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Abstract: This paper addresses the problem of state and parameter estimation for the class of
affine systems in the state space representation. The method does not require a specific state
representation of the system and consists of designing a switched observer that, under certain
conditions given in the paper, allows for the state and parameter estimation errors to converge to
zero. Assuming that the parameters to be estimated belong to a given polytope, the idea of the
method is to recast the parameter estimation problem as a switching rule design for an auxiliary
switched system whose matrices at the equilibrium correspond to the matrices of the system to
be estimated. A guaranteed cost is used in the design and the switching rule is based on a max
composition of a set of quadratic functions of the observation error. The method is simple and
has low computational cost. The main disadvantage regards the amount of information that is
needed to have both state and parameters estimated simultaneously. The case when there is no
parameter to estimate the method reduces to a standard Luenberger observer with guaranteed
cost.
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1. INTRODUCTION

In many practical applications, the situation where all
state variables are available from measurement is not
realistic. A similar situation occur with the parameters
of the system, and usually, some of them are not precisely
known. Pointed by Postoyan et al. (2012), despite of its
importance, the problem of estimating simultaneously the
state and parameters of the system is not widely explored
as a single problem.

Although some of the current approaches for both state
observation and parameter identification can be applied to
a wide class of problems (Farza et al., 2009), even in the
non-linear case, for example Zhou et al. (2013); Farza et al.
(2009). These methods usually lead to complex observer
structures found in Zhou et al. (2013); Fridman et al.
(2006), or require a large number of auxiliary variables
to be estimated Farza et al. (2009). Adaptive observers
are often based on a transformation of the original system
into some canonical form in which the presence of the
unknown parameter is simplified to some extent in Zhang
(2005). Few adaptive observers in non canonical form can
be found in the literature, for instance Zhang (2005);
Tyukin et al. (2009). As described in Fridman et al. (2006),
the output injection for both linear feedback or sliding
mode is commonly used, but a kind of persistent excitation

? This work was supported in part by CNPq under grant
304834/2009-2 and CAPES, Brazil.

condition is required and, in general, this condition cannot
be easily checked.

In this paper we propose a switched observer approach to
cope with the problem of simultaneously estimating the
states and parameters of the system. The proposed ob-
server is composed of a set of subsystems, an observer gain
and a switching rule. The matrices of the subsystems are
obtained from the vertices of the polytope that define the
bounds on the parameters to be estimated. The observer
gain consists of a switched gain matrix and the switching
rule is determined in order to guarantee the convergence
of the state and parameter errors to zero with guaran-
teed cost performance. The sliding mode dynamics of the
switched system are represented according to Filippov’s re-
sults (Filippov, 1988, p. 50). An LMI approach is proposed
to solve the problem, i.e. to find the observer gain and the
switching rule. The LMI is dependent on the observer state
and its feasibility requires the observer state trajectory
does not leave a given polytope representing a bound on
the observer state. The vertices of this polytope can be
adjusted to met this requirement and this condition plays
the role of well known persistent excitation requirements
found in usual adaptive schemas for parameter estima-
tion problems. The paper is organized as follows. After
a notation paragraph, the next section is devoted to some
preliminaries and to present the problem formulation. The
main result is presented in the Section 3. The results are
illustrated in the section 4 through a mechanical system
and some concluding remarks end the paper. This paper
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is an extension of Grala Pinto and Trofino (2014) in the
sense that a guaranteed cost performance is now included
in the design problem.

Notation. Rn denotes the n-dimensional Euclidean space,
Rn×m is the set of n × m real matrices; ‖ · ‖ stands for
the Euclidian norm of vectors and its induced spectral
norm of matrices; ? represents block matrix terms that
can be deduced from symmetry; 0n and 0m×n are the
n×n and m×n matrices of zeros, In is the n×n identity
matrix. 1n and 1m×n are matrices of dimension n × n
and m × n where all entries are the unity. For a real
matrix S, ST denotes its transpose and S > 0 (S < 0)
means that S is symmetric and positive-definite (negative-
definite). For a set of real numbers {v1, . . . , vm} we use
arg max{v1, . . . , vm} to denote a set of indexes that is the
subset of {1, . . . ,m} associated with the maximum element
of {v1, . . . , vm}. λmax(.) and λmin(.) denotes the maximum
and minimum eigenvalue of a symmetric matrix. For a set
of integers M the notation P(M) denotes its power set.

