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Abstract: State feedback design for linear parabolic systems with in-domain actuation and
general Robin boundary conditions is considered. To this end the system is shown to be state
equivalent to a boundary controlled system. By means of the well established backstepping
transformation this latter system is feedback equivalent to a stable parabolic equation. Within
the contribution previous results concerning systems with Neumann boundary conditions are
generalized by means of functional analytic methods. Existence of the involved transformations
is discussed by means of the Fredholm theory while a late lumping approach is proposed for the
numerical implementation.
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1. INTRODUCTION

Over the past decade the so-called backstepping method
has proven to be an efficient tool for feedback design for
distributed parameter systems with boundary control (cf.
Krstic and Smyshlyaev, 2008, and the contained refer-
ences). Originally developed for spatially one-dimensional
linear parabolic systems the approach has been general-
ized to a broader class of distributed parameter systems
comprising particular higher-dimensional equations (cf.
Meurer, 2012, and the contained references), nonlinear
equations (see, e.g., Vazquez and Krstic, 2008), and hyper-
bolic equations (Smyshlyaev et al., 2010). However, results
concerning systems with more general actuation are very
rare: Systems with a (very particular) distributed control
operator are discussed by Tsubakino et al. (2012), while
interior point control for parabolic 1D systems with con-
stant coefficients has been emphasized by Wang and Woit-
tennek (2013). The latter contribution relied on the equiv-
alence of a system with in-domain control and a boundary
controlled system under certain additional assumptions.
This equivalence was established using algebraic methods
relying on the parametrization of the solution by a flat
output (cf. Woittennek and Mounier (2010)). Contrary to
the hyperbolic case, where flatness can be immediately
used in order compute a transformation to the hyperbolic
controller form 1 , these methods allow the consideration
of (particular) smooth solutions of the considered systems
only 2 . Therefore, the equivalence of the given interior

? Financial support by the Deutsche Forschunggemeinschaft (Grant
Wo1601/1-2) is gratefully acknowledged.
1 See Russell (1991) for the introduction of the hyperbolic controller
form and Woittennek and Rudolph (2012), Woittennek (2013) for the
relation of the controller form with flatness
2 Note, that such time domain interpretations of the obtained results
have not been emphasized to in Wang and Woittennek (2013).
Instead these results rely on formal computations in the Laplace

controlled system and the boundary controlled system
has to be carefully checked when considering the usual
spaces of square integrable functions as the state space.
In the above cited reference this equivalence has been
discussed for Neumann boundary conditions while the
case of the more general Robin boundary conditions was
only partially treated. Aside from the presentation of the
numerical approximation scheme the main result of the
present contribution lies in bridging this gap.

The paper is organized as follows. In the following section
an outline of the proposed method is given. This includes
a more detailed sketch of previously obtained results. In
Section 3 the main results of the present contribution
are presented and proven. Section 4 is devoted to the
numerical approximation of the transformation and the
stabilizing feedback controller with modal analysis.

2. A SHORT SUMMARY OF THE METHOD

2.1 Models considered and design goal
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Fig. 1. The parabolic system with in-domain control

Parabolic boundary value problems involving a distributed
variable x(z, t) defined on the spatially one-dimensional
domain Ω = [0, `] and a lumped control variable u(t)
acting at a ∈ Ω are considered (cf. Fig. 1). Dividing Ω
into the disjoint subdomains Ω1 = [0, a] and Ω2 = [a, `]
the mathematical model reads:

domain. A detailed discussion of these computations in the time-
domain is postponed to a forthcoming publication.
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∂x1

∂t
(z, t) =

∂2x1

∂z2
(z, t) + cx1(z, t), z ∈ Ω1 (1a)

∂x2

∂t
(z, t) =

∂2x2

∂z2
(z, t) + cx2(z, t), z ∈ Ω2 (1b)

with c an arbitrary constant parameter and the variables
x1 and x2 corresponding to the restrictions of x to the
intervals Ω1 and Ω2, respectively:

x(z, t) =

{
x1(z, t) z ∈ Ω1

x2(z, t) z ∈ Ω2.

