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Abstract: We consider a recent method for generating an input signal with a desired auto
correlation while satisfying both input and output constraints for the system it is to be applied
to. This is an important problem in system identification, since the properties of the identified
model depend on the used excitation signal while on real processes, due to actuator saturation
and safety considerations, it is important to constraint the process inputs and outputs. Here, we
extend an earlier method to work for longer input horizons and to the multiple-input multiple-
output case. This corresponds to solving a fourth order multivariate polynomial in each time
step. Two different methods for solving this problem are considered: one based on convex
relaxation and the other based on a cyclic algorithm. The performance of the algorithm is
successfully verified by simulations and the effects of the input horizon length are discussed.
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1. INTRODUCTION

The problem of generating signals with specific second
order (auto correlation) properties arises in many fields.
In system identification, it is well known that the quality
of the identified model depends on the auto correlation
function of the applied input signal. Therefore, an essential
part of an identification experiment is the choice and the
realization of the excitation signal.

Input design is available in a variety of flavors but the
common central idea is that the statistical properties of the
estimates can be influenced by the choice of input signal
through its covariance. Initially, input design was formu-
lated as optimization of some measure of the covariance
matrix directly. While this is still often the case in practice,
research focus has since shifted to consider quality in terms
of the intended use of the model. Gevers and Ljung (1986);
Gevers (1991); Hjalmarsson et al. (1996) have introduced
identification for control, Bombois et al. (2006) proposed
least costly identification and Hjalmarsson (2009) looked at
applications oriented input design. In these later methods,
the input is designed in terms of the power spectrum and a
time signal then has to be realized. Including time domain
constraints on signals in these design is therefore difficult.
However, in applications it is often vital to limit input
and output amplitudes and rates of change. This is due
to actuator saturations, equipment strain and the desire
to keep the system within an operating region. Related
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to this, Rivera et al. (2003) introduced the plant-friendly
identification techniques where signal variances are low
and actuator strain is kept to a minimum.

Many methods for generating signals with time domain
constraints have been proposed. Hannan (1970); Rojas
et al. (2007); He et al. (2012) limit the design to binary
signals where it is easy to control the input amplitudes.
Schoukens et al. (1991); Pintelon and Schoukens (2001)
propose considering sums of sinusoids, where the ampli-
tude is controlled using the phase of the sinusoidal compo-
nents. Further, one can choose to exclude the time domain
constraints in the input design and enforce them when the
time domain signal is generated. For example, white noise
can be filtered to have the correct correlation properties
and then “clipped” to the right amplitude. This approach
is simple but changes the spectrum of the signal which can
lead to suboptimal results, see Hannan (1970).

This contribution presents a signal generation idea appli-
cable to the latter case. We consider time domain real-
ization of an amplitude constrained signal such that the
signal has a prescribed auto-correlation. The algorithm
tries to match the auto-correlation while maintaining input
and output constraints. Larsson et al. (2013) introduced
the idea for single-input single-output (SISO) systems and
Hägg et al. (2013) discussed extensions of the algorithm to
the case of uncertain system knowledge. Here, we extend
the algorithm to work for multiple-input multiple-output
(MIMO) systems and more general constraints.

The structure of the paper is as follows. In Section 2 the
receding horizon signal generation problem is set up and
extended to a more general setting. Section 3 and Section 4
presents two numerical approaches to solve the receding
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horizon optimization problem and the differences between
the two methods are discussed in Section 5. The proposed
method is evaluated through simulations in Section 6 while
Section 7 and Section 8 conclude the paper.

2. RECEDING HORIZON SIGNAL GENERATION

In this section the method by Larsson et al. (2013) is
extended to the multiple-input multiple-output (MIMO)
case. The objective is to generate N samples of the p
signals

ut = [ut(1), . . . , ut(p)]
T
, t = 1, . . . N,

with a prescribed auto-correlation

Rd(τ) = E
{
utu

T
t−τ
}
, τ = 0, . . . , n.