2. PROBLEM STATEMENT

Consider the system

ẋ(t) = Ax(t) + b+Dr(t) , y(t) = Cx(t) (1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rny is
the measurement vector and the input r(t) ∈ Rnr is a
known excitation signal. It is assumed that the system is
exponentially stable. The matrices C ∈ Rny×n and D ∈
Rn×nr are assumed to be known. The matrix A ∈ Rn×n
and vector b ∈ Rn are unknown and it is assumed that
(A, b) is an element (to be found) of the convex hull

(A, b) ∈ Co
i∈M
{(Ai, bi)} =

m∑
i=1

θi (Ai, bi)

where Co
i∈M
{.} denotes the convex hull,M := {1, . . . ,m} is

a set of integers, (Ai, bi) are given matrices, and the vector

θ = [θ1 . . . θm]
T

is an element of the m-dimensional unity
simplex

Θ =

{
θ ∈ Rm : θi ≥ 0, ∀i and

m∑
i=1

θi = 1

}
,

From now on we use the notation

A = Aθ̄ =

m∑
i=1

θ̄iAi, b = bθ̄ =

m∑
i=1

θ̄ibi, (2)

where θ̄ ∈ Θ is a parameter to be found, characterizing
the system matrices A, b of (1) as an element of the above
convex hull. Observe Aθ̄ is Hurwitz from assumption.

Problem 1. Given the matrices Ai, bi, C, D, the measure-
ment signal y(t) and the input signal r(t), for t ≥ 0, the
problem of concern is to find a switching rule and observer
gains Li such that the following switched observer

ż(t) = Aθz(t) + bθ + Lθ(y(t)− Cz(t)) +Dr(t) (3)

(Aθ, bθ, Lθ) =

m∑
i=1

θi(x, z)(Ai, bi, Li) (4)

satisfies the following convergence properties:

lim
t→∞

z(t) = x(t) , lim
t→∞

θ(x(t), z(t)) = θ̄ (5)

and minimizes an upper bound of the following guaranteed
cost

J = min
Lθ,σ(ε)

max
e0∈E0,
θ̄,θ∈Θ

∫ ∞
0

ξT (t) ξ (t) dt (6)

where θ(x, z) ∈ Θ is a piecewise continuous multivalued
function defined according to Filippov’s results (Filippov,
1988, p. 50) for discontinuous right hand side equations.
E0 denotes a given set of initial conditions e0 = x(0)−z(0)
and ξ(t) is the performance output

ξ(t) = Cpe(t) +Dpδ(t) (7)

where Cp, Dp are given weighting matrices, and

ε(t) = y(t)−Cz(t), e(t) = x(t)−z(t), δ(t) = θ̄−θ(z(t), x(t)

are, respectively, the output estimation error, state es-
timation error and parameter estimation error, and the
switching rule is represented by a piecewise constant set
valued function σ(ε(t)) ⊆ P(M). 2

Note that ε = Ce. Recall that when σ (ε(t)) is a singleton,
namely when σ (ε(t)) = {i}, the parameter θ(x(t), z(t))
is such that θi(x(t), z(t)) = 1 and thus θj(x(t), z(t)) =
0, ∀j 6= i. When σ (ε(t)) is not a singleton and a sliding
mode is occurring, the role of θ(x(t), z(t)) is to keep
the system vector field on the tangent hyperplane of the
switching surface where the sliding motion is taking place.
See (Filippov, 1988, p. 50) for details.

Note that when σ(ε(t)) = {i} is a singleton the observer
(3) takes the form

ż(t) = Aiz(t) + bi + Li (y(t)− Cz(t)) +Dr(t) (8)

From the states of the system, the observer and the decom-
positions (2), (4) we get the dynamics of the estimation
error as follows.

ė (t) = (Aθ̄ − LθC) e (t) + (Aθ̄ −Aθ) z (t) + (bθ̄ − bθ) (9)

Recall that θ̄ is an unknown element of the unity simplex.

