
A distributed braking control algorithm with

preview action for railroad vehicles ⋆

Bruno Picasso ∗ Danilo Caporale ∗ Patrizio Colaneri ∗

∗ DEIB, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133
Milano, Italy

(e-mail: picasso-caporale-colaneri@elet.polimi.it)

Abstract: A method is proposed to enhance the overall braking performance of a railroad
vehicle (train) by properly exchanging information among the single control units. Taking
advantage of data transmitted from the coaches at the front of the train to the rear carriages,
a novel distributed braking control algorithm is proposed that, based on preview control
techniques, allows one to reduce the stopping distance. The algorithm is demonstrated and
compared to other standard approaches through simulations.
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1. INTRODUCTION

Active braking forces in train dynamics are generated
at the contact points between the wheels and the rails.
Translating and rotating masses dynamics can be mod-
eled through linear systems, while the contact force is a
nonlinear function of the states [Olson et al. 2003, Polach
2005]. This function, referred to as the adherence curve,
describes the relation between the slip (i.e., the relative
difference between the speed of the wheels and of the
translating mass) and the friction coefficient. This curve
exhibits one global optimum point, which is the desired
working condition as it allows the maximum adherence
of the vehicle to the rail and, in a braking maneuver,
the maximum deceleration of the vehicle. When, instead,
the current slip value crosses over this maximum, the
wheels tend to lock and the braking force reduces, thus
resulting in a bad braking performance and a damage of
both the wheels and the rails. An accurate description of
this phenomena can be found in [Olson et al. 2003].

Anti–slip braking control systems (ABCS) are typically
used to prevent the wheels from locking and, as a result,
to reduce the braking distance. With this goal in mind,
the system is typically controlled to achieve stability in
the neighborhood of a reference slip value. The major
drawback of this approach is the dependence of the braking
distance on the knowledge of a correct reference value. On
the other side, more aggressive approaches can be used,
where the stabilization and the optimal working point
estimation are simultaneously performed. For instance,
in [Ariyur and Krstić 2003] this goal is achieved with
extremum seeking techniques. In a recent work [Caporale
et al. 2013], a nonlinear adaptive control strategy was
used to perform this task without the injection of external
harmonic signals. Another example of ABCS based on
adaptive control can be found in [Tyukin 2011].

⋆ This work was performed in part whilst Danilo Caporale was a
visiting student at the M.I.T. Corresponding author: Bruno Picasso.

The adherence curve mainly depends on three factors [Po-
lach 2005]: at a low level, the friction is affected by the
physical and geometrical characteristics of the contacting
surfaces between the wheel and the rail (however, such
a level of detail can be disregarded in ABCS design). At
higher levels, the presence of contaminants on the rail and
the speed of the train are important elements, which can be
captured with model based approaches (a function whose
parameters are estimated online) or extremum seeking
methods with the above described techniques.
Focus in the literature has been mainly given to the be-
havior of a single ABCS. As a result, an important element
in railway ABCS has not received sufficient attention: the
rail itself. Trains are constrained to advance on a railroad.
As such, wheels in the back coaches are constantly heading
for conditions that the preceding coaches have already met
moments before. Related to this issue, a well–known effect
in the railway industry is the rail cleaning. This happens
when, for example, water is on the rail which is partially
removed as a wheel passes over it. As a consequence, the
available braking force is increasing as more and more
wheels pass over a certain point of the rail. This phe-
nomenon has been treated in [Imai et al. 2010], where
the problem of balancing the braking–force along the train
between all the controllers has been studied.
In this framework, the present paper proposes an investiga-
tion on the possibility of taking advantage of information
exchanges between preceding and following coaches in or-
der to improve the braking performance and to reduce the
stopping distance of the train. Different braking control ap-
proaches are considered depending on the level of commu-
nication between the control units. In particular, a novel
distributed braking control algorithm is proposed that,
thank to the preview of the future condition of the rail
offered by the coaches at the front of the train, is capable
of better tracking the maximum adherence condition. In so
doing, it is possible to enhance the performance offered by
the single control units and to reduce the stopping distance
as compared to standard techniques based on limited (or
lacking in) communication.
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Figure 1. Example of train configuration: the grey coaches
are those with braking capability.