The model is completed by the compatibility conditions

∂x1

∂z
(a, t) =

∂x2

∂z
(a, t) + u(t), (2a)

x1(a, t) = x2(a, t), (2b)

and the boundary conditions

βx1(0, t) =
∂x1

∂z
(0, t), (2c)

−αx2(`, t) =
∂x2

∂z
(`, t). (2d)

Depending on the values of the constant parameters α, β
Neumann (α, β = 0) or Robin boundary conditions (α, β 6=
0) can be obtained at z = 0 and z = `, respectively.

The goal of the design process lies in the computation of a
continuously invertible linear transformation w = Φx and
a state feedback v = u−Kx such that that the transformed
state satisfies the differential equation

∂w

∂t
(z, t) =

∂2w

∂z2
(z, t)− ĉw(z, t), z ∈ Ω, (3a)

with boundary conditions

∂w

∂z
(0, t) = βw(0, t),

∂w

∂z
(`, t) = v(t) (3b)

which is exponentially stable for v(t) = 0 when choosing
the constant design parameter ĉ ≥ 0.

2.2 Design method

The idea proposed in Wang and Woittennek (2013) basi-
cally consists in splitting up the calculation of the state
transformation Φ into two steps: Firstly, a transformation
x = T x̄ is computed in such a way that, in the new
coordinates, the system (1), (2) appears as

∂x̄

∂t
(z, t) =

∂2x̄

∂z2
(z, t) + cx̄(z, t), z ∈ Ω (4a)

with boundary conditions

∂x̄

∂z
(0, t) = βx̄(0, t), (4b)

∂x̄

∂z
(`, t) = u(t)− αx̄(`, t). (4c)

As already pointed out in the introduction a candidate
for the transformation T has been derived in Wang and
Woittennek (2013) by means of algebraic computations
in the Laplace domain. However, the invertibility of this
mapping has been roughly examined for the case α = β =
0 only. The detailed discussion of the properties of T in
section 3 constitutes one of the main results of the present
contribution and is omitted for the moment.

Now assume that the transformation T exists and is
known. Then the “classical” backstepping approach de-
veloped for boundary controlled systems can be applied in

the second step: The main ingredient of this second step
is the application of the Volterra integral transformation
w = V x̄ defined for z ∈ Ω by

w(z, t) = x̄(z, t)−
∫ z

0

κ(z, ζ)x̄(ζ, t) dζ (5)

along with the feedback

v(t)=u(t)−(κ(`, `)+α)x̄(`, t)−
∫ `

0

∂κ

∂z
(`, ζ)x̄(ζ, t) dζ. (6)

The computation of the kernel function (z, ζ) 7→ κ(z, ζ)
defined on the triangle {(z, ζ) ∈ Ω2|ζ ≤ z} has been
extensively studied in the cited literature (cf., e.g., Krstic
and Smyshlyaev, 2008; Smyshlyaev and Krstic, 2004) and
is omitted for brevity.

The feedback law for the original system with in-domain
control and the associated state transform to the target
system (3) are obtained from (5) and (6) by expressing x̄
in terms of the original coordinates x:

(Φx)(z, t) = (T−1x)(z, t)−
∫ z

0

κ(z, ζ)(T−1x)(ζ, t) dζ

and the feedback operator K defined by

(Kx)(t) = (κ(`, `) + α)(T−1x)(`, t)

+

∫ `

0

∂κ

∂z
(`, ζ)(T−1x)(ζ, t) dζ. (7)

3. STATE EQUIVALENCE TO A BOUNDARY
CONTROLLED SYSTEM

This section is devoted to the careful analysis of the
following candidate for the transformation T piecewise
defined by (cf. Wang and Woittennek, 2013)

x(z) =
1

2
[x̄(z+b)+x̄(b−z)]−α

2

∫ b−z

b+z

x̄(ζ) dζ

+(α−β)

∫ b−z

0

eβ(z+ζ−b)x̄(ζ) dζ, z ∈ [0, a] (8a)

x(z) =
1

2
[x̄(b−z)+x̄(`+a−z)]−α

2

∫ b−z

`+a−z
x̄(ζ) dζ

+(α−β)

∫ b−z

0

eβ(z+ζ−b)x̄(ζ) dζ, z ∈ [a, b] (8b)

x(z)=
1

2
[x̄(z−b)+x̄(`+a−z)]−α

2

∫ z−b

`+a−z
x̄(ζ) dζ,

z ∈ [b, `]. (8c)

which aims to establish the equivalence of the system of
p.d.e. (1) with b.c. (2) and the b.v.p. (4). Therein, without
loss of generality a < l − a =: b is assumed.