In order to estimate θ̄ and the system state with the
convergence properties (5), let us consider the following
set of m auxiliary functions vi

(
e, θ̄
)
.

vi(e, θ̄) = eTCTPiCe+ 2eTCTSi − 2eTCTSθ̄ + eTQθ̄e

= εTPiε+ 2εTSi − 2εTSθ̄ + eTQθ̄e (10)

where Sθ̄ =
m∑
i=1

θ̄iSi, Qθ̄ =
m∑
i=1

θ̄iQi.

Based on the above auxiliary functions vi(e, θ̄) consider a
switching rule characterized by the set-valued function

σ(ε) = arg max
i∈M
{vi
(
e, θ̄
)
}

= arg max
i∈M
{εTPiε+ 2εTSi}

(11)

Observe that despite the dependence of vi with respect to
(e, θ̄), the switching signal σ is a function of ε only.

The following result, known as Finsler’s Lemma, found in
Boyd et al. (1997), is of interest to this paper.

Lemma 1. (Finsler Lemma). Let W ⊆ Rs be a given
polytopic set, M (.) : W 7−→ Rq×q, G (.) : W 7−→ Rr×q
be given matrix functions, with M (.) symmetric. Let
Q (w) be a basis for the null space of G (w). Then the
following are equivalent:
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(i) ∀w ∈ W the condition zTM (w) z > 0 is satisfied
∀z ∈ Rq : G (w) z = 0.

(ii) ∀w ∈ W there exists a matrix function L (.) :
W 7−→ Rq×r such that M (w) + L (w)G (w) +

G (w)
T
L (w)

T
> 0.

(iii) ∀w ∈ W the condition Q (w)
T
M (w)Q (w) > 0 is

satisfied.
(iv) ∀w ∈ W, ∃α ∈ R such that the condition M (w) +

αG (w)
T
G (w) > 0 is satisfied.

3. MAIN RESULTS

In order to show the desired convergence (5), in this paper
we propose the use of a Lyapunov function based on the
max composition of the set of auxiliary quadratic functions
in (10) as indicated below.

V (e, θ̄) = max
i
{vi(e, θ̄)} (12)

= max
i
{eTCTPiCe+ 2eTCTSi} − 2eTCTSθ̄ + eTQθ̄e

Note that V (e, θ̄) is locally Lipchitz but not differentiable
everywhere and thus a special attention will be devoted
to show the decreasing of V (e, θ̄) based on the directional
derivative. Moreover, from (11) and (12) it follows that
vi(e, θ̄) = vj(e, θ̄) ∀i, j ∈ σ(ε). As θi(x, z) = 0 if i /∈ σ(ε)
we can represent V (e, θ̄) in the form

V (e, θ̄) =

m∑
i=1

θi(x, z)vi(e, θ̄) (13)

= eTCTPθCe+ 2eTCT (Sθ − Sθ̄) + eTQθ̄e

where Pθ =
∑m
i=1 θi(x, z)Pi, Sθ =

∑m
i=1 θi(x, z)Si and

Sθ̄, Qθ̄ were previously defined.

Before presenting the main result of this paper, which
establishes conditions for the convergence requirements
(5), let us introduce some auxiliary notation.

Let ℵθ : Rm 7→ Rr×m be a linear annihilator of θ as in
the Definition 1 of Trofino et al. (2011), i.e. ℵθ is a linear
function and ℵθ θ = 0,∀θ ∈ Θ, let α ∈ R+ be a given
positive scalar, Z and E0 given polytopes.

Consider the following LMI conditions:

Ψ +Gcℵea + ℵTeaG
T
c ≥ 0, e(0) ∈ E0, θ̄, θ ∈ Θ (14)

CTPiC +Qi > 0, i ∈M (15)

NT
(
Γd +GdCd + CTd G

T
d

)
N < 0, z ∈ Z, θ̄, θ ∈ Θ (16)

where

Ψ =

[
−CTPθC −Qθ̄ ?
STθ̄ C − S

T
θ C γ

]
,

Γd =

[
Γ +GaCa + CTa G

T
a ?