The proposed control strategy is grounded on the theory of
preview control (see, e.g., [Middleton et al. 2004, Moelja
and Meinsma 2006]) but, due to the nonlinearity of the
model, we could not prove optimality. Extensive simula-
tions have been hence performed to test and compare our
algorithm with standard techniques. The numerical ex-
periments confirmed the soundness of the preview control
based strategy and regularly showed that it outperforms
the other techniques. Special attention is devoted to un-
derstanding the part played by the various parameters in
the problem, such as the distance between the actuated
coaches and the convergence rate of the control units.
In this work, the focus has been placed on the role of com-
munication and preview for performance improvements.
As such, the dependence of the adherence curve on the
train state is expressed only by its dependence on the
position and on the traveling speed. Other effects, such
as the above mentioned cleaning effect, have not been
considered here and they are the subject of current work.

Paper organization: in Section 2, a model for the con-
sidered system is presented where the wheel–rail contact
description is based on [Olson et al. 2003, Caporale et al.
2013]; hence, the different braking control algorithms and,
in particular, the novel distributed preview control strat-
egy are defined. Detailed simulation comparisons between
the three considered approaches are reported in Section 3.
Conclusions and future research are outlined in Section 4.

2. BRAKING CONTROL ALGORITHMS

2.1 The models

Consider a railroad vehicle (train) where n coaches are
equipped with a braking control system and let x1 > x2 >
· · · > xn be the positions of such devices. The train is
considered as a rigid body running at a speed v(t), thus
the distance ∆i = x1 − xi is constant, see Figure 1.

Model of the adherence coefficient. The adherence
coefficient between the wheel and the rail is denoted by µ.
Its dependence on the physical characteristics of the rail
at x, on the wheel angular speed ω and on the speed v of
the train is modeled as follows: let the (relative) slip be

σ(ω, v) = v−Rω
v

,

where R is the wheel radius and σ ∈ [ 0 , 1 ] because we are
considering a braking maneuver; the adherence curve is

µ̄
(

θ(x), σ
)

=
√

σ

θ1(x)+θ2(x)σ+θ3(x)σ2 ;

finally, we consider

µ
(

θ(x), σ, v
)

=
1

k1(v)
· µ̄

(

θ(x), k2(v)σ
)

, (1)

where ki(v) = 1 + πiv, for suitable constants πi > 0.
In so doing, µ̄

(

θ(x), σ
)

= µ
(

θ(x), σ, 0
)

: the physical char-
acteristics of the rail are described through the parameters

θ(x) ∈ R
3 and summed up in the function µ̄

(

θ(x), σ
)

whereas, under the same characteristics, the coefficients
ki(v) are used to parameterize the dependence of µ on the
speed. Therefore, a rail with spatially varying adherence
characteristics is represented by a non-constant function
θ(x). Consider the maximizer σ̄o(x) of µ̄ at x, i.e.,

σ̄o(x) =
−θ2(x)+

√
θ2
2
(x)+12θ1(x)θ3(x)

6θ3(x) ,

and let µ̄o(x) = µ̄
(

θ(x), σ̄o(x)
)

be the corresponding max-
imal value. The following relations hold for the maximizer
σo(x, v) of µ and the maximal value µo(x, v):

{

σo(x, v) = σ̄o(x)
k2(v)

µo(x, v) = 1
k1(v) µ̄

o(x).
(2)

This is consistent with the well–known fact that the
increase of v causes both the decrease of the maximum
achievable adherence µo and of the maximizing slip σo

(see the literature on creep forces, such as [Polach 2005]).

Model of the speed dynamics. If the effects of the total
mass of the train are equally shared among the n actuated
coaches, the model for the speed dynamics is

v̇(t) = −g

∑n

i=1 µ
(

θ(x1(t) − ∆i), σi(t), v(t)
)

n
, (3)

where σi(t) is the slip of the i–th wheel at time t.

