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Abstract: In this paper we consider the problems of parameter estimation and model discrepancy for
control systems governed by differential equations. We consider the case where one assumes both
modeling and measurement errors. Modeling errors are an important source of model discrepancy which
can greatly limit the usefulness of a model for prediction and design. Although Bayesian analysis is
a powerful method for dealing with model discrepancy, it is well known that this approach tends to
be very sensitive to prior assumptions about the model bias. We present an approach based on science
based hierarchical modeling with uncertain disturbances to help develop prior knowledge about model
discrepancy in order to improve the model’s predictive usefulness. We apply these ideas to examples
involving control systems defined by ordinary differential and delay differential equations to illustrate
the ideas and suggest future area of research.
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1. INTRODUCTION AND MOTIVATION

We consider a parameter identification problem for models of
physical systems where there are both measurement errors and
model discrepancy. A typical approach is to formulate a pa-
rameter calibration problem in terms of a nonlinear regression
model

y(t, q) = g(t, q) + ε(t)
where y(t) is the measured output to the model g(t, q) of the
physical system, ε(t) is a measurement error and q ∈ Rk is
the model parameter. Assume that q̂ is the true value of the
calibration parameter and one hasM observations which yields
the data points

ȳi , y(t̂i, q̂) = g(t̂i, q̂) + ε(t̂i)
at times 0 ≤ t̂1 < t̂2 < t̂3 < . . . < t̂M−1 < t̂M = T on the
interval [0, T ]. In addition to the measurement errors there are
possible model discrepancy errors so that

g(t, q) = c(t, q) + δ(t, q) (1)
and

y(t, q) = c(t, q) + δ(t, q) + ε(t), (2)
where c(t, q) is the “computed value of the model” and
δ(t, q) = g(t, q)− c(t, q) is the model discrepancy. One source
of model discrepancy is numerical errors due to the approxima-
tions used to evaluate the model g(t, q). In this case the model
discrepancy is sometimes called the simulation error. However,
model discrepancy can also be caused by “un-modeled dynam-
ics” or by making incorrect (or simplifying) assumptions about
the physical system. In any case, one is led to a regression
model

y(t̂i, q) = c(t̂i, q) + δ(t̂i, q̂) + ε(t̂i) (3)
and the goal is to estimate the unknown parameter q̂ ∈ Rk in
this model from the observed data ȳi.

Model discrepancy in this form was first discussed as a
source of uncertainty in numerical simulations in Kennedy and
O’Hagan [2001] where δ(t) is considered as a model bias and
analyzed by using a Bayesian approach. Since then much of the
literature on model discrepancy has been focused on Bayesian
methods (see Arendt et al. [2012a], Arendt et al. [2012b],
Bayarri et al. [2007], Bayarri et al. [2009], Brynjarsdottir and
O’Hagan [2013], Conti and O’Hagan [2010], Nott et al. [2013],
O’Hagan [2006] and Pederson and Johnson [1990]). In this
setting one must estimate both the parameter q̂ and the model
discrepancy term δ(t, q̂). As noted in Bayarri et al. [2007] the
discrepancy term δ(t, q̂) is estimated by using approximations
of the form

δ(t, q̂) ≈
N∑

j=1

βjδj(t)

where there is considerable freedom in choosing the form
of the basis functions δj(·) The parameters βj are called
hyperparameters and are to be estimated along with q̂. In the
examples below we use polynomials so that

δ(t, q̂) ≈
N∑

j=1

βjt
j−1. (4)

The paper Brynjarsdottir and O’Hagan [2013] and the book
Smith [2013] provide nice descriptions of this approach. As
noted in Bayarri et al. [2007] and Brynjarsdottir and O’Hagan
[2013] when applying Bayesian analysis to this problem it is
important to use as much information as possible to place prior
distributions on q and b(·). In particular, one should use “expert
knowledge” about the physical system and its modeling to
construct a tight prior distribution for the parameter q. Also, it is
suggested that the prior distribution on δ(·) should “encourage”
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δ(·) = 0 so that if one has a perfect simulator there should
be a small bias. Finally, since the posterior distributions of q
and δ(·) will typically be highly correlated and sensitive to the
priors, using the identified model for prediction in new regions
(e.g., to t > T ) is problematic (see Bayarri et al. [2007]).