That is, the first n+ 1 lags of the desired auto correlation
function are matched. Furthermore, when the input signals
are applied to the p input and m output MIMO system

xt+1 = Fxt +Gut,

yt = Hxt,
(1)

the input and the output constraints

ut ∈ U ,
yt ∈ Y, t = 1, . . . , N,

(2)

should be satisfied. Here we will only consider amplitude
constraint i.e., |ut| ≤ umax and |yt| ≤ ymax but both
state constraints and other convex constraints are possible.
Note that the output constraints can be rewritten as time
varying constraints on ut since yt is linear in ut.

Defining the (biased) sample auto-correlation of the signals
u(t) for t = 1, . . . , N as

RN (τ) =
1

N

N∑
i=τ+1

uiu
T
i−τ . (3)

it is natural to formulate the constrained signal generation
problem as the following optimization problem

minimize
{ut}Nt=1

n∑
τ=0

‖RN (τ)−Rd(τ)‖2F ,

subject to (1) and (2)

where ‖ · ‖F denotes the Frobenius norm. However, as
noted by Larsson et al. (2013), even for the SISO case,
this optimization problem is non convex. Larsson et al.
(2013) simplified the problem by reducing the number of
optimization variables by introducing a receding horizon
solution to the problem. A natural extension of this to the
MIMO case is, at sample t, solve

minimize
{uk}t+Nu−1

k=t

n∑
τ=0

‖Rt+Nu−1(τ)−Rd(τ)‖2F ,

subject to x̂k+1 = Fx̂k +Guk,

ŷk = Hx̂k,

x̂1 = xt,

uk ∈ U
yk ∈ Y, k = 1, . . . , Ny

(4)

where Ny is the output horizon, i.e., how far in the future
we consider that the output should satisfy the constraints
andNu is the input horizon. The optimization is performed
over the whole input horizon but only the first sample,
u?1, is implemented, i.e., ut = u?1, and the optimization

is performed iteratively in receding horizon fashion. If
the output horizon is longer than the input horizon, i.e.,
Ny > Nu, we set uk+Nu = · · · = uk+Ny = 0. This approach
can be seen as an MPC where we try to follow a correlation
reference while satisfying input and output constraints of
the considered system.

Since the sample auto correlation Rt+Nu−1(τ) is quadratic
in u, the optimization problem (4) corresponds to minimiz-
ing a constrained, multivariate, fourth order polynomial.
Larsson et al. (2013) showed that for the SISO case with
input horizon Nu = 1 the optimization problem (4) can
be solved analytically. However, in the general case, the
problem is non convex and no analytic solution exists. In
fact, in the extreme case of Nu = N it is as hard to solve
as the original problem, but for a shorter input horizon Nu
the problem is small and can be solved numerically. In this
paper, we consider two different numerical approaches to
solve the optimization problem (4).

3. SDP RELAXATION

Solving the problem in (4) means finding the global min-
imizer of a real-valued, multivariate polynomial of degree
four over an admissible set, which is in general non convex
and difficult to solve. However, recent developments by
Lasserre (2000) on optimization of polynomials over a
set defined by polynomial inequalities offer a route to a
numerical solution to this problem. The theory is based on
the theory of moments and representation of polynomials
that are strictly positive on a compact, semi algebraic set.
It is shown that a family of convex LMI relaxations has an
associated increasing sequence of lower bounds converging
to the global optimal value. Here, we briefly present the
idea; for a complete treatment of the theory and related
references we refer to the work of Lasserre (2000).

Consider the polynomial optimization problem

g? =

{
min
x∈Rn

g0(x) : gi(x) ≥ 0, i = 1, . . . ,m

}
,

where gi are multivariate polynomials. First note that
g0(x)−g? is a positive polynomial on the constraint set and
that the problem of finding a sum of squares polynomial

p(x) = g0(x)− g? = q0(x) +

m∑
i=1

gi(x)q(x)

can be represented as an LMI if the degrees of the
polynomials qi(x) are fixed. The primal formulation is
constructed as a minimization over moments with support
on the constraint set. Then a condition by Putinar (1993)
on the moment and localizing matrices of the polynomials
can be used to construct a family of LMI relaxations with
the increasing sequence of lower bounds p?k. The dual LMI
corresponds to the condition that the polynomial p(x) is
a sum of squares polynomial, denote the optimum d?k. It
is proved by Lasserre (2000) that if the constraint set is
compact, under mild conditions, p?k = d?k ≤ g? and that

lim
k→∞

p?k = g?.