0m(3n+m)×3n+m Im ⊗ (Γ +GaCa + CTa G
T
a )

]

Γ =


αCT (Pθ − Pθ̄)C + CTp Cp ? ? ?

CTPθC +Qθ̄ 0n ? ?
CTPθC +Qθ̄ 0n 0n ?
−αSTC +DT

p Cp −STC 0m×n Φ


(17)

Φ(z) = −STC (Az +B)− (Az +B)
T
CTS +DT

pDp

Ca(θ̄, θ) = [GAθ̄ −HθC −G 0n 0n×m ] ,

Cb(θ̄, θ, z) =

[
0n 0n −In Az +B

0r×n 0r×n 0r×n ℵθ̄−θ

]

Cd(θ̄, θ, z) =

 θ̄ ⊗ I3n+m −Im(3n+m)

0r(3n+m)×3n+m ℵθ̄ ⊗ I3n+m

Cb 0n+r×m(3n+m)

0m(n+r)×3n+m Im ⊗ Cb


Ñ =

 −I3n+m I3n+m . . . I3n+m

[ 01×3n 11×m ] 01×m(3n+m)

0m×3n+m Im ⊗ [ 01×3n 11×m ]


N = null

(
Ñ
)
,

Ga = [ In In 0n 0n×m ]
T

Az = [A1z A2z . . . Amz ]
B = [ b1 b2 . . . bm ]

, ea =

[
e(0)

1

]
Define ℵea as the linear annihilator of ea.

The decision variables of the LMI problem (15) and (16)
are

Pi ∈ Rny×ny , Qi ∈ Rn×n, G ∈ Rn×n,
Hi ∈ Rny×n, Gc ∈ Rn+1×r1 , γ ∈ R,
Gd ∈ R(m+1)(3n+m)×(m+r)(3n+m)+(m+1)(n+r),

S = [ S1 S2 . . . Sm ] ∈ Rn×m.

Considering the switching rule (11) and the above notation
we can establish the following theorem.

Theorem 1. Suppose the system (1) is stable and satisfies
the decomposition (2). Let Z and E0 be given positively
invariant polytopes for the system (3). Suppose there
exist matrices Pi, Qi, Si, Hi, i ∈ M, Gc, Gd and G
satisfying the LMI conditions (14), (15) and (16) where γ
is minimized and define Li = G−1Hi. Then, γ is an upper
bound for the guaranteed cost functional (6), the switched
observer (3) under the switching rule (11) leads the error
convergence (5) to be satisfied and (12) is a Lyapunov
function for the error system (9).

Proof 1. The proof consists of showing that if the LMIs
(14)-(16) are satisfied, then the locally Lipschitz function
(12) satisfies the conditions

φ1 (e)≤ V
(
e, θ̄
)
≤ φ2 (e) , (18)

DfθV (e, θ̄)≤−φ3 (e) , (19)∫ ∞
0

ξT (t) ξ (t) dt≤ γ, ∀e0 ∈ E0, θ̄, θ ∈ Θ (20)

where φ1 (e), φ2 (e), and φ3 (e), are continuous positive
definite functions, DhV

(
e(t), θ̄

)
is the Dini’s directional

derivative of V in the direction h and fθ denotes the vector
field of the error system (9), i.e.

fθ = (Aθ̄ − LθC) e−Aθz − bθ +Aθ̄z + bθ̄ (21)

In particular, for V in (12) it follows from (Lasdon, 1970,
p.420) that

DhV
(
e, θ̄
)

:= max
i∈σ(e)

∇vi
(
e, θ̄
)
h (22)

where ∇vi
(
e, θ̄
)

is a row vector denoting the gradient of

vi
(
e, θ̄
)
. The local asymptotic stability follows from (18),

(19) using the same arguments in (Filippov, 1988, p.155).
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The proof that (15) implies (18) and (16) implies (19) is
identical to the proof of the Theorem 1 of Grala Pinto
and Trofino (2014) and will be omitted here due to space
limitation. In fact, with the results in this reference it is
easy to show that (16) implies that

DfθV
(
e, θ̄
)

+ α
(
V (e, θ̄)− V̄ (e, θ̄)

)
+ ξT ξ < 0 (23)

In the sequel, the above expression, jointly with the LMI
(14), are used to show the performance requirement as
indicated in (20).