In this paper we consider a specific class of problems where
expert knowledge about the system dynamics is critical and the
model discrepancy is due to modeling the system disturbances.
In particular, we assume the physical system is modeled by a
delay differential equation of the form

ẋ(t) = A0(q)x(t) + A1(q)x(t− r) + G(q)ω(t), (5)
with initial data

x(0) = η, x(s) = ϕ(s), − r ≤ s < 0, (6)
where, A0(q), A1(q) belong to Rn×n, G(q) ∈ Rn×l, η ∈ Rn

and ϕ(·) ∈ L2(−r, 0; Rn). The model output is given by
y(t) = Cx(t) + ε(t), (7)

where C ∈ Rp×n, ε(t) is sensor noise and q is a parametrization
of the system matrices. The term G(q)ω(t) represents a system
disturbance and we shall be interested in the cases where
ω(t) = 0 and ω(t) 6= 0.

Consider the special case where A1(q) = 0 so that (5)-(7) is
the ordinary differential equation

ẋ(t) = A0(q)x(t) + G(q)ω(t) (8)
with initial data

x(0) = η ∈ Rn (9)
and output

y(t) = Cx(t) + ε(t). (10)
The Variation of Parameters Formula implies that

x(t) = eA(q)tη +
∫ t

0

eA(q)(t−s)G(q)ω(s)ds

so that

y(t, q) = CeA(q)tη +
∫ t

0

CeA(q)(t−s)G(q)ω(s)ds+ ε(t).

(11)
If one assumes that the model has no disturbances, i.e. ω(t) =
0, then the hypothesized regression model is

y(t, q) = g(t, q) + ε(t) = CeA(q)tη + ε(t).
On the other hand if ω(t) 6= 0, then the model becomes

y(t, q) = c(t, q) + δ(t, q) + ε(t),
where

c(t, q) = g(t, q) = CeA(q)tη

and

δ(t, q) =
∫ t

0

CeA(q)(t−s)G(q)ω(s)ds. (12)

In this formulation the model discrepancy is due to un-modeled
disturbances that the model assumed to be zero. Observe that
if there is no disturbance so that ω(·) = 0, then δ(t, q) = 0.
Moreover, if one assumes a prior distribution on ω(·), then
the model discrepancy due to this disturbance is given by
the Variation of Parameters Formula (12) and hence provides
specific knowledge about the distribution of δ(t, q). We will
return to this point later and discuss its relationship to the
pedagogic example in Bayarri et al. [2007].

2. STATE SPACE FORMULATION OF THE DDE SYSTEM

We use the standard distributed parameter formulation of the
DDE system as a system on the Hilbert space Z = Rn×

L2((−r, 0); Rn) (see Banks and Kappel [1979], Banks et al.
[1981], Bensoussan et al. [1992a], Bensoussan et al. [1992b],
Burns and Cliff [1981], Cliff and Burns [1982]. We fix r > 0
and let

D(A(q)) =
{[

η
ϕ(·)

]
∈ Rn ×H1((−r, 0); Rn) : ϕ(0) = η

}
(13)

and for z = [ η ϕ(·) ]T ∈ D(A(q))

A(q)z = A(q)
[

η
ϕ(·)

]
=
[

A0(q)ϕ(0) + A1(q)ϕ(−r)
d
dsϕ(·)

]
.

(14)
Also, define the operator G(q) : Rl → Z by

G(q)ω = [ G(q)ω 0 ]T ∈ Z = Rn × L2((−r, 0); Rn) (15)
and observe that the DDE system is equivalent to the system

ż(t) = A(q)z(t) + G(q)ω(t). (16)
It is well known (see Banks and Kappel [1979], Banks et al.
[1981], Burns and Cliff [1981], Cliff and Burns [1982]) that
A(q) generates a C0-semigroup S(t, q) on Z and the Vari-
ation of Parameters Formula holds. In particular, for z0 =
[ η ϕ(·) ]T it follows that

z(t) = S(t, q)z0 +
∫ t

0

S(t− s, q)G(q)ω(s)ds (17)

and
S(t, q)z0 = [ x(t) xt(·) ]T ,

where x(t) is the solution to the DDE system (5)-(6) and
xt(·) ∈ L2((−r, 0); Rn) is the past history function defined
by xt(s) = x(t+ s). If C : Z →Rp is defined by

