1, · · · ,s j; j = 1, · · · ,m
and dz0 = π

With the above conditions the Pfaffian system can be trans-
formed to extended Goursat normal form and can be viewed as
linearization theorem. The Goursat normal form can be thought
of as a single chain of integrators, while the extended Gour-
sat normal form consists of many chains of such integrators
(Shankar Sastry (1999)), (Gardner and Shawick (1991)) and
(Gardner and Shadwick (1992)).

3. EXTENDED BLENDED ALGORITHM

The Blended Algorithm for single input non linear control
system has been earlier used to sucessfully obtain linear co-
ordinates via coordinate transformation (Rachit et al. (2013)).

In this section the algorithm is extended for multi-input control
system. The procedure is iterative in nature and starts with the
representation of the control system as Pfaffian system I(0)

3.1 Proposed Algorithm

(1) System Representation in forms:
Consider a multi-input control system (1). The control

system defines an associated Pfaffian system of codimen-
sion m + 1 in Rn+m+1. The corresponding ideal I(0) is
generated by the codistribution as follows:
I(0) = (∆0)

⊥

= {dxi− ( fi(x)+∑
m
j=1 gi j(x)u j)dt : i = 1,2, ....n}

= {ω1 ω2 ... ... ωn}
For simplicity, let us consider the case m = 2. The

pfaffian system I(0) and its annihilating distribution ∆0 are
given by
I(0)= {dxi−( fi(x)+gi1(x)u1+gi2(x)u2)dt : i= 1,2, ....n}

and

∆0 = (I(0))⊥ =


0

1
0
0


0

0
1
0


 1

0
0

( f +g1u1 +g2u2)



(9)

(2) Division of Towers:
In this step the derived flag of I(0) is constructed and

divided into different towers. The system decomposition
into various towers depends on system input. The numbers
of towers formed will be equal to the number of inputs of
system. This encodes the derived flags of the system.

For a two input system, the two towers will be formed
as shown below.
I(0) = {ω1

1 ω1
2 ... ω1

k ω2
1 ω2

2 ... ω2
l }

Note: In some cases the ωi’s are annihilators of both the
inputs. Such ωi’s shall be placed in the tower based upon
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generation of derived flag.

(3) Reduction:
Once the tower structure is formed, the towers are

reduced individually and independently from one another.
The appropriate generators (basis) of I(0) are found that

are adapted to the derived flag. If the basis of I(0) satisfies
the congruence condition (8), then one gets the derived
ideal, I(1) (I(1) ⊂ I(0)). Assuming that I(1) exists and if
ωi ∈ I(0) does not satisfy the congruence condition (8),
then it is suitably modified to ωi, where ωi is written as a
linear combination of generators ω j of I(0) satisfying the
congruence condition (8).

In the vector field context it means the ωi fails to
annihilate (∆0 + [∆0,∆0])

⊥, hence it is replaced with ωi.
Once the derived ideal (I(1) ⊂ I(0)) has been fixed along
with its generators {ω1,ω2, · · · ,ωs−1}, the above process
is repeated to obtain the successive derived ideals I(i) and
complete the filtration process. The decomposition of the
ideal I(0) into a tower structure is thus obtained.

A step by step illustration of above process for a 5-
dimensional, two input system is explained below.
• Tower structure for 5 dimension system with two

inputs will be as follows:

I(0) = ω1
1 ω1

2 ω1
3 ω2

1 ω2
2

I(1) = ω1
1 ω1

2 ω2
1

I(2) = ω1
1

• For first tower, the derived flag I(1) consist of annihi-
lators of elements of input g1. Similarly, for second
tower the derived flag I(1) consist of annihilators of
elements of input g2. This forms the input to next
iteration.

• For first tower, the derived flag I(2) consist of annihi-
lators of elements of g1 and [ f ,g1].

• The process is continued until single element is re-
maining.

(4) Linearizing output: For Tower-1, the final modified

(adapted) generators of I(0) = { w1
1, w1

2, w1
3}. Here w1 is

the exact one form dh which annihilates the distribution
g1 and [ f ,g1]. Solving for dh implies integrating an exact
1-form to get the linearizing output h(x) e.g. refer (Forsyth
(1959)).