Model of the slip dynamics. The model of the closed–
loop (relative) slip dynamics, embedded within each brak-
ing control unit, is approximated by the following unitary
gain first order linear system:

σ̇i(t) = −ασi(t) + αΣo
i (t), i = 1, . . . , n, (4)

where Σo
i (t) is the reference signal for the i–th controller

and α > 0 is the inverse of the time constant characterizing
such closed–loop dynamics. In other words, the antiskid
control devices are supposed to be capable of precisely
tracking their reference. For a control algorithm with ad-
herence estimation and capable of tracking the maximum
adherence slip condition σo, see e.g., [Caporale et al. 2013].

2.2 The reference generation: three different approaches

In view of equation (3), in order to reduce the stopping
distance, the control objective is to maintain the slip σi as
close as possible to the optimal value σo(xi, v) maximizing
the adherence µ between the wheel of the i–th coach and
the rail. To this end, different algorithms for the generation
of the reference signal Σo

i (t) in equation (4) are considered:

(1) Leader–follower approach (Lf). The coaches share a
common reference signal corresponding to the optimal
slip value for the first coach:

Σo
i (t) = σo

(

x1(t), v(t)
)

, i = 1, . . . , n.

(2) Blind decentralized approach (Bd). Each coach tracks
its own optimal slip value:

Σo
i (t) = σo

(

xi(t), v(t)
)

, i = 1, . . . , n.

The main interest for the Lf algorithm lies in its simplicity
of implementation. The Bd approach, instead, is typically
adopted in practical applications as it does not require
information exchange between the control units. However,
braking performance can be enhanced if communication
between the controllers is allowed. According to the pre-
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view control philosophy [Middleton et al. 2004, Moelja
and Meinsma 2006], the optimal slip value σo

(

xi(t), v(t)
)

can be better tracked if a preview on its future behavior
is available. This is possible, indeed, because the i–th
controller can take advantage of the information on σo

already acquired by the i − 1 coaches placed in front of
him. Hence, an innovative third algorithm is considered:

(3) Distributed preview approach (Dp). Each coach tracks
its optimal slip value anticipated of a suitable and
possibly non-constant time interval τi(t):

Σo
i (t) = σo

(

xi

(

t + τi(t)
)

, v
(

t + τi(t)
)

)

, i = 1, . . . , n.

2.3 The design of the distributed preview algorithm

The optimal slip value σo is intrinsically related to the
physical characteristics of the rail, as such, it is useful to
express it as a function of the position of the train on the
rail. Let us hence rewrite model (4) by replacing the time
variable t with the position x1 of the first coach. To this
end, consider a function z

(

x1(t)
)

: since

dz
dt

= dz
dx1

· dx1

dt
= dz

dx1
· v(t),

then, as long as v(t) > 0, the differential equations in
x1 are simply obtained by dividing the equations in the
variable t by v. Thus, denoting by z′ the derivative of z
with respect to x1, ∀ i = 1, . . . , n, one has

σ′
i(x1) = − α

v(x1)
σi(x1) +

α

v(x1)
Σo

i (x1). (5)

Remark 1. Notice that σi(x1) represents the slip of the
wheel in the i–th coach when the first coach (not the i–th
one) is located at x1. In other words, the clock governing
equation (5) is driven by the moving on of the first coach.

The first coach has not preview capability, hence we let

Σo
1(x1) = σo

(

x1, v(x1)
)

.

Let us consider the i–th coach for i > 1: assume for the
moment that the speed v(x1) is constant and let λ = α

v(x1)
,

then equation (5) rewrites as

σ′
i(x1) = −λσi(x1) + λΣo

i (x1). (6)

Letting ro(x1) = σo
(

x1, v(x1)
)