The price to be paid is that the size of the LMI relaxations
quickly grows very large. In fact, for a fixed number of
polynomial variables n, the number of primal and dual
variables grow polynomially in O(δn) and O(mδn), respec-
tively, where δ is half the polynomial degree. However, it
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has been noted that in practice the convergence is often
very fast and therefore the theory has proven to be useful
also for numerical implementation.

4. CYCLIC ALGORITHM

Cyclic algorithms have been successfully applied to many
signal generation problems, for example by He et al. (2012)
for applications to radar beam pattern generation and by
Jansson and Medvedev (2013) for stimulus design for eye-
tracking identification. Common to these applications is
that a complete sequence of input signals is generated and
only input constraints are considered. We use the cyclic
algorithm in a new setting, to solve the receding horizon
signal generation with both input and output constraints.

To be able to fit our problem into the cyclic algorithm
algorithm suggested by Stoica et al. (2008) we do not
directly solve the optimization problem (4) but instead
solve a related problem. Consider the cost function

min
{uk}t+Nu

k=t

‖R̃t+Nu−1 − R̃d‖2F . (5)

where R̃t+Nu−1 is a block Toeplitz matrix with first (block)
row equal to

[Rt+Nu−1(0) Rt+Nu−1(1) · · · Rt+Nu−1(n)]

and R̃d defined analogously. This cost functions satisfies
n∑
τ=0

‖Rt+Nu−1(τ)−Rd(τ)‖2F ≤ ‖R̃t+Nu−1 − R̃d‖2F .

Note that the optimum of this cost function need not be
the optimum of the original problem, However, if the cyclic
algorithm makes the cost of the right hand side small then
the cost of the original problem is also small. This can be
seen as a re-weighting of the original optimization problem
such that it is more important to match the correlation for
small lags (small τ) than for large lags.

Using the correlation matrices in (3), the Toeplitz matrix
containing these matrices can be written recursively as

R̃t+Nu−1 =
1

t+Nu − 1

(
(t− 1)R̃t−1 + ΦTUΦU −Q

)
where

ΦU =


uTt+Nu−1 0

...
. . .

uTt−n uTt+Nu−1
. . .

...
0 uTt−n


and Q is a block Toeplitz matrix with first (block) row[ −1∑

p=−n
ut+pu

T
t+p, . . . ,

−1∑
p=−1

ut+pu
T
t+p−n+1, 0

]
.

The optimization problem (5) can now be written on
recursive form as

min
{uk}t+Nu

k=t

∥∥∥∥ 1

t+Nu − 1

(
(t− 1)R̃t−1 + ΦTUΦU −Q

)
− R̃d

∥∥∥∥2
F

.

Rescaling this problem, the optimization at each time is

minimize
{uk}t+Nu

k=t

‖ΦTUΦU − Zt‖2F ,

subject to uk ∈ Ut+k, k = 0, . . . , Nu − 1,
(6)

where we have rewritten the output constraints as time
variable input constraints to shorten the notation. Note
that −Zt = (t−1)R̃t−1−Q− (t+Nu−1)R̃d only depends
on the previous inputs up to time t.

The idea of the cyclic algorithm for solving optimization
problems on the form (6) is the following. If Zt is a positive

semidefinite matrix then the class of signals {uk}t+Nu

k=t that

satisfy ΦTUΦU = Zt is given by ΦTU = Z
1/2
t UT , where U

is an arbitrary unitary matrix (UTU = I) and Z
1/2
t is a

Hermitian square root of Zt. The optimization problem
(6) can then be reformulated as

minimize
{uk}t+Nu

k=t
,U
‖ΦU − UZ1/2

t ‖2F ,

subject to uk ∈ Uk, k = 0, . . . , Nu − 1.