3.1 Problem formulation

In order to proof the main result the boundary value
problem (1), (2) is rewritten as an abstract differential
equation on the Hilbert space X = L2(Ω):

ẋ(t) = Ax(t) +Bu(t). (9a)

Therein, the unbounded self-adjoint system operator A is
given by

A = ∂2

∂z2 + c : D(A)→ X, (9b)

D(A)=
{
x∈H2(Ω)|βx(0)= dx

dz (0), −αx(`)= dx
dz (`)

}
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Fig. 2. Supporting sets Θ1,Θ2 ⊂ Ω2 of the integral kernel
k of the operator Tc.

and the unbounded input operator B reads

B = δa : R→ D(A)′.

Above, H2(Ω) corresponds to the Sobolev space of twice
(weakly) differentiable functions with second derivative in
L2(Ω) and δa is the Dirac distribution centered at z = a,
i.e., δaϕ = ϕ(a) for any ϕ ∈ D(A).

Similarly, the target differential equation (4) to be satisfied
by the transformed state can be written as

˙̄x(t) = Ax̄(t) + B̄u(t), (10a)

with B̄ = δ` : R → D(A)′. Since the ordinary boundary
value problem Ax = y has a unique solution in D(A) for
all y ∈ X, A is onto.

A linear continuous transformation

T : X → X, x = T x̄ (11)

associating the solutions of (9) with those of (10) must
satisfy the well known conditions

TA = AT, (12a)

TB̄ = B. (12b)

This can be easily seen by substituting (11) into (9a)

T ˙̄x(t) = ATx̄(t) +Bu(t) = TAx̄(t) + TB̄u(t).

Moreover, in order obtain a state transform T has to be a
bijection.

3.2 Transformation from target to original coordinates

In this section it will be shown that the map (11) defined
by (8) or, equivalently, by

T x̄ = T0x̄+ Tcx̄ (13)

with

(T0x̄)(z) =
1

2

(
h(a−z)x̄(z+b) + h(b−z)x̄(b−z)

+ h(z−a)x̄(`+a−z) + h(z−b)x̄(z−b)
)

(14)

and

(Tcx̄)(z) =

∫
Ω

k(z, ζ)x̄(ζ)dζ (15)

satisfies (12). Therein, h is the Heaviside function and the
integral kernel of Tc is given by

k(z, ζ) =
α

2
χΘ1(z, ζ) + (α− β)χΘ2(z, ζ)eβ(z+ζ−b),

where χΘ denotes the characteristic function of the set Θ.
Moreover, Θ1 is the rectangle

Θ1 =
{

(z, ζ) ∈ Ω2 : b < ζ + z < `+ a
}
∩{

(z, ζ) ∈ Ω2 : −b < ζ − z < b
}

and Θ2 is the triangle

Θ2 =
{

(z, ζ) ∈ Ω2 : ζ + z < b
}
.

Lemma 1. The operator T defined by (13) is self-adjoint.

Proof. The compact integral operator Tc is clearly self-
adjoint by the symmetry of its integral kernel. Moreover,
for y, x̄ ∈ X

2〈y, T0x̄〉X =

∫ a

0

y(z)x̄(z+b)dz+

∫ b

0

y(z)x̄(b−z)dz+∫ `

a

y(z)x̄(`+a−z)dz+

∫ `

b

y(z)x̄(z−b)dz

=

∫ `

b

y(z − b)x̄(z)dz+

∫ b

0

y(b−z)x̄(z)dz+∫ `

a

y(`+a−z)x̄(z)dz+

∫ a

0

y(z + b)x̄(z)dz

= 2〈T0y, x̄〉X .
Therefore, T0 is self-adjoint as well and so is T = T0 + Tc

Theorem 2. The restriction of the map T ∈ L(L2(Ω))
defined by (13) to D(A) belongs to L(D(A)) where D(A) is
equipped with the graph norm ‖x‖D(A) = ‖x‖X + ‖Ax‖X .