φ1(x) =

 h1(x)
L f h1(x)
L2

f h1(x)

 (10)

The complete linearizing coordinates for the previous
example considered shall be
φ1(x) = (h1(x),L f h1(x),L2

f h1(x),h2(x),L f h2(x))

Linearizing coordinates for general system can be ob-
tained by taking the transformation

φ(x) = col(φ 1
1 , · · · ,φ 1

r1︸ ︷︷ ︸
Input−1

, · · · ,φ m
1 , · · · ,φ m

rm︸ ︷︷ ︸
Input−m

)

where

φ
i(x) =


h(x)

L f h(x)
L2

f h(x)
· · ·

Lr1
f h(x)

 (11)

Remarks: The drawback with the GS algorithm which is based
on the Goursat normal form is of obtaining the linearizing coor-
dinates (z1, ....zn) to represent the adapted generators of I(0). In
the Blended Algorithm, the linearizing coordinates are obtained
once the linearizing output function h(x) is known (3),(4). As
compared to the vector field approach to linearization of control
system the evaluation of the output function h(x) in the Blended
Algorithm is made simpler because of the tower formation. The
output function h(x) appears in the generator of I(s−1)

I(s−1) : dh(x)
I(s−2) : dh(x) dL f h(x)
: .. .. ..
: .. .. .. ..
: .. .. .. .. ..
I(0) : dh(x) dL f h(x) .... ... ... dLs−1

f h(x)

3.2 Nature of coordinate transformation

The coordinate transformation achieved in the context of ex-
terior differential systems corresponds to coordinate transfor-
mation along with state feedback in vector field notation. The
state space Rn+m+1 does not differentiates between states, input
and time. However if congruence condition is satisfied a time
invariant state feedback and coordinate change can be found.

3.3 Numerical examples

A few examples solved by the proposed algorithm are illus-
trated as follows. To motivate the examples for multi-input
system and for better understanding of the algorithm, we first
present an example of single input system.

Example 1: Single input control system example

Let us consider the system in Feedforward form (Tall (2009)),

ẋ1 = x2 +(
1
2

x2−
1

12
x3x4)u

ẋ2 = x3 +
1
2

x3u
ẋ3 = x4 + x4u
ẋ4 = u

(12)

where

f (x) =

x2
x3
x4
0

 g(x) =


1
2

x2−
1

12
x3x4

1
2

x3

x4
1

 (13)

The form representation of above system is given as

ω1 = dx1− [x2 +(
1
2

x2−
1

12
x3x4)u]dt

ω2 = dx2− [x3 +
1
2

x3u]dt
ω3 = dx3− [x4 + x4u]dt
ω4 = dx4−udt

(14)

The annihilator of distribution are given by
(∆0)

⊥ = [ω1,ω2,ω3,ω4] (15)
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The annihilators of g is given by

ω1 = ω1−
1
2

x2ω4 +
1
6

x4ω2

ω2 = ω2−
1
2

x3ω4

ω3 = ω3− x4ω4

(16)

The annihilators of [ f ,g] is given by

ω1 = ω1−
1
2

x4ω2

ω2 = ω2−
1
2

x4ω3

(17)

The annihilators of [ f , [ f ,g]] is given by, ω1 = ω1− 1
3 x4ω2

ω1 = ω1−
1
2

x4ω2 +
1
6

x2
4ω3 +[

x4x3

3
−

x3
4

6
− 1

2
x2]ω4 (18)

ω1 =

(
∂h
∂x1

∂h
∂x2

∂h
∂x3

∂h
∂x4

)ω1
ω2
ω3
ω4

 (19)

ω1 =

(
1

−x4

2
x2

4
6

x4x3

3
−

x3
4

6
− x2

2

)ω1
ω2
ω3
ω4

 (20)

Solving equation (27) for h, the linearizing output is given as

h(x) = x1− x2x4
2 +

x3x2
4

6 −
x4

4
24

Example 2: Multi-input control system example
Let us consider the system (Tall (2010c)),

ẋ1 = x2(1+ x3)
ẋ2 = x3(1+ x1)− x2u1
ẋ3 = x1 + x5 + x2

1 +(1+ x3)u1
ẋ4 = x5 + x2

1
ẋ5 = u2

(21)

where

f (x) =


x2(1+ x3)
x3(1+ x1)

x1 + x5 + x2
1

x5 + x2
1

0



g1(x) =


0
−x2

1+ x3
0
0

 g2(x) =


0
0
0
0
1


(22)

The form representation of above system is given as
ω1 = dx1− x2(1+ x3)dt
ω2 = dx2− [x3(1+ x1)− x2u1]dt
ω3 = dx3− [x1 + x5 + x2