Since V
(
e, θ̄
)

is locally Lipschitz, it follows that for almost

all t ∈ [0,∞) the time derivative of V
(
e, θ̄
)

exists and
coincides with the directional derivative, i.e.

DfθV
(
e, θ̄
)

=
d

dt
V
(
e, θ̄
)

(24)

Therefore we have

lim
t→∞

V
(
e(t), θ̄

)
− V

(
e(0), θ̄

)
= lim
t→∞

∫ t

0

d

ds
V
(
e(s), θ̄

)
ds

(25)

As limt→∞ V
(
e(t), θ̄

)
= 0 in view of (18) and (19) and

α
(
V
(
e, θ̄
)
− V̄

(
e, θ̄
))

is non-negative, see Grala Pinto and
Trofino (2014) for details, we conclude from (23),(24),(25)
that ∫ ∞

0

ξT (t) ξ (t) dt ≤ V
(
e(0), θ̄

)
(26)

Keeping in mind that ℵeaea = 0, by multiplying the left
hand side of (14) by ea to the right and by its transpose
to the left we get

0 ≤ eTaΨea =eT (0)
(
−CTPθC −Qθ̄

)
e(0)+

+ 2eT (0)
(
STθ̄ C − S

T
θ C
)

+ γ ∀e(0) ∈ E0

The above expression can be rewritten as

V (e(0), θ̄) ≤ γ, ∀e(0) ∈ E0 (27)

and from (26),(27) we get (20), completing the proof. 2

Remark 1. Note that the equilibrium e(t) = ė(t) = 0,
θ = θ̄ is always enforced by a sliding mode when the
system parameters are in the interior of Co

i∈M
{[Ai, bi]}. This

implies that, if sliding modes are to be avoided, no exact
parameter characterization can be found in general.

Remark 2. As mentioned in the previous remark, no exact
parameter characterization is expected if the switching
frequency is bounded. As in practice this situation is
always the case, we present in the sequel a procedure to
get an approximation of the Filippov’s convex parameter
θ(x, z) used in the switched observer (3). The idea is usual
in PWM based models Sira-Ramı́rez (1993) and consists
of replacing the ideal sliding mode dynamics associated
with unbounded switching frequency, with a bounded but
sufficiently high switching frequency. For this purpose it
is required that the switching frequency must be higher
than the spectrum of the subsystems, in the sense that
the switching period is associated with a time scale where
the subsystems vector fields can be considered almost
constant in this small time interval. In this case, the
Filippov’s convex parameter θ(x, z) can be approximated
by the average value of a logical variable. To illustrate
the ideas, suppose that fi(e(t)) are Lipschitz continuous
functions representing the vector fields of the subsystems

and f(e(t)) =
m∑
i=1

θi(e(t))fi(e(t)) is the vector field of the

switched system where θi(e(t)) is the convex combination
parameter defined according to Filippov’s results (Filip-
pov, 1988, p.50). Consider the following approximation:

f(e(t)) =

m∑
i=1

θi(e(t))fi(e(t)) ∼=
1

T

∫ t

t−T

m∑
i=1

µi(t)fi(e(t))dt

(28)
where T > 0 is a sufficiently small time interval, µi(t) are
logical variables defined as{

µi(t) = 1 for some i ∈ σ(e(t))
µj(t) = 0 for j 6= i

(29)

and σ(e(t)) is a set valued function defining the switching
rule in the ideal scenario (arbitrarily fast switchings). As
the functions fi(e(t)) are Lipschitz, the more T is reduced,
the more fi(e(t)) approaches a fixed value in the interval,
in the sense that f(e(t)) is practically constant in the
interval [t − T, t]. Thus, for sufficiently small T > 0, the
right hand side of (28) can be approximated using the
expression∫ t

t−T

m∑
i=1

µi(t)fi(e(t)) dt ∼=
m∑
i=1

(∫ t

t−T
µi(t)dt

)
fi(e(t))

(30)
that in turn yields the approximation

θi(e(t)) ∼=
1

T

∫ t

t−T
µi(t)dt (31)

that is valid for a sufficiently small T > 0. Observe
that (31) express an approximation based on the average
value of the logical variables µi(t) in the interval T . This
approximation can be used to get a duty cycle for the
switching devices.