(7)

This problem is still non convex. However, for a fixed U
it is straightforward to find the optimal {uk}t+Nu

k=t and

vice versa for a fixed {uk}t+Nu

k=t . The idea is to alternate

between solving for {uk}t+Nu

k=t and U while keeping the
other variable fixed. This is repeated until convergence.
One can show that if the cost function for this optimization
problem is small then the cost function for the original
problem will also be small. For more details and properties
of the cyclic algorithm we refer to Tropp et al. (2005). The
steps in the cyclic algorithm are:

Step 0: Initialize U to an arbitrary matrix.
Step 1: Find the vector {uk}t+Nu

k=t that minimizes (7) for

U fixed. Since ΦU is an affine function of {uk}t+Nu

k=t
the problem becomes a quadratic optimization problem
with convex constraints. This problem can be solved
efficiently and accurately using numerical optimization.

Step 2: For {uk}t+Nu

k=t fixed, find a unitary U that mini-
mizes (7) disregarding the constraints. Defining the sin-

gular value decomposition (SVD) of Z
1/2
t ΦTU = ŪΣŨT ,

the optimal solution is given by Uopt = Ũ ŪT .
Step 3: Check if the solution satisfies the stopping crite-

rion, if not, goto Step 1.

The algorithm alternates between solving the two simpler
problems in step 1 and 2. Since this only involves solving a
quadratic optimization problem and an SVD it is possible
to solve relatively large problems on a standard computer.

4.1 Non positive semidefinite Zt

The matrix Zt is required to be positive semidefinite which
we cannot guarantee. Therefore, we first project Zt on to
the space of positive semidefinite matrices, i.e., we find

Z+
t = argmin

X∈S+
n

‖X − Zt‖.

where S+
n is the set of positive semidefinite n × n ma-

trices. This projection is easily done using spectral de-
composition (Henrion and Malick, 2012). Consider Zt =
V Diag(λ1, . . . , λn)V T , where λ1, . . . , λn are the eigenval-
ues of Zt and V is the corresponding matrix with eigen-
vectors. The projection can then be written

Z+
t = V Diag(max(0, λ1), . . . ,max(0, λn))V T ,

and Z+
t replaces Zt in the relevant expressions.
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4.2 Termination

We stop the algorithm when the relative error of the cost
between two iterations is smaller than a threshold ε.

5. COMPARISON

The two methods outlined in this paper have different
advantages and disadvantages. For the SDP relaxation
method it is possible to certify numerically and find the
global optimum to the constrained polynomial optimiza-
tion problem in many cases. However, the number of vari-
ables in the relaxed problem grows exponentially with the
length of the input horizon Nu and the number of inputs,
p. Due to memory limitations it is therefore only feasible
to solve problems where pNu is in the order of 10 on a
standard desktop computer.

With the cyclic algorithm on the other hand, larger prob-
lems can be solved. In each iteration one singular value
decomposition of a real matrix of size (n + 1)pNu + 2n
needs to be calculated and a constrained quadratic opti-
mization problem with pNu variables needs to be solved.
Thus the number of variables pNu can be in the order
of 1000. However, this method does not solve the original
problem but instead a related problem and not much can
be guaranteed in terms of the optimality of the solution
to the original problem, except that if the cost function of
the solved problem is small then the original cost function
is also small. Nevertheless, this method has been shown
to give good performance in many applications, see for
example the work by He et al. (2012) and their references.

6. EXAMPLES

In this section we present three simulation examples. The
first example illustrates the effect of the length of the
input horizon on the quality of the generated input signal
when no output constraints are considered. In the second
example we look at an example with output constraints
where the choice of input horizon is important. In the final
example we apply the algorithm to the four tank process,
a MIMO system with input and output constraints.

Throughout the examples, we set the relative error stop-
ping criterion for the cyclic method to ε = 10−5 and
the constrained quadratic optimization problem is solved
with the Matlab command quadprog. The SDP relaxation
solution to the multivariate polynomial of degree four is
calculated using GlotiPoly by Henrion et al. (2009), a
polynomial global optimization tool for Matlab.