Cz = Cη,
so that

y(t, q) = CS(t, q)z0+
∫ t

0

CS(t−s, q)G(q)ω(s)ds+ε(t) (18)

then the DDE system (5)-(7) is equivalent to the distributed
parameter system (16)-(18). Thus again, we have the input-
output “regression” model

y(t, q) = c(t, q) + δ(t, q) + ε(t),
where

c(t, q) = CS(t, q)z0

and

δ(t, q) =
∫ t

0

CS(t− s, q)G(q)ω(s)ds. (19)

As in the ordinary differential equation problem (8)-(10), the
model discrepancy is due to an un-modeled disturbance and
the representation (19) provides specific information about
how δ(t, q) inherits its distribution from q and ω(·). Thus, for
problems of this type one can use this prior information to
calibrate the model and to improve the model’s ability to be
predictive for t > T .

3. EXAMPLES

We first discuss the pedagogic example presented in Bayarri
et al. [2007] where we take the dynamics point of view. Then
we turn to a scalar delay differential equation example. Since
we begin with a control system with disturbances and the cor-
responding model discrepancy has a specific representation in
terms of q and ω(t), we can jointly estimate the parameters
and the bias term. Moreover, as we show below, the dynam-
ical system approach produces a calibrated model with better
predictive properties.
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The ODE Example: This model is the same as the pedagogic
example in Bayarri et al. [2007]. In particular, the hypothesized
regression model is

g(t, q) = eqt5 (20)
with unknown parameter q. The problem is motivated by as-
suming the data have arisen from a chemical reaction process
with initial chemical concentration 5 and reaction rate q. The
parameter was q̂ = −1.70 and data was assumed to be given by

ȳi = y(t̂i, q̂) = eq̂ t̂i5 + ε(t̂i)

at times t̂i ∈ [0, 3.0]. A maximum likelihood fit produced the
estimate q̂est = −0.63 even though the true value of q̂ was
q̂ = −1.70. It was clear that the fit-to-data was not good and
a modified F test was used to reject (20). The Kennedy and
O’Hagan method described in Kennedy and O’Hagan [2001]
was used by introducing a bias function δ(t) so that the model
with model discrepancy was given by

y(t̂i, q) = eqt̂i5 + δ(t̂i) + ε(t̂i)

and now one needs to estimate q̂ and δ(t̂i). The “true biased
model” used to generate the data was

ȳi = yb(t̂i, q̂) = eq̂t̂i5 + 1.5[1− eq̂t̂i ] + ε(t̂i) (21)

so that the model discrepancy is δ(t̂i, q̂) = 1.5[1 − e−q̂t̂i ].
The authors noted that this model discrepancy arises from a
modeling error where it was not recognized that there would be
a residual of the chemical (here, 1.5 units) un-reacted. There
are two important observations to be made at this point. First,
this is a fairly large “modeling error”. For example, consider
the ODE model of the chemical reaction given by

ẋ(t) = q̂x(t) + ω̂, (22)

where ω̂ is a an unknown but constant disturbance in the
reaction rate. Assuming x(0) = 5, it follows from the Variation
of Parameters Formula that

x(t) = eq̂t5 +
∫ t

0

eq̂(t−s)ω̂ds = eq̂t5− ω̂

q̂
[1− eq̂t].

In this case, the model discrepancy is given by

δ(t, q̂, ω̂) = − ω̂
q̂

[1− eq̂t]

and to match the (21) one needs −ω̂/q̂ = 1.5. This implies that
ω̂ = −(1.5)q̂ = −(1.5)(−1.7) = 2.55 which is a modeling
error of the same order as the parameter q̂ = −1.70. The
second point is that one can use knowledge about the science
to attack the model discrepancy in a direct way by formulating
the system identification problem as a least squares parameter
identification problem for the ODE model. In particular, one
can use a least squares method to estimate the two parameters
q̂ an ω̂ using the ODE model (22). Thus, we are led to two
approaches:

[Method 1] Let ȳi be measured data at times times 0 ≤ t̂1 <
t̂2 < t̂3 < . . . < t̂M−1 < t̂M = T on the interval [0, T ].
The regression model is assumed to have the form

y(t̂i, q) = eqt̂i5 + δ(t̂i) + ε(t̂i)
with a polynomial expansion of the bias function

δ(t, q̂) ≈
N∑

j=1

βjt
j−1.