Remark 3. Observe that one of the requirements for the
convergence (5) to be true is that the polytope Z must
be positively invariant for the observer dynamics (3). LMI
conditions for a given polytope to be positively invariant
can be found in Trofino and Dezuo (2013) and can be used
here to check the positively invariance requirement. This
condition can be viewed as a type of persistent excitation
condition that appears in parameter estimation problems.
The nice feature of this condition is that it is easy to
check online if this condition is satisfied or not during the
parameter identification experiment. Recall that the per-
sistent excitation condition appearing in several parameter
identification methods is difficult to be checked Farza et al.
(2009). An interesting point that we are investigating is to
find the best polytope and input r(t) that maximizes the
chances of the LMI to be feasible. In this direction the
function Φ(z) in (17) plays an important role.

4. NUMERICAL EXAMPLE

Consider the mechanical system shown in the Fig. 1 where
the blocks have masses ma,mb, the springs have constants
ka, kb and the movement is subjected to viscous friction
with coefficients ba, bb respectively. This system can be
represented as in (1) with
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Fig. 1. Two mass-spring-dumper example

A =


0 1 0 0

−ka + kb
ma

− bb
ma

ka
ma

0

0 0 0 1
ka
mb

0 − ka
mb
− ba
mb

 , b =


0
0
0
F

mb


(32)

C = [ 02 I2 ] , D = 0 (33)

The system state is x = [ da va db vb ], which corresponds
to the blocks displacement (da, db) with respect to their
equilibrium condition and velocities (va, vb) of the blocks.
The external force u = F0 + F is applied to the block
b, where F is the force deviation and F0 is the force
at the equilibrium. The external force is supposeed to
be constant. The measurement vector corresponds to the
position and velocity of the block b. The weighing matrices
for the performance output have been chosen as Cp =

[I4 04×2]
T

and Dp = [02×4 02]
T

, i.e. ξ = e.

The first problem to be considered is to estimate the states
and the spring constant ka, given the others parameters.
The only information that will be used about ka is that
it is a bounded parameter ka ∈ [1.5; 2.5]. The remaining
parameters are kb = 3, ba = 3, bb = 3, ma = 3 and mb = 4,
F = 2. The units are in the MKS system.

The LMIs (14), (15) and (16) were solved for α = 1 and the
polytope Z such that z1 ∈ [0.3, 0.6], z2, z4 ∈ [−0.1, 0.1] and
z3 ∈ [1.0, 1.5]. To illustrate the impact of the set of initial
conditions in the guaranteed cost we have considered four
different polytopes E0. The simulation results are shown in
the Table 1 where ei(0) denotes the i-th entry of the initial
error vector e(0) = x(0)− z(0). To illustrate the degree of
conservatism of the guaranteed cost upper bound proposed
by the theorem we have used a grid technique on E0 to
get, by simulation, the energy of the performance output
during the state and parameter estimation experiment for
each initial condition e0 in the grid. In the column ‖ξ(t)‖22
of the table, is indicated the largest energy obtained from
the points (initial condition) in the grid.

To emphasize how much the energy of the performance
output can be reduced by taking the guaranteed cost into
account when designing the switching rule we have also
indicated, in the last column of the table, the energy of the
performance output obtained with the same grid technique
applied to the results in Grala Pinto and Trofino (2014)
that does not take into account any performance criterion.