, the optimal slip value at
the location of the i–th coach is given by ro(x1 − ∆i).
Therefore, in accordance with Remark 1, the goal is to
make σi(x1) track ro(x1 − ∆i). To this end, the forward
behavior ro(x1 − δi), 0 ≤ δi ≤ ∆i, is available to the i–th
braking control unit and this information can be profitably
used to improve the tracking performance. For instance,
consider a step variation 1 ro(x1) = H(x1) of the optimal
slip and let us look for the value of δi so that, letting
Σo

i (x1) = ro(x1 − δi)
(

and σi(0) = 0
)

in equation (6), the

L2–norm of the tracking error

ei(x1) = ro(x1 − ∆i) − σi(x1)

is minimized. Easy computations show that

ei(x1) = H(x1 − ∆i) − H(x1 − δi)
(

1 − e−λ(x1−δi)
)

(7)

and

‖ei‖2
2 =

∫ +∞
0

e2
i (x1)dx1 = ∆i − δi + 1

λ

(

2e−λ(∆i−δi) − 3
2

)

,

1 Where, as usual, H(x1) =

{

0 if x1 < 0
1 if x1 ≥ 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2
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δi

‖e
i
‖2 2

Figure 2. Behavior of ‖ei‖2
2 for λ = 1 and ∆ = 1.
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Figure 3. Example of locations of the points whose cor-
responding optimal value σo is tracked by the i–th

coach: since ∆2 < log(2)
λ

, then δo
2 = 0 and Σo

2(x1) =

σo
(

x1, v(x1)
)

; Σo
3(x1) = σo

(

x1 − δo
3 , v(x1)

)

.

so that
argminδi

‖ei‖2
2 = ∆i − log(2)

λ

and, since δi ≥ 0, the optimal value δo
i is given by

δo
i = max

{

0 , ∆i − log(2)
λ

}

(see also Figure 2). This means that, in the presence of a
step variation ro(x1) = H(x1), the L2–norm minimization
of the tracking error is obtained by feeding system (6) with

Σo
i (x1) = σo

(

x1 − δo
i , v(x1)

)

, (8)

that is a reference corresponding to the optimal slip value
σo at a point which is placed in front of the i–th coach at
a distance ∆i − δo

i (see Figure 3).

The optimality of δo
i is not limited to step variations of

ro(x1). In fact, denote by

Tδi
(s) = e−∆is − λ

s+λ
e−δis

the transfer function from ro(x1) to ei(x1) and let

Wδi
(s) = 1

s
· Tδi

(s),

then ei(x1) in equation (7) is the impulse response of sys-
tem Wδi

(s) so that δo
i minimizes the H2–norm of Wδi

(s).
Recalling that the H2–norm is equal to the L∞/L2–gain,
then δo

i also guarantees the minimization of the worst–
case L∞–norm of the error ei at the varying of all input
signals ro(x1) whose derivative belongs to L2 and has an
L2–norm below any fixed value γ > 0. Moreover, numerical
experiments show that δo

i also minimizes the H∞–norm of
Wδi

(s): since the H∞–norm is equal to the L2/L2–gain,
then for the same class of input signals specified above,
also the worst case L2–norm of the error ei is minimized.

Let us now consider the realistic case where v(x1) is
not constant. The optimization of δi is now impractical
because, due to the nonlinear dynamics of v(x1), the
dynamics of σi is varying with x1 in a nonlinear fashion.
Nonetheless, the achieved result is expected to be close to
the optimum as long as the dynamics of σi is faster than
the dynamics of v. Recalling that λ = α

v(x1)
, we hence

replace the constant δo
i with the following speed dependent
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expression:

δ∗i
(

v(x1)
)

= max

{

0 , ∆i −
v(x1) log(2)

α

}

. (9)

Then, consistently with the expression in equation (8), let

Σo
i (x1) = σo

(

x1 − δ∗i , v(x1 + ∆i − δ∗i )
)

,

where v(x1 + ∆i − δ∗i ) is the speed of the train when the
i–th coach will reach the point x1 − δ∗i

(

the dependence
of δ∗i on v(x1) has been omitted for the sake of clarity in
the notation

)

. Nevertheless, since v(x1 + ∆i − δ∗i ) is not
available, then a prediction based on the following first–
order hold model is considered:

v̂(x1 + ∆i − δ∗i ) = v(x1) + v′(x1)(∆i − δ∗i ). (10)

Accordingly, for i > 1, the reference signal for system (5)
is given by

Σo
i (x1) = σo

(

x1 − δ∗i , v̂(x1 + ∆i − δ∗i )
)

.