6.1 Pseudo random white noise

We look at the effect of longer input horizons on the signal
generation performance of the two numerical methods.
The results are compared to the optimal solution with
input horizon Nu = 1 introduced by Larsson et al.
(2013), where it is possible to find the global optimum
analytically. We generate a white noise sequence with unit
variance by matching n = 50 correlation lags. The input
constraints are |ut| ≤ 1.5. Here we are only interested
in the signal generation and thus we do not consider
any output constraints. Three different input horizons are

101 102 103 104
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Sample

E
rr

o
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(a) SDP-relaxation method.
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101
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E
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(b) Cyclic algorithm.

Fig. 1. Convergence rate of the method for input horizons,
Nu = 1 ( ), Nu = 2 ( ) and Nu = 5 ( ). The
analytic solution with Nu = 1 is shown as ( ).

considered, Nu = 1, 2, 5, for both methods. N = 50000
samples are generated and the convergence rate of the two
methods for the different settings are compared.

In Figure 1, the cost
∑n
τ=0 ‖RN (τ) − Rd(τ)‖2F is plotted

as a function of N . The SDP relaxation method is able
to find the global optimum for all cases and for all time
instances except at the first sample. Hence it is expected
that the analytically optimal solution for Nu = 1 should be
close to the SDP relaxation solution. Looking at Figure 1,
this is indeed the case. One should also note that the
performance for all input horizons are very close to each
other. For the cyclic method we loose a factor of about
two in performance compared to the analytically optimal
solution for the case Nu = 1 due to the suboptimality of
the solutions. However, the convergence rate seems to be
the same. Again, the length of the input horizon does not
seem to have any significant effect on the performance.

6.2 AR(1) process

We generate a signal which is to be applied to the SISO
system

G(z) =
z + 1.25

z2 + 0.4z + 0.6
with a non minimum phase zero at znmp = −1.25. The
goal is to identify the location of this zero, and the input
signal that minimizes the variance of this estimate is shown
by Mårtensson et al. (2005) to be the AR(1) process with
auto correlation function rd(τ) = a|τ |(1− a2)−1, where
a = z−1nmp = −0.8. The generated signal should also satisfy
|u(t)| ≤ 1.5 and |y(t)| ≤ 1.2. The output horizon is chosen
as Ny = 5 and for each of the two methods we study the
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Fig. 2. Convergence rate for the SDP relaxation method
with Nu = 1 ( ), Nu = 5 ( ) and for the cyclic
method with Nu = 1 ( ), Nu = 5 ( ).

two cases, Nu = 1 and Nu = Ny = 5. We set N = 1000 and
the number of auto correlation lags to match to n = 50.

The output constraints are never violated for either case.
However, looking at the cost function in Figure 2, it is
seen that by using a longer input horizon Nu = 5 instead
of Nu = 1, the performance is improved. This is due to the
added flexibility from the longer input horizon. Instead of
having ut+1 = · · · = ut+4 = 0, these variables can be
used to control the future predicted output of the system,
making it possible to generate a sequence with properties
closer to the desired ones. Hence, in certain applications it
is beneficial to consider longer input horizons.

6.3 The quadruple tank system

We consider a quadruple tank system. Its main com-
ponents are two lower tanks, two upper tanks and two
electrical pumps. Each pump delivers water to one of the
upper tank and one of the lower tanks. Water also flows
from the upper tanks into the lower tanks and from the
lower tanks into the water basin through small holes at the
bottom of each tank. The two input signals to the system
are the applied voltages to the pumps and the outputs are
the water level in each of the four tanks. See Johansson
et al. (1999) for details about the considered process.

From a nonlinear model of the plant from Johansson et al.
(1999), a linearized continuous time model of the process,
around a working point x0, u0, is given by

ẋt =

τ1 0 −τ3 0
0 τ2 0 −τ4
0 0 τ3 0
0 0 0 τ4

xt +
1

A

 k1γ1 0
0 k2γ2
0 k2(1− γ2)

k1(1− γ1) 0

ut,
yt = xt,

where τi = −aiA
√

g
2x0

i

. The parameter values are taken

from Larsson (2011). This model is discretized using zero
order hold at a sampling rate of 1 Hz, see Larsson (2011).