The measurement signal was obtained by simulation con-
sidering the true model with the nominal value of the
spring constant ka = 2. In this case the decomposition

(2) results θ̄ = [ 0.5 0.5 ]
T

. Observe from the Table 1 that
the bound on the guaranteed cost proposed by the theorem
and the one obtained by simulation are very close in the

Table 1. Guaranteed cost index

# E0 γ ‖ξ‖22 ‖ξ‖22
1 {ei (0) = −1} 2.282 1.999 8.012

2 {ei (0) ∈ [−1.0, 0.0]} 6.443 2.933 8.012

3 {ei (0) ∈ [−1.0, 1.0]} 8.582 4.796 8.366

4 {ei (0) ∈ [−1.5, 1.5]} 18.36 10.82 18.82

0 1 2 3 4 5 6 7 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Output error  ε=y−Cz

Time [s]

ε
=

y
−

C
z

 

 

ε with performance   

ε without performance   

Fig. 2. Output error convergence with and without guar-
anteed cost in the design.

0 2 4 6 8 10 12 14 16 18 20
1.4

1.5
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Fig. 3. Parameter convergence with and without guaran-
teed cost in the design. ka = θ11.5 + θ22.5.

case 1. The gap in the cases 2,3,4 can be reduced by taking
a grid with more points. In this example the grid was
obtained by considering a precision of 0.1 for each compo-
nent ei inside the polytope. The output estimation errors,
corresponding to the case 2 of Table 1, is indicated in the
figure 2. Recall that in addition to the state estimation we
are also estimating the parameter ka. The parameter error
convergence in this case is shown in the Figure 3. Observe
that the output estimation error is practically zero after
5 seconds, but the parameter estimation error takes more
time to converge to zero. The fast convergence of ε is a
consequence of the choice of the weighting matrices Cp, Dp

leading to ξ = e.

The second problem to be considered in this example is to
estimate the states and the unknown input force F , given
the others parameters. The only information that will be
used on F is that the input force is bounded F ∈ [1.5; 2.5].
The remaining parameters are ka = 2, kb = 2, ba = 3,
bb = 3, ma = 3 and mb = 4. The units are in the MKS
system.

The LMIs (14), (15) and (16) were solved for the same
previous α and polytope Z. The guaranteed cost was
obtained considering the same polytope E0 of case 2 in the
Table 1. The simulation results are shown in the Figure
4 where the unknown input is piecewise constant in the
interval F ∈ [1.5; 2.5]. To illustrate the impact of the
weighting matrices charactering the performance output
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Fig. 4. Unknown input force estimation with and without
guaranteed cost in the design. F = θ11.5 + θ22.5.

we have considered two different weighting matrix Dp and
the same Cp of the previous case. In the first case we have
a small weighting on the parameter estimation error with

the choice Dp = [02×4 βI2]
T

with β = 0.01 and a large
weighting in the second case with β = 100. As expected
we have a faster parameter convergence in the second case.

Finally, as mentioned in the Remark 3, one interesting
feature of the proposed design condition is that it is easy
to check on line if the positively invariance condition
on the polytope Z is satisfied during the identification
experiment. In fact, during all the simulation results this
invariance condition was satisfied and thus the parameter
estimation error is guaranteed to converge to zero.

5. CONCLUSION

A switched observer design with guaranteed cost to cope
with the problem of estimating simultaneously the states
and parameters of an affine system is proposed in this
paper. An LMI approach is used to minimize an upper
bound of the cost, for a set of initial conditions, and
to get the observer gains and switching rule leading the
state and parameter estimation errors to converge to
zero. The LMI depends on the observer state and its
feasibility requires the observer state trajectory to belong
to a positively invariant polytope Z whose vertices can
be adjusted. This condition can be viewed as a type of
persistent excitation condition that appears in parameter
estimation problems. The nice feature of this condition is
that it is easy to check online if this condition is satisfied
or not during the parameter identification experiment.
Recall that the persistent excitation condition appearing
in several parameter identification methods are difficult
to be checked (Farza et al., 2009). An interesting point
that we are investigating is to find the best polytope
that maximizes the chances of the LMI to be feasible and
input r(t) leading the positively invariance condition to
be satisfied during the identification experiment. In this
direction the function Φ(z) in (17) plays an important role.

A numerical example based on a mechanical system is used
to illustrate the joint state and parameter estimations.

We are currently investigating the extension of the method
to consider the design problem with H∞ performance and
measurement noises. We are also investigating additional
relations that could be used to reduce the conservativeness
of the LMIs.
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