Finally, for n = 2 coaches with breaking capability, the
overall system under the Dp algorithm is given by


















σ′
1(x1) = − α

v(x1)
σ1(x1) + α

v(x1)σ
o
(

x1, v(x1)
)

σ′
2(x1) = − α

v(x1)
σ2(x1) + α

v(x1)σ
o
(

x1 − δ∗2 , v̂(x1 + ∆2 − δ∗2)
)

v′(x1) = − g
2v(x1)

[

µ
(

θ(x1), σ1(x1), v(x1)
)

+

+µ
(

θ(x1 − ∆2), σ2(x1), v(x1)
)]

,

(11)
where σo(x, v) and µ(θ, σ, v) are given in equations (2)
and (1), respectively, v̂(x1+∆2−δ∗2) is in equation (10) and
the equation for v′(x1) has been derived by equation (3).
The extension of model (11) to n ≥ 3 is straightforward.

Remark 2. For implementation purposes, it may be useful
to rewrite model (11) in the standard form of a system of
differential equations in the time variable t, that is:


























ẋ1(t) = v(t)

σ̇1(t) = −ασ1(t) + ασo
(

x1(t), v(t)
)

σ̇2(t) = −ασ2(t) + ασo
(

x1

(

t − τ∗
2 (t)

)

, v̂
(

t + T ∗
2 (t)

)

)

v̇(t) = − g
2

[

µ
(

θ(x1(t)), σ1(t), v(t)
)

+
+µ

(

θ(x1(t) − ∆2), σ2(t), v(t)
)]

,

where t − τ∗
2 (t) is the instant when the first coach was

located at x1(t) − δ∗2
(

v(t)
)

, thus τ∗
2 (t) is such that

∫ t

t−τ∗

2
(t) v(ζ)dζ = δ∗2

(

v(t)
)

,

v̂(t + T2) = v(t) + v̇(t)T2 and t + T ∗
2 (t) is the instant

when the second coach is expected to reach the point
x1(t)− δ∗2

(

v(t)
) (

i.e., the first coach has reached the point

x1(t) + ∆2 − δ∗2
(

v(t)
))

, thus T ∗
2 (t) is such that

∫ T∗

2 (t)

0
v̂(t + ζ)dζ = ∆2 − δ∗2

(

v(t)
)

.

3. SIMULATIONS COMPARISON

In the following section the performance of the three
proposed algorithms are compared through simulations.
We have generated a function θ(x) to model a rail of 1000
m in length, characterized by different physical conditions
(ranging from extra dry to extra wet) that pass by one after
the other both in a discontinuous fashion and in a more
smooth manner. The corresponding behaviors of µ̄o(x) and
of σ̄o(x) are reported in Figure 4 (other profiles have been
considered as well and the obtained results were coherent

0 100 200 300 400 500 600 700 800 900 1000
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

σ̄
o
,

µ̄
o

x

Figure 4. The functions µ̄o(x) (continuous red line) and
σ̄o(x) (dashed blue line) considered in the simulations.

∆2 = 10m ∆2 = 25m ∆2 = 50m

So 252.77 m 252.08 m 246.16 m
SLf 259.59 m 264.25 m 270.26 m
SBd 259.79 m 259.72 m 254.43 m
SDp 259.20 m 259.40 m 254.11 m

Table 1. Stopping distances for the simulation
campaign 1

(

α = 1.5, v(0) = 30
)

.

with those presented here). As for k1(v) and k2(v), we
made the conventional (yet realistic) assumption that

k1(v) = k2(v) = 1 + v/40

which corresponds to suppose that, for v = 40 m/s, both
µo and σo are half of the corresponding values for v = 0.
We then assume that σi(0) = 0.001 (this is coherent with
a braking maneuver starting at x1 = 0); different values
are considered for α in the interval [ 0.5 , 5 ] (corresponding
to a transient for the braking control systems between 10
s and 1 s); diverse values for the initial speed v(0) and
the distance ∆2 between the braking control units are
considered as well. The stopping distance corresponding
to the different algorithms are denoted as follows:

◦ SLf (for the leader–follower approach)
◦ SBd (for the blind decentralized approach)
◦ SDp (for the distributed preview approach).