Moreover, AT = TA and TB̄ = B.

Proof. Firstly, it has to be checked that TD(A) ⊂ D(A).
To this end define

X̄ =
{
x̄ ∈ C2(Ω) : dx̄dz (0) = βx̄(0), dx̄

dz (`) = −αx̄(0)
}
.

and assume that x̄ ∈ X̄. It will be shown that T : X̄ → X̄.
The piecewise definition (8) of T immediately shows that
T x̄ is twice differentiable on each of the sections (0, a),
(a, b) and (b, `) (cf. (13)). The corresponding differentia-
bility properties at a and b as well as the fulfilment of the
boundary conditions at 0 and ` follow by evaluating the
corresponding derivatives of (8) at 0, a, b and `, respec-
tively. It is not hard to show that T is continuous on X̄
with respect to the graph norm of A. Since, moreover, X̄ is
a dense subspace of D(A), T can be uniquely extended as a
continuous operator on D(A). Now the equality AT = TA
can be verified by substituting (13) or (8) into the claim.
These simple but tedious computations are omitted for
brevity.

In order to check the equality of TB̄ ∈ D(A)′ and B ∈
D(A)′ both operators have to be applied to an arbitrary
element ϕ ∈ D(A). By the fact that T is self-adjoint,
evaluating (8c) at z = ` (with x̄ = ϕ) immediately shows
that

〈Tδ`, ϕ〉D(A)′,D(A) = 〈δ`, Tϕ〉D(A)′,D(A) = ϕ(a),

with 〈·, ·〉 the duality pairing in D(A)′ ×D(A).

The above calculations show that T is an endomorphism
on L2(Ω) satisfying (12). In order to show that it is
indeed a state transformation its invertibility remains to
be proven.
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3.3 Spectral decomposition and injectivity

Injectivity of T is a necessary condition for the invertibility
of T . This property is discussed on the basis of the spectral
decomposition of the operator T .

Lemma 3. Assume that no eigenfunction of A vanishes at
z = a. Then the map T ∈ L(L2(Ω)) defined by (13) is a
continuous injection.

Proof. Since the system operator A in (9b) is self-adjoint
its spectrum contains only isolated real eigenvalues λk, k ∈
N with corresponding orthogonal eigenfunctions ϕk ∈ X
constituting an orthogonal basis of X. Since T commutes
with A it maps eigenfunctions of A to eigenfunctions of A
(up to a scaling):

λkϕk = Aϕk ⇒ λk(Tϕk) = A(Tϕk) ⇒ Tϕk = ckϕk.

By the continuity of T one obtains for an arbitrary x̄ ∈ X
Tx̄ = T

∑
k∈N

x̄kϕk =
∑
k∈N

x̄kTϕk =
∑
i∈N

x̄kckϕk.

Therefore, assuming T x̄ = 0 for some x̄ 6= 0 yields for all
j ∈ N

〈T x̄, ϕj〉X = x̄jcj = 0.

Since x̄ 6= 0 not all of the coordinates x̄j are zero. As
a consequence, the non-injectivity of T implies Tϕj =
cjϕj = 0 and therefore cj = 0 for some j. Since the
converse is obvious, T is an injection iff cj 6= 0 for all j ∈ N.
To check this condition the scalar parameters cj ∈ R,
j ∈ N will be determined from the condition TB̄ = B. To
this end the operator B is applied to ϕk ∈ D(A) which,
thanks to self-adjointness of T , leads to

〈B,ϕk〉 = 〈TB̄, ϕk〉 = 〈B̄, Tϕk〉 = 〈B̄, ckϕ〉 = ck〈B̄, ϕk〉.
with 〈·, ·〉 the duality pairing in D(A)′×D(A). As a result
ck vanishes iff

〈B,ϕk〉 = 〈δa, ϕk〉 = ϕk(a) = 0,

which completes the proof.