Solve the least squares problem of minimizing

J1(q, β1, β2, . . . , βN ) =
M∑
i=1

∣∣y(t̂i, q, β1, β2, . . . , βN )− ȳi

∣∣2
(23)

to estimate the parameter q̂ and the hyperparameters βj ,
j = 1, 2, . . . , N .

[Method 2] Let ȳi be measured data at times times 0 ≤ t̂1 <
t̂2 < t̂3 < . . . < t̂M−1 < t̂M = T on the interval [0, T ].
The dynamic model is defined by the system

ẋ(t) = qx(t) + ω, x(0) = 5
where ω is a constant but unknown disturbance. The output
is given by

y(t̂i, q, ω) = x(t̂i) + ε(t̂i).
Solve the least squares problem of minimizing

J2(q, ω) =
M∑
i=1

∣∣y(t̂i, q, ω)− ȳi

∣∣2 (24)

to estimate the parameter q̂ and the disturbance ω̂.

We will apply both methods to this ODE example and to the
DDE example described below.

The DDE Example: We begin with the nonlinear regression
model on [0, 3] defined piecewise by (see the Appendix)

g(t, q0, q1) =


eq0t5,
eq0t5 + q15(t− r)eq0(t−r),
(5 + q15r)eq0(t−r) + (q15)(t− 2r)eq0(t−r)

+ ((q1)25)/2)(t− 2r)2eq0(t−2r),
(25)

on [0, r], [r, 2r] and [2r, 3r], respectively. Data is generated by
the scalar DDE

ẋ(t) = q̂0x(t) + q̂1x(t− r) + ω̂ (26)
with initial data

x(0) = 5, x(s) = 0, − r ≤ s < 0 (27)
and output

y(t, q̂) = x(t) + ε(t). (28)
As in the ODE example, we generate data using q̂ = [q̂0, q̂1]T
and a non-zero constant disturbance ω̂. This provides a dis-
crepancy that is not represented in the model (25). Thus, using
Method 1, we would assume that

y(t̂i, q̂) = g(t̂i, q̂0, q̂1) + δ(t̂i) + ε(t̂i),
where we approximate the bias term by

δ(t) ≈
N∑

j=1

βjt
j−1

and employ a maximum likelihood method to estimate the
parameters q̂0 and q̂1 and the hyperparameters βj . Applying
Method 2 would mean using a least squares method to estimate
the parameters q̂0 and q̂1 and the disturbance ω̂ by a direct
parameter identification algorithm applied to the DDE system
(26)-(27). As in Bayarri et al. [2007] the regression model is
hypothesized to be the solution of the system (26)-(28) on the
interval [0, 3r] with no disturbance (i.e., ω̂ = 0). The formula
for this model is given in the Appendix.

4. NUMERICAL RESULTS

In this section we apply the two approaches Method 1 and
Method 2 to the ODE and DDE models in the previous section.
The time interval is [0, 3r] and we generated 151 data points
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by using the analytic solution and adding normally distributed
noise with mean 0 and variance σ2 = 0.3. The initial value
η = 5 is used in all runs and for the DDE model we set the
delay r = 1. For Method 1 we minimized J1(·) defined by (23)
and for Method 2 we minimized J2(·) defined by (24).