The theoretical limit for the stopping distance, hereafter
denoted by So, is also computed. This corresponds to the
ideal case where, by letting µ = µo in the equation of v′,
the dynamics of σi is neglected.

3.1 Simulation campaign 1

We let α = 1.5 s−1, v(0) = 30 m/s and simulate the
system with the reference generated according to the three
approaches (and the ideal one) for values of ∆2 ranging
from 10 m up to 50 m. The resulting stopping distances
are in Table 1 and the graphs of the speed are in Figure 5.
Let us comment on the simulations:

• The stopping distances resulting from the Bd and the
Dp algorithms are close by, but SDp is smaller than SBd.

• The performance of the Lf approach are far from those
of the Bd and the Dp algorithms, except for ∆2 = 10 m
where the Lf algorithm provides a reasonable (i.e., not too
large) anticipation that makes its performance comparable
to those of the other approaches. The gap between SLf

and the couple SBd, SDp is increasing with ∆2, showing
that both the Bd and the Dp approaches are successful
when the first and the second coaches are sufficiently far
to experience different physical rail conditions.
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Figure 5. Graphs of the speed in the simulation campaign 1
(

α = 1.5, v(0) = 30
)

: ideal case (dotted red line),
Lf approach (dash–dotted black line), Bd approach
(dashed green line) and Dp approach (continuous blue
line). (a) ∆2 = 10, (b) ∆2 = 25, (c) ∆2 = 50.

In the light of these results, we shall focus on the blind
decentralized and the distributed preview algorithms only.

3.2 Simulation campaign 2

We let v(0) = 50 m/s, ∆2 = 50 m and simulate the system
according to the Bd and the Dp algorithms (and the ideal
one) for values of α ranging from 0.5 up to 5 s−1. The
comparison is made according to the following indices:

◦ A = SBd − SDp (absolute improvement)

◦ A% = 100 · SBd−SDp

SBd (percentage relative improvement)

◦ Ao
% = 100 · SBd−SDp

SBd−So (percentage improvement with re-
spect to the theoretical limit).

We also analyze the tracking error

e(x1) =

[

e1(x1)
e2(x1)

]

=

[

σo
(

x1, v(x1)
)

− σ1(x1)
σo

(

x1 − ∆2, v(x1)
)

− σ2(x1)

]

,

hereafter denoted by eBd or by eDp depending on the
adopted algorithm to generate the reference signal: we let







nBd
e = 1

SBd

√

∫ SBd

0
‖eBd(ξ)‖2

2dξ

nDp
e = 1

SDp

√

∫ SDp

0 ‖eDp(ξ)‖2
2dξ

be the normalized L2–norm of the error signals and con-
sider the percentage relative improvement
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Figure 6. Dependence on α of the indices considered in
the simulation campaign 2

(

v(0) = 50, ∆2 = 50
)

:
(a) stopping distance in the ideal case, with the Bd
and with the Dp approach; (b) absolute and percent-
age relative improvement of the Dp algorithm with
respect to the Bd one; (c) percentage improvement
with respect to the theoretical limit; (d) percentage
relative improvement of the tracking error norm.

N% = 100 · nBd
e

−nDp
e

nBd
e

.

The behavior of these indices is reported in Figure 6 and
it confirms that the Dp approach outperforms the Bd one.
More detailed observations are the following:

• The stopping distance decreases as α increases and
the absolute improvement borne by the Dp algorithm
decreases accordingly

(

Figure 6.(a–b)
)

. Such decrease is
motivated by the corresponding faster dynamics of σi that,
when α → +∞, approaches the algebraic relation between
Σo

i and σi yielding So. For small values of α, the dynamics
of σi is so slow that the system mostly operates in tran-
sient conditions, thus results are unreliable

(

see the non-

monotonic behaviors of the functions in Figure 6.(b–c)
)

.