We want to excite the system with an input signal with the
low pass FIR spectrum with n = 10 lags shown in Figure 3
as suggested by Larsson (2011). To keep the water levels
close to the working point, we constrain the four outputs
to satisfy |yt| ≤ 1.3 cm. We also require that the input
signal amplitude should be less than 2 V. N = 1000 input
samples are generated using both solution methods.

The cost function,
∑n
τ=0 ‖RN (τ) − Rd(τ)‖2F , for the gen-

erated sequences are 4.4 · 10−3 and 9.7 · 10−3, respectively

compared to the norm of the desired auto correlation se-
quence,

∑n
τ=0 ‖Rd(τ)‖2F ≈ 0.38. Again the SDP relaxation

method performs slightly better. For comparison, a white
Gaussian noise sequence filtered through a spectral factor
of the FIR-spectrum gives an average cost of 7.7 · 10−2

over 100 realizations. Hence the properties of the signals
generated with the proposed method are better than for
filtered white noise. Moreover, the output constraints are
never violated for the proposed method while there are in
average 25 violations for the filtered white noise.

Figure 3 shows the spectra of the generated signals and
the desired spectrum. The spectra for the generated input
signals are calculated using a Hanning window of width
50 (Stoica and Moses, 2005). Both methods successfully
generate an input signal with the desired properties.

7. ROBUSTNESS ISSUES

The method in this paper requires perfect knowledge of
the true system to predict the effect of the input on the
output, which is is not possible in real applications since
the model will often have some uncertainties due to under
modeling and noise. To overcome this, a robust and adap-
tive implementation of the method for the SISO case with
input horizon one was proposed by Hägg et al. (2013). The
method is made robust to model uncertainties by using
tools from robust MPC as presented by Maciejowski (2002)
and the input signal is generated to satisfy the output
constraints for all possible models in some uncertainty
region. If the uncertainties are large, the input could be
quite conservative to satisfy the robust output constraints.
Furthermore, the propagation of the uncertainty in time
will eventually force the input to be zero.

The sample by sample nature of the proposed method does
however allow for real time implementation. One sample of
the generated input can be applied to the system and the
resulting output measured. Measured data can be used to
estimate the state of the system and a new input sample
can be generated using this new information, reducing
the propagated uncertainty. Hägg et al. (2013) suggest
re-identifying the model recursively to reduce the model
uncertainties. These results should be directly applicable
to the proposed method making it practically useful.

8. CONCLUSIONS

We extended the signal generation method proposed by
Larsson et al. (2013) to the MIMO case and to general
input horizon lengths. This is formulated as an receding
horizon algorithm where the objective is to generate a
signals over a finite horizon such that the signal has a
specified sample auto covariance while satisfying input and
output constraints of the system which the signal is to
be applied to. The resulting optimization problem is a
constrained minimization of a polynomial of degree four,
which is in general non convex. Two methods from the
literature for solving such problems were investigated: a
convex relaxation method and a cyclic algorithm.

With the convex relaxation method it is in many cases
possible to find the global optimum. However, due to the
exponential growth of the complexity, the method is only
feasible for small problems. The method using the cyclic
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Fig. 3. The estimated spectra of generated for SDP relax-
ation ( ) and cyclic method ( ). Desired input
spectrum is shown as ( ). Φij is the cross spectrum
between u(i) and u(j).

algorithm works for larger problems but not much can be
said about the convergence of the method. Still, it has
shown good performance in many applications.

Three simulation examples illustrate the properties of
the methods. First, the convergence rate was investigated
when the length of the input horizon is varied. It was noted
that quality of the generated signal is relatively unaffected
by the length of the input horizon. This was also noted for
the binary input case by Rojas et al. (2007). However,
as noted in the second example, the longer input horizon
could improve the performance if output constraints are
considered. In the third and final example, the MIMO
capabilities of the methods were shown.
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