Example 1. This is the ODE example from Bayarri et al. [2007]
where we set q̂ = −1.70 and ω̂ = .2 and apply both methods.
For Method 1, we used δ(t) ≈ β1 + β2t + β3t

2 and identified
q̂ and the three hyperparameters β1, β2, and β3. Applying
Method 2 we estimated q̂ and the disturbance ω̂. The initial
estimate for ω̂ was always taken to be ω = 0 so that the
assumption is that there is no disturbance, or equivalently that
the hypothesized regression model (20) is valid. Both methods
provided produced almost identical least squares fit-to-data on
the interval 0 ≤ t ≤ 3. Method 2 produces an estimates
of the nonzero disturbance and hence the corresponding bias
term. The following table is typical of results for both methods.
Observe that if β2 6= 0 or β3 6= 0, then Method 1 produces an
unbounded model (i.e., lim

t→+∞
|y(t, q̂opt)| = +∞) and eventu-

ally the regression model fails to be a good predictor for t > 3.
However, Method 2 produces the correct qualitative behavior.
The steady state solution x̂ss = 0.12 and Method 2 produces
an estimate of x̂sse = 0.07. Of course this single fit-to-data
does not provide enough information about the uncertainty in
the parameter estimate. Rather than focus on this example, we
turn to the DDE example and consider this more in detail.

Method 1
q̂ β1 β2 β3

−1.7359 0.1305 0.0287 −0.0179

Method 2
q̂ ω̂

−1.6305 0.1134

Example 2. This is the DDE example from above. Here we
set q̂0 = −1.70, q̂1 = 1.20 and ω̂ = .1 and apply both
methods. As before, to apply Method 1, we used δ(t) ≈ β1 +
β2t + β3t

2 and identified q̂0, q̂1 and the three hyperparameters
β1, β2, and β3 by minimizing the least squares functional
J1(·) defined by (23). Applying Method 2 we identified q̂0,
q̂1and the disturbance ω̂ by minimizing the functional J2(·)
defined by (24). In order to include the effects of numerical
approximations we employed the spline method in Banks and
Kappel [1979] and Banks et al. [1981] to approximate the
dynamical system generated by the DDE model.

The tables below illustrates a typical run. In Figure 1 we see
that both methods produce excellent fit-to-data plots. On on the
interval 0 ≤ t ≤ 3 the difference between the two models
is insignificant. However, as for the ODE example above,
Method 1 produces a model that incorrectly predicts unbounded
solutions while Method 2 correctly produces a stable model.
Recall that the DDE (26) is stable if q̂0 < 0 and |q̂1| < −q̂0
(see Hale [1971] and Hale [1993]).

Method 1
q̂0 q̂1 β1 β2 β3

−1.7108 1.3453 0.0825 −0.1223 0.0168
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Fig. 1. Example 2: Comparison of Methods for 0 ≤ t ≤ 3
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Fig. 2. Example 2: Method 2 - Frequency Plot for xss

Method 2
q̂0 q̂1 ω̂

−1.7387 1.1856 0.1828

In addition, we conducted a simple statistical analysis of
Method 2 to see how well the estimated parameters capture the
long time behavior of the system. In particular, we assumed
the experimental outputs could be repeated to obtain multiple
sets of data and used the repeated observations to estimate the
parameters. In particular, we generated 5 noisy data sets as
above, used Method 2 to estimate the parameters for these 5
cases and then used the mean of these parameter to compute an
estimate of the steady state solution for the DDE system. Given
a stable DDE system (26), if q0 + |q1| < 0, then the steady state
response is given by

xss =
−ω

q0 + q1
,

so that when q̂0 = −1.70, q̂1 = 1.20 and ω̂ = .1, one has
x̂ss = 0.20 . We also conducted 100 runs with 5 repeated
observations for each run. Figure 2 is a frequency plot for
this set of simulations. The actual steady state x̂ss = 0.20 is
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Fig. 3. Example 3: Method 2 - Frequency Plot for q0

given by the red star on the plot. The mean of the estimated
steady states is x̂sse = 0.2083 and is given by the green star.
The triangles are located at ±2σ from the computed mean
x̂sse = 0.2083. This example illustrates some benefits of
using the physics based model described by ODEs or DDEs
to provide prior information about model discrepancy.