Lemma 4. Let α = β = 0. Assume that /̀a is rational, i.e.,
/̀a = n/d with n, d ∈ N co-prime. Then T is an injection iff
n is odd.

Proof. For α = β = 0 the eigenfunctions of A are given
by

ϕk(z) = cos(ωkz), ωk = k
π

`
, k ∈ N

The zeros zk,i, 0 ≤ i < k of ϕk satisfy (i+1/2) = k
zk,i

` with
i ∈ N. Consequently, in order to ensure that ϕk vanishes
at z = a, 2k/2i+1 = n/d must hold for some integer i. If n is
odd this can never happen which implies the injectivity of
T by Lemma 3. Moreover, since n even implies d odd by
the coprimeness of n and d the condition n even implies
the existence of zeros zk,i = a for k = mn/2 and i = (md−1)/2
for arbitrary odd m which finally shows the non-injectivity
of T for even n.

3.4 Invertibility

The main result of the contribution is the invertibility
of the transformation T defined by (13) under some
additional assumptions:

Theorem 5. Assume that /̀a is a rational number satis-
fying the assumption formulated in Lemma 4. Then the

kernel of T is of finite dimension µ ∈ N. Moreover, if µ = 0
then the map T defined by (1) is a continuous bijection on
X.

Before the main result is proven a similar result for the
operator T0 has to be obtained.

Lemma 6. Under the assumptions of Theorem 5 T0 is a
continuous bijection on X.

Proof. Since T0 coincides with the operator T obtained
for α = β = 0, T0 is injective by Lemma 4. Defining
(Rx)(z) = x(` − z) the operator T0 corresponds to the
restriction of the injective operator

T 2
0 : X2 → X2, T 2

0 (x1, x2) = (T0x1, RT0Rx2)

to the closed T 2
0 -invariant subspace

Xsym = {(x1, x2) ∈ X2 : x2 = Rx1} ⊂ X2.

On Xsym one has T 2
0 (x1, x2) = T̃ 2

0 (x1, x2) where

T̃ 2
0 : X2 → X2, (x̄1, x̄2) 7→ T̃ 2

0 (x̄1, x̄2) = (x1, x2)

is pointwise defined by

x1(z) =
1

2

(
h(a−z)x̄1(z+b) + h(b−z)x̄2(z+a)

+ h(z−a)x̄2(z−a) + h(z−b)x̄1(z−b)
)

(16a)

x2(z) =
1

2

(
h(z−b)x̄2(z−b) + h(z−a)x̄1(z−a)

+ h(b−z)x̄1(z+a) + h(a−z)x̄2(z+b)
)
. (16b)

In order to proceed it is advantageous to decompose the
elements of X into n pieces of length `0. To this end let
Ξ = L2([0, `0]) and define the bijective operator

D : X2 → Ξn × Ξn, (x1, x2) 7→ ξ = (ξT1 , ξ
T
2 )T

ξi = (ξi,0, . . . , ξi,n−1)T , i = 1, 2.

by (i = 1, 2, j = 0, . . . , n− 1)

ξi,j(z) = xi(j`0 + z), z ∈ [0, `0].

This way according to the definition (16) of T̃ 2
0 the

operator S = D ◦ T̃ 2
0 ◦ D−1, Ξ2n → Ξ2n can be written

by means of a real matrix M ∈ R2n×2n

ξ = M ξ̄, M =

(
M1 M2

M2 M1

)
, M1,M2 ∈ Rn×n.

(M1)i,j = 1
2 (δi,j+b + δi,j−b)

(M2)i,j = 1
2 (δi,j+a + δi,j−a).

Here, δi,j denotes the Kronecker symbol. It will be proven
that M is invertible. To this end assume the contrary
and chose some real vector (vT1 ,v

T
2 )T ∈ kerM . By the

particular structure of M

v =

(
v1 +RMv2

RMv1 + v2

)
∈ kerM,

RMvi = (vi,n−1, . . . , vi,0)T , i = 1, 2.

