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Abstract: In this paper, the target guarding problem, posed by Rufus Isaacs in his seminal
textbook is revisited. Unlike the simplified version of the problem solved by Isaacs, optimal
strategies are discussed for the pursuer and the evader having simple motions with different
speeds. Analysis is also done for the case when the intercept occurs if the pursuer reaches
within a certain distance of the evader, instead of a strict coincidence of their positions. The
importance of the study is that, it is fundamental to building autonomous systems that would be
used for protecting a target, for example, unmanned vehicles used in anti-poaching operations.

1. INTRODUCTION

The target guarding problem was first introduced by Isaacs
[1965] in his pioneering work on differential games. It
consists of a player (the evader E) trying to reach an
immobile target T , and another player (the pursuer P )
trying to intercept the evader before he reaches the target.
The objective of the game for P is to maximize the
distance between E and T at intercept, and that for E
is to minimize it. Therefore, the best payoff for E would
be to reach T without being intercepted.

Isaacs presented the solution to the target guarding prob-
lem, assuming equal speeds for P and E. He also assumed
that interception corresponds to coincidence of the posi-
tions of P and E. When both P and E have equal speeds,
capture occurs along the perpendicular bisector of their
initial positions. The target to be guarded from E is an
area C, which lies in the zone P can reach prior to E.
The optimal strategy for either player in this case would
be to head to the point closest to C on the perpendicular
bisector, as shown in Fig. 1(a). If only P plays optimally,
and E chooses to traverse a sub-optimal path, P traverses
a curved path resulting in a better payoff for him at
intercept, as shown in Fig. 1(b). Similarly, if E plays
optimally, but P does not, E could well reach the target
C, thus securing a better payoff for himself, as shown in
Fig. 1(c).

In spite of being one of the earliest problems in differential
games, the target guarding problem is one of the least
studied in the literature. Unlike the problem solved by
Isaacs, in reality, the players are hardly at the same
speeds. Usually, the pursuer is faster than the evader. Also,
intercept will occur when the pursuer reaches within a
certain distance of the evader. The target might also be
mobile. These variabilities to the target guarding problem
have not been studied in the literature. Guarding a moving
target would be the fundamental problem of interest in
autonomous agents guarding mobile targets, for example,

(a) P and E play optimally

(b) P plays optimally, but E does
not

(c) E plays optimally, but P does
not

Fig. 1. Target guarding problem from Isaacs [1965]

unmanned vehicles that could be used in anti-poaching
operations to protect animals from poachers.

A variant of the problem of guarding a moving target was
studied by Rusnak [2005] called “the lady, the bandits and
the body guards” game. It consists of the bandits trying to
capture the lady, and the body guards trying to intercept
the bandits before they catch the lady. In this problem,
the lady cooperates with the body guards and actively
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tries to evade the bandits. However, in the problem of
guarding a moving target, the target remains neutral
in the game and does not actively cooperate with the
rescuers and perform evasive action – this problem applies
to, for example, in the case of guarding unsuspecting
animals which get ambushed by poachers. Lau and Liu
[2013] presented an online path planning algorithm using
Rapidly-exploring Random Trees (RRT) for unmanned
vehicles in charge of autonomous border patrol, based on
Isaacs’ target guarding problem. The target considered in
the study was static. The concept of RRT was used in
the study because solving the differential game to obtain
optimal strategies would be computationally intensive and
could become infeasible for real-time systems. Therefore,
the feasibility of solving the differential game would have
to be considered while building real-time systems for anti-
poaching operations. If found infeasible, algorithms like
RRT should be explored.