• The percentage improvement with respect to the the-
oretical limit ensured by the Dp algorithm is increasing
with α

(

Figure 6.(c)
)

and the adoption of a Dp approach
allows one to fill up to the 15% of the gap between the
performance ensuing from the Bd algorithm and So.
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Figure 7. Dependence on β of the indices considered in
the simulation campaign 3

(

α = 1.5, ∆2 = 50
)

: (a)
stopping distance in the ideal case, with the Bd and
with the Dp approach, when v(0) = 40 m/s

(

for
v(0) = 20 or 30 m/s the behavior is analogous but
shifted below

)

; (b) percentage relative improvement
of the Dp algorithm with respect to the Bd one when
v(0) = 20 m/s (dash–dotted line), v(0) = 30 m/s
(dashed line) and v(0) = 40 m/s (continuous line).

• Also the percentage relative improvement in the tracking
error is increasing with α and the enhancement guaranteed
by the Dp approach is close to 20%

(

Figure 6.(d)
)

. Al-
though such a high value of N% confirms the soundness of
the Dp algorithm, the decrease of the stopping distance is
not significant as much. This is mainly due to the fact that
the system is controlled so as to operate at σo(x, v), which
is a stationary point of the curve µ

(

θ(x), · , v
)

: therefore,
small displacements of σi from the optimal value σo result
in small differences for the adherence µ. This fact can be
interpreted as an intrinsic robustness guaranteed by the
control algorithms forcing the system to operate at σo.

In practical implementations, the braking control system
is often designed so as to track a smaller slip value than
the optimal one. Indeed, this policy is more secure in
avoiding to drive the system to unstable motions resulting
in slip values σi making their way towards the highly
undesirable condition σi = 1 of locked wheels. In this
case, since σi is controlled to a non-stationary point of
the curve µ

(

θ(x), · , v
)

, we expect that the Dp approach
is capable of guaranteeing more significant improvements.
This is analyzed in the next simulation campaign.

3.3 Simulation campaign 3

We let α = 1.5 s−1, ∆2 = 50 m and simulate the system
with the reference generated according to the Bd and the
Dp algorithms, both scaled by a factor β ranging from 0.2
up to 1.2. In Figure 7, the dependence on β of the stopping
distance and of the index A% is reported in the three cases
where v(0) = 20 m/s, v(0) = 30 m/s and v(0) = 40 m/s.

• While the stopping distance is minimized for β = 1
(i.e., by tracking the value of σi that maximizes the

adherence), the percentage relative improvement obtained
through the Dp algorithm is maximal for some β < 1 (thus,
providing a larger stopping distance). Such a maximizing
β is increasing with the initial speed v(0) and, moreover,
the graph of A%(β) appears to be more and more flat
around the maximum as v(0) increases. Consequently, the
Dp approach results to be more effective to stop a train
running at high speed, where the percentage improvement
can be maximized without wasting performance.

• For small or large values of β, the Bd approach may
guarantee a shorter stopping distance than the Dp one

(

see

Figure 7.(b)
)

: both cases are not relevant, in practice, since
β should not be too small (or else the stopping distance
increases too much) or larger than 1 (for security reasons).

We finally mention that the simulations made for a model
with three actuated coaches provided analogous results.

4. CONCLUSIONS

A study on the possibility of improving performance in
braking maneuvers through the interaction between the
control units is presented. A distributed control algorithm
based on preview control is proposed and it is shown by
simulations to outperform the standard control strategies.
Ongoing work is devoted to the extension of the algorithm
to more realistic situations where the coaches exchange
their estimates of the adherence curve. In so doing, other
phenomena can be taken into account, such as the cleaning
effect. Experimental proofs are in fieri as well.

ACKNOWLEDGEMENTS

The work of B. Picasso and D. Caporale was supported
by the “Associazione Eugenio e Germana Parizzi” thorugh
the “Fondazione Politecnico di Milano”. We acknowledge
the “Alstom Ferroviaria S.p.a.” for useful interactions on
the subject of the paper.

REFERENCES
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