Thus, ξv ∈ Ξ2 defined by ξv(z) = v belongs to DXsym

while Mξv = 0 and, therefore, ξv ∈ kerS. Consequently,

the intersection of the kernel of T̃ 2
0 with Xsym is non-

empty. Since, T 2
0 and T̃ 2

0 coincide on Xsym, T 2
0 and,

therefore, T is not an injection which contradicts Lemma
4. Now, the invertibility of T0 follows from that of M .

Proof of Theorem 5. Having shown, that T0 is a
bijection on X, T can be rewritten as T = T0 ◦ T̄ where
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T̄ = 1 +T−1
0 ◦Tc. Consequently, the equation T−1

0 x = x̄+
T−1

0 ◦Tcx̄ is a Fredholm equation of the second kind. As a
consequence the kernel of T̄ is finite dimensional and the
invertibility of T̄ immediately follows from its injectivity
thanks to the celebrated Fredholm alternative (cf. any text
book on functional analysis, e.g., Heuser (1982)) provided
T̄c = T−1

0 ◦ Tc is compact. The compactness of this latter
operator is an immediate consequence of the (obvious)
square integrability of the integral kernel k of T which
also implies the square integrability of the kernel of T̄c
(cf., e.g., Heuser (1982)).

4. NUMERICAL IMPLEMENTATION

4.1 General approximation scheme

Start with a sequence of N -dimensional subspaces XN ⊂
X with basis (ϕN1 , . . . , ϕ

N
N ), ϕNk ∈ X such that for each

x ∈ X there is a sequence (xN )N∈N of finite dimensional
approximations

xN =

N∑
k=1

xNk ϕ
N
k (17)

converging to x ∈ X. An approximation of the derived
transformation Φ = V ◦ T−1 with V and T defined by 3

(5) and (13) can be easily given provided the transformed
basis

(ηN1 , . . . , η̄
N
N ), ηNk = ΦϕNk , k = 1, . . . , N

of the N th order approximation is known. By the continu-
ity and the linearity of Φ

Φx = Φ lim
N→∞

∑N
k=1x

N
k ϕ

N
k

= lim
N→∞

∑N
k=1x

N
k ΦϕNk = lim

N→∞

∑N
k=1x

N
k η

N
k .

However, such approximations cannot directly used in the
feedback law (3), since the latter feedback law (7) is un-
bounded and will, therefore, in general not commute with
the limit 4 . Therefore, it is advantageous to decompose the
feedback law into an unbounded and a continuous part.
To this end start with the relation (6) obtained via the
backstepping approach applied to the boundary controlled
system. The new input v can be expressed as

v(t) =
∂w

∂z
(`, t) =

[
∂

∂z
V x̄(z, t)

]
z=`

=

=
∂x̄

∂z
(`, t)− κ(`, `)x̄(`, t)−

∫ `

0

∂κ

∂z
(`, ζ)x̄(ζ, t)dζ

(18)

Observe that the Volterra integral operator on the right-
hand-side of this equation corresponds to a continuous
linear operator K1 : X → R which alternatively can be
written as

K1x̄(t) =
∂x̄

∂z
(`, t)− κ(`, `)x̄(`, t)−

[
∂

∂z
V x̄(z, t)

]
z=`

.

Eliminating the boundary gradient of x̄ by means of the
boundary condition (4c) and expressing x̄ by means of
T−1x (18) can be rewritten as

3 Invertibility of T will be assumed all over this section.
4 See also Woittennek (2013) for a discussion of a similar issue occur-
ring in connection with flatness based control design for hyperbolic
boundary value problems.

v(t) = u(t) + (−α− κ(`, `))(T−1x)(`, t)−K1 ◦ T−1x(t).
(19)

Therein the operator T−1 can be decomposed as

T−1 = T−1
0 + T inv

c

where the compact part T inv
c of T−1 is again a Fredholm

integral operator. As a consequence K2 defined by

K2x(t) = (T inv
c x)(`, t) = (T−1x− T−1

0 x)(`, t)

is a continuous operator X → R and (19) rereads with
γ = α+ κ(`, `)

v(t) = u(t)− γ(T−1
0 x)(`, t)− (γK2 +K1 ◦ T−1)x(t). (20)

This way the feedback law can be divided into the un-
bounded part which is rather simple to evaluate and, there-
fore, does not need to be approximated and the continuous
part which is accessible for an approximation. The latter
reads:

(γK2 +K1 ◦ T−1)x(t) = lim
N→∞

N∑
k=1

rNk x
N
k (t),

rNk = −∂η
N
k

∂z
(`) +

∂ϕ̄Nk
∂z

(`) + αϕ̄Nk (`)−γ(T−1
0 ϕNk )(`).