2. GEOMETRY OF CAPTURE WHEN THE SPEEDS
OF P AND E ARE DIFFERENT

As mentioned in the previous section, Isaacs analyzed the
target guarding problem when the speeds of P and E
are equal and execute simple motions. In this case, the
perpendicular bisector of the line connecting their initial
positions divides the playing space into regions that either
of them can reach prior to the other. In other words, when
both P and E travel straight towards the same point on
the perpendicular bisector, they arrive at the same instant,
and capture occurs. However, if the speeds of P and E are
different, capture would not occur on the perpendicular
bisector. To find the curve on which capture occurs, let
us assume that the ratio of the maximum speeds of P
and E be p : e. Therefore, let the maximum speed of P
be vp = pv, and that of E be ve = ev, where v is some
common factor. Let t be the time elapsed until capture.
Both P and E will travel straight at their maximum speeds
because decreasing their speed or traveling in a curved
path would benefit the opponent. Let E0 (xe, ye) be the
initial position of E and P0 (xp, yp) be that of P .

P0(xp, yp)

E0(xe, ye)

I(x, y)

evt

pv
t

Fig. 2. Game geometry when vp 6= ve and capture is the
coincidence of P and E

2.1 Capture Occurs when the Positions of P and E
Coincide

Let us assume that the condition for capture is the
coincidence of positions of P and E. Let I(x, y) be the
point where capture occurs, as shown in Fig. 2. Then, the
distances traveled by P and E until capture would be pvt
and evt respectively, and can be expressed mathematically
as:

(x− xe)
2 + (y − ye)

2 = (vet)
2 = (evt)2 (1)

(x− xp)2 + (y − yp)2 = (vpt)
2 = (pvt)2 (2)

Dividing (1) by (2), we get

(x− xe)
2 + (y − ye)

2

(x− xp)2 + (y − yp)2
=

e2

p2
(3)

=⇒ p2
[(
x2 − 2xxe + x2

e

)
+
(
y2 − 2yye + y2e

)]
= e2

[(
x2 − 2xxp + x2

p

)
+
(
y2 − 2yyp + y2p

)] (4)

=⇒
(
p2 − e2

)
x2 +

(
p2 − e2

)
y2

+ 2
(
xpe

2 − xep
2
)
x + 2

(
ype

2 − yep
2
)
y

+ p2
(
x2
e + y2e

)
− e2

(
x2
p + y2p

)
= 0

(5)

=⇒ x2 + 2

(
xpe

2 − xep
2
)

(p2 − e2)
x

+ y2 + 2

(
ype

2 − yep
2
)

(p2 − e2)
y

+
p2
(
x2
e + y2e

)
− e2

(
x2
p + y2p

)
(p2 − e2)

= 0

(6)

Let xc =
(xep

2−xpe
2)

(p2−e2) and yc =
(yep

2−ype
2)

(p2−e2) . Then, (6)

becomes
x2 − 2xxc + y2 − 2yyc

+
p2
(
x2
e + y2e

)
− e2

(
x2
p + y2p

)
(p2 − e2)

= 0
(7)

=⇒ (x− xc)
2

+ (y − yc)
2

+
p2
(
x2
e + y2e

)
− e2

(
x2
p + y2p

)
(p2 − e2)

− x2
c − y2c = 0

(8)

=⇒ (x− xc)
2

+ (y − yc)
2

= R2 (9)

where R =

√
x2
c + y2c −

p2(x2
e+y2

e)−e2(x2
p+y2

p)
(p2−e2) . Equation (9)

is that of a circle with center C(xc, yc) and radius R.
Therefore, capture of E by P occurs on this circle. Also,
the slope of the line connecting C (xc, yc) and E0 (xe, ye)
is given by,

yc − ye
xc − xe

=

(yep
2−ype

2)
(p2−e2) − ye

(xep2−xpe2)
(p2−e2) − xe

=
ye − yp
xe − xp

≡ mE0P0
(10)

where mE0P0 is the slope of the line E0P0. Therefore, C lies
on E0P0. The capture circle looks like as shown in Fig. 3(a)
and Fig. 3(b) for ve < vp and ve > vp respectively. It
encloses E0 when ve < vp and P0 when ve > vp. C always
lies outside E0P0. When the speeds of P and E are equal,(
p2 − e2

)
= 0, and therefore, (5) reduces to

2 (xp − xe)x + 2 (yp − ye) y

+
(
x2
e + y2e

)
−
(
x2
p + y2p

)
= 0

(11)

which is a straight line with slope m1 = −xp−xe

yp−ye
. It can be

seen that this line passes through the mid-point of E0P0,(
xe+xp

2 ,
ye+yp

2

)
, and m1mE0P0 = −1. This means that

(11) is the perpendicular bisector of E0P0, which agrees
with the result derived in Isaacs [1965].