1 +(1+ x3)u1]dt
ω4 = dx4− [x5 + x2

1]dt
ω5 = dx5−u2dt

(23)

The annihilator of distribution is given by

(∆0)
⊥ = [ω1,ω2,ω3,ω4,ω5] (24)

Division of towers based on the number of inputs (u1,u2) :

- (ω1,ω2,ω3) belong to Tower-1 based on input u1
- (ω4,ω5) belong to Tower-2 based on input u2

I(0) = ω1
1 ω1

2 ω1
3 ω2

4 ω2
5

I(1) = ω1
1 ω1

2 ω2
4

I(2) = ω1
1

The annihilators of g1 is given by

ω1
1 = ω

1
1

ω1
2 = ω

1
2 +

x2

1+ x3
ω

1
3

(25)

The annihilators of g2 is given by, ω2
4 = ω2

4

The annihilators of [ f ,g1] is given by, ω1
1 = ω1

1

ω1
1 =

(
∂h
∂x1

∂h
∂x2

∂h
∂x3

∂h
∂x4

∂h
∂x5

)
ω1
ω2
ω3
ω4
ω5

 (26)

ω1
1 = ( 1 0 0 0 0 )


ω1
ω2
ω3
ω4
ω5

 (27)

Solving equation (27) for h, the linearizing output is given as
h(x) = x1. The linearizing coordinates for complete system can
be obtained as

φ(x) =


ω1

1
ω1

2
ω

1
3

ω2
4

ω
2
5

 (28)

Example 3: Multi-input control system example
Let us consider the system (Tall (2010c)),

ẋ1 = x2 + x2x1
ẋ2 = sinx3
ẋ3 = x3 + ex2u1
ẋ4 =−(1+ x5)u2ẋ5 = x5 +(1+ x4)u2

(29)

where

f (x) =


x2 + x2x1

sinx3
x3
0
x5

 g1(x) =


0
0

ex2

0
0



g2(x) =


0
0
0

−(1+ x5)
(1+ x4)


(30)

The form representation of above system is given as
ω1 = dx1− [x2 + x2x1]dt
ω2 = dx2− [sinx3]dt
ω3 = dx3− [x3 + ex2u1]dt
ω4 = dx4 +[(1+ x5)u2]dt
ω5 = dx5− [(1+ x4)u2]dt

(31)

The annihilator of distribution is given by
(∆0)

⊥ = [ω1,ω2,ω3,ω4,ω5] (32)
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Division of towers based on the number of inputs (u1,u2) :

- (ω1,ω4,ω5) belong to tower-1 based on input u2
- (ω2,ω3) belong to tower-2 based on input u1

I(0) = ω1
1 ω1

4 ω1
5 ω2

2 ω2
3

I(1) = ω1
1 ω1

4 ω2
2

I(2) = ω1
1

The annihilators of g2 are given by,
ω1

1 = ω1
1 , ω1

4 = ω1
4 +

1+x5
1+x4

ω1
5

The annihilators of g1 are given by, ω2
2 = ω2

2

The annihilators of [ f ,g2] is given by, ω1
1 = ω1

1

ω1
1 =

(
∂h
∂x1

∂h
∂x2

∂h
∂x3

∂h
∂x4

∂h
∂x5

)
ω1
ω2
ω3
ω4
ω5

 (33)

ω1
1 = ( 1 0 0 0 0 )


ω1
ω2
ω3
ω4
ω5

 (34)

Solving equation (34) for h, the linearizing output is given as
h(x) = x1. The linearizing coordinates for complete system is
given by,

φ(x) =


ω1

1
ω1

4
ω

1
5

ω2
2

ω
2
3

 (35)

3.4 Advantages of the Blended Algorithm

The Blended Algorithm uses the tower structure for reduction
purpose and the main advantages are as follows:

• The proposed method is computationally easy as there is
no need to obtain linear transformation at every step as in
the case of Quotient Submanifold method. The final step
of obtaining linearizing output is also simple to calculate.
• In comparision to GS algorithm the proposed method

of finding the linearizing coordinates is computationally
easy and can be applied for all subclasses of feedback
linearizable control affine systems.

4. CONCLUSION

A new iterative algorithm has been proposed for computing
locally the linearizing output of multi-input nonlinear affine
system. The idea of extended Goursat normal form is modified
to obtain the successive integrations of one dimensional distri-
butions of control system. The algorithm provides a simple way
of finding the linearizing change of coordinates by computing
the output function. The future work is aimed at extending the
proposed algorithm to partial feedback linearization problem.
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