Above ϕ̄Nk = T−1ϕNk , k = 1, . . . , N , N ∈ N.

4.2 Modal approximation

For the sake of feedback design the triples (ϕNk , ϕ̄
N
k , η

N
k )

can be computed offline. Therefore, this (possibly) compu-
tational problem won’t be an obstacle from an implemen-
tation point of view. However, further simplifications are
possible, if the approximation is based on a spectral ex-
pansion associated with the problem under consideration.
To this end assume that, independently of N , ϕNk = ϕk,
k ∈ N corresponds to the eigenfunction of A associated
with the eigenvalue λk.

Now, reconsider the results presented in the proof of
Lemma 3 which immediately delivers the desired transfor-
mation of the eigenfunctions ϕk, k ∈ N to the eigenfunc-
tions ϕ̄k = T−1ϕk of the associated boundary controlled
system (4) (resp. ):

ϕ̄k =
〈B̄, ϕk〉
〈B,ϕk〉

ϕk =
ϕk(`)

ϕk(a)
ϕk.

The subsequent transformation of the eigenfunctions of
the boundary controlled problem to the target coordinates
is achieved in a similar way. As the transformation T
has to commute with the system operator A the Volterra
transformation V satisfies

V A = ÃV,

where Ã : D(Ã)→ X defined by

Ã =
∂2

∂z2
− ĉ,

D(A)=
{
w∈H2(Ω)|βw(0)= dw

dz (0),(
αV −1w+ dV −1w

dz

)
(`) = 0

}
is the system operator associated with the target system
(3). From

λk(V ϕ̄k) = V Aϕ̄k = Ã(V ϕ̄k), k ∈ N
it follows that eigenfunctions ϕ̄k, k ∈ N of A transform to
eigenfunctions ηk, k ∈ N of Ã. On the other hand, in view
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of the explicit relation (5), the eigenfunctions transform
according to

ηk(z) = ϕ̄k(z)−
∫ z

0

κ(z, ζ)ϕ̄k(ζ)dζ.

Therefore, ηk(0) = ϕ̄k(0) and the eigenfunctions of the
target operator are given as the unique solution of the
initial value problem

Ãηk = λkηk, ηk(0) = ϕ̄k(0),
dηk
dz

(0) = βϕ̄k(0).

5. CONCLUSION AND OUTLOOK

This contribution supplements the results presented in
Wang and Woittennek (2013) concerning the extension of
the so-called backstepping method to parabolic systems
with constant coefficients and pointwise interior actua-
tion. In combination with the proposed numerical control
scheme the obtained results allow for the systematic and
efficient design of exponentially stabilizing feedback con-
trol laws for these systems. In contrast to the “classical”
backstepping approach a Volterra integral transformation
is not sufficient to obtain the desired control law. Instead
more involved Fredholm transformations come into play.
Moreover, the obtained results show that the invertibility
of such transformations are not guaranteed and have to be
carefully checked.

Directions for further research are manifold. The possibly
most interesting of them will be the generalization of
the obtained results to systems with spatially dependent
parameters, i.e., parabolic equations of the form (9) with
A given by

(Ax)(z) = g2(z)
∂2x

∂z2
(z, t) + g1(z)

∂x

∂z
(z, t) + g0(z)x(z, t).

Moreover, even more general input operators B could be
considered. As the results of Section 4 suggest this would
not essentially complicate the numerical implementation,
as long as A is a Riesz spectral operator A. However,
the discussion of the existence and invertibility of the
involved transformations will most likely turn out to be
much more involved. A possible prerequisite for such
extensions is possibly a deeper and rigorous discussion of
the computations leading to the Fredholm transformation
(13) as in Wang and Woittennek (2013). Other important
models possibly accessible by the proposed method are
wave equations with Kelvin-Voight damping.
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