2.2 Capture Occurs when P Reaches within a Distance de
of E

Let us now assume that the condition for capture is
P reaching a distance of de from E. At capture, let
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P0

E0

C

T1

T2

(a) ve < vp

P0

E0

C
T1

T2

(b) ve > vp

Fig. 3. Capture curve when vp 6= ve and capture is the
coincidence of P and E, and possible locations of a
point target T

P0

E0

Ei

pv
t

pv
t

evt

(a) Two possible posi-
tions for P

P0

E0

Ei

evtc

pv
t c

d e
Pi

(b) Unique position for
P

Fig. 4. Game geometry when vp 6= ve and capture occurs
when P reaches within a distance of de from E

the position of P be Pi (xpi, ypi) and E be Ei (xei, yei).
Capture occurs when |Pi − Ei| = de. Therefore, we have

(xei − xe)
2

+ (yei − ye)
2

= (evt)
2

(12)

(xpi − xp)
2

+ (ypi − yp)
2

= (pvt)
2

(13)

(xei − xpi)
2

+ (yei − ypi)
2

= d2e (14)

The above equations present us with a geometry as shown
in Fig. 4(a). At capture, we have a disc of radius de
centered at Ei, and Pi can be anywhere on the periphery
of this disc. However, as P started from P0 and traversed
a distance of pvt, with P0 as center and pvt as radius, we
draw an arc that intersects the disc at two points, which
are the possible locations of Pi. For a finite duration after
the game begins, pvt would not be big enough to touch the
disc centered at E. At some critical time tc, pvt touches the
disc and later, it intersects the disc at two points, which is
shown in Fig. 4(a). As P desires to minimize the distance
E travels, he should capture E at the critical time tc, when
the arc of radius pvtc centered at P0 just touches the disc
of radius de centered at E. Any longer than tc, E would
have traveled further, and P would then face the dilemma
of capturing E at two possible positions. Therefore, let
us assume that capture occurs at t = tc henceforth. The
geometry of the game would then look like as shown in
Fig. 4(b). From the figure, it is clear that at capture, Pi

lies on the line P0Ei. So we have the additional condition:

(xei − xp)
2

+ (yei − yp)
2

= (pvt + de)
2

(15)

Dividing (12) by (13) and cross-multiplying the terms, we
have

p2
[
(xei − xe)

2
+ (yei − ye)

2
]

= e2
[
(xpi − xp)

2
+ (ypi − yp)

2
] (16)

Equations (14) - (16) do not simplify any further.

To gain more insight into the locus of points where capture
would occur, without loss of generality, let us fix the
origin of the coordinate system at P0, and let the y-
axis coincide with P0E0. Therefore, the coordinates of
the initial positions of P and E would now be P0(0, 0)
and E0(0, ye). Like before, the coordinates of the positions
of P and E at capture would remain as Pi(xpi, ypi) and
Ei(xei, yei). If E were to travel straight vertically down
from E0, P would travel vertically up from P0, and capture
would occur when P and E have traveled distances of

d1 = p
(

ye−de

p+e

)
and d2 = e

(
ye−de

p+e

)
respectively. This is

because the triangle of Fig. 4(b) would flatten out to the
line segment P0E0 in such a case. Therefore, if E takes
any other path than vertically down, he will get to travel
at least the distance d2 before running the risk of being
captured, and P will have to travel at least the distance d1
before getting a chance to capture. Let vt = l. Therefore,
in the new coordinate system, (12) - (15) become:

x2
ei + (yei − ye)

2
= e2l2 (17)

x2
pi + y2pi = p2l2 (18)

x2
ei + y2ei = (pl + de)

2
(19)

(xei − xpi)
2

+ (yei − ypi)
2

= d2e (20)

Calculating l from (17) and substituting in (19), we have

x2
ei + y2ei =

(
p

e

√
x2
ei + (yei − ye)

2
+ de

)2

(21)

As Ei lies on the line joining Pi and P0, the slope of the
line is given by

m =
yei
xei

=
ypi
xpi

=
yei − ypi
xei − xpi

(22)

If the locus of the point Pi is desired, subtracting (19) from
(17) yields

(pl + de)
2 − 2yeyei + y2e = e2l2 (23)

=⇒ yei =
(pl + de)

2
+ y2e − e2l2

2ye
(24)

=⇒ xei =
yei
m

=
yei
ypi

xpi

=
xpi

ypi

[
(pl + de)

2
+ y2e − e2l2

2ye

]
(25)

where we have substituted the expression for yei from (24).
Substituting (24) and (25) in (20), we have(yei

m
− xpi

)2
+ (yei − ypi)

2
= d2e (26)

=⇒

(
xpi

ypi

[
(pl + de)

2
+ y2e − e2l2

2ye

]
− xpi

)2

+

([
(pl + de)

2
+ y2e − e2l2

2ye

]
− ypi

)2

= d2e

(27)

Substituting the expression for l from (18) in (27), we have
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=⇒xpi

ypi


(√

x2
pi + y2pi + de

)2
+ y2e − e2

p2

(
x2
pi + y2pi

)
2ye

− xpi


2

+



(√

x2
pi + y2pi + de

)2
+ y2e − e2

p2

(
x2
pi + y2pi

)
2ye

− ypi


2

= d2e
(28)

Equation (28) is a 12th degree polynomial. When p = e, it
reduces to a 8th degree polynomial.

And when de = 0, (28) further reduces toxpi

ypi

[(
x2
pi + y2pi

)
+ y2e − e2

p2

(
x2
pi + y2pi

)
2ye

]
︸ ︷︷ ︸

A

−xpi


2

+


[(

x2
pi + y2pi

)
+ y2e − e2

p2

(
x2
pi + y2pi

)
2ye

]
︸ ︷︷ ︸

A

−ypi


2

= d2e

(29)

=⇒

(
x2
pi

y2pi
+ 1

)
(A− ypi)

2
= 0 (30)

=⇒ A− ypi = 0 (31)

∴

(
1− e2

p2

)(
x2
pi + y2pi

)
+ y2e − 2yeypi = 0 (32)

=⇒
(
x2
pi + y2pi

)
+

y2e − 2yeypi(
1− e2

p2

) = 0 (33)

=⇒ x2
pi +

(
ypi −

ye

1− e2

p2

)2

=

(
e

p

ye

1− e2

p2

)2

(34)

Equation (34) is that of a circle with center at C

(
0, ye

1− e2

p2

)
and radius R = e

p
ye

1− e2

p2

, which is the circle of (9) in the

new coordinate system, where xp = yp = xe = 0. When
e < p, the circle encloses E0 (0, ye) and when e > p, the
circle encloses the origin P0(0, 0).

In addition, when p = e, A = ye

2 and (31) becomes
ye
2
− ypi = 0 (35)

which is the perpendicular bisector of P0E0 in the new
coordinate system.

From the above analysis, it is clear that if the criterion for
capture is a proximity of de between P and E, the locus
of Pi is a nontrivial 12th degree polynomial. Even when
vp = ve, locus of Pi is not a simple curve. Only when the
criterion for capture is a simple coincidence of positions,

P0

E0

C

T0

I

(a) Game geometry

P0

E0

C

T0

C1
C2

P1

P2

E1 E2
I

(b) Game dynamics

Fig. 5. Optimal strategies when T is immobile, for ve < vp

the locus of Pi (and Ei) simplify to a circle. And when
vp = ve, the locus further simplifies to the perpendicular
bisector of P0E0.

The above analysis has some interesting revelations about
the target guarding problem. To derive optimal strategies
for P and E, it is essential to understand the loci of Pi and
Ei. These loci are simple only when de can be neglected in
(27), i.e., when de