Example 3. Here we illustrate potential issues when the DDE
system (26) is “near” an unstable system. We consider the
problem with q̂0 = −1.70, q̂1 = 1.65 and ω̂ = .2. Observe
that q̂0 + |q̂1| = −0.05 so that a positive perturbation of q̂1
on the order 0.05 renders the system unstable. We solved 500
least squares estimation problems with new noise added to the
data for each run. Figures 3 - 5 are frequency plots for each of
the three parameters q0, q1 and ω. As one might expect, some
estimated parameters produced values of q̂0 and q̂1 satisfying
q̂0 + q̂1 > 0. Although these parameter estimates provide
excellent fit-to-data on 0 ≤ t ≤ 3, clearly the unstable models
fail to predict the long term dynamics. However, of the 500 runs
only 3 produced an unstable model. Moreover, these cases do
not occur if one uses repeated observations as in the previous
example.

5. CONCLUSIONS

We have presented an approach for dealing with certain model
discrepancies when the model arises naturally as a physics
based model in the form of a dynamical system generated
by systems of ODEs and DDEs. Model discrepancy due to
modeling uncertainties and/or disturbances can be used as prior
knowledge for parameter estimation. In these cases, model
prediction outside of the interval for which data was collected
can be enhanced.

Method 2 works best when one has a physics based model
with reasonable bounds (error bars) on the system parameters.
In addition, one can easily constrain the problem by imposing
conditions on the parameters such as

q0 < 0,
and

q0 + |q1| < 0,
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Fig. 4. Example 3: Method 2 - Frequency Plot for q1
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Fig. 5. Example 3: Method 2 - Frequency Plot for ω

to ensure stability. In this case one has a constrained least
squares problem.

Method 1 is very general and is the subject of numerous recent
research papers (see Arendt et al. [2012a], Arendt et al. [2012b],
Bayarri et al. [2007], Bayarri et al. [2009], Brynjarsdottir and
O’Hagan [2013], Conti and O’Hagan [2010] and Nott et al.
[2013]). Although not fully discussed here Method 1, has a
sound theoretical basis in Bayesian statistics. Dealing with the
issue of model prediction outside the time interval on which
data is available remains an active research area. Of course
one would expect that a Bayesian approach would be very
useful in cases where one begins with a physics based model
and then considers the parameters and disturbances as random
parameters.
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6. APPENDIX: EXACT SOLUTION TO THE DDE

The exact solution of the DDE (26)-(27) was computed by the
method of steps (see Bellman and Cooke [1963], Hale [1971]
and Hale [1993]) on [0, 3r] is given piecewise by

x(t) = a1e
q0t + a2,

on [0, r], by
x(t) = b1e

q0t + b2(t− r)eq0t + b3,

on [r, 2r] and by
x(t) = c1e

q0t + c2(t− 2r)eq0t

+ c3(t− 2r)2eq0t + c4,

on [2r, 3r]. Here, the coefficients are
a1 = a1(ω) = η + (ω/q0),
a2 = a2(ω) = −(ω/q0),

b1 = b1(ω) = a1 + (a2 + ((q1a2 + ω)/q0))e(−q0r),

b2 = b2(ω) = q1a1e
(−q0r),

b3 = b3(ω) = −(q1a2 + ω)/q0,

c1 = c1(ω) = b1 + b2r + b3e
(−q02r)

+ ((q1b3 + ω)/q0)e(−q02r),

c2 = c2(ω) = q1b1e
(−q0r),

c3 = c3(ω) = (q1b2e(−q0r))/2,
c4 = c4(ω) = −(q1b3 + ω)/q0.

Observe that for ω = 0, it follows that a2 = a2(0) = 0,
b3 = b3(0) = 0 and c4 = c4(0) = 0. The remaining non
zero coefficients are given by

a1 = a1(0) = η,

b1 = b1(0) = η,

b2 = b2(ω) = q1ηe
(−q0r),

c1 = c1(ω) = η + q1ηe
(−q0r)r,

c2 = c2(ω) = q1ηe
(−q0r),

c3 = c3(ω) = (q1)2ηe(−q02r))/2
and hence x(t) is defined on the intervals [0, r], [r, 2r], [2r, 3r],

x(t) =


eq0t5,
eq0t5 + q15(t− r)eq0(t−r),
(5 + q15r)eq0(t−r) + (q15)(t− 2r)eq0(t−r)

+ ((q1)25)/2)(t− 2r)2eq0(t−2r),

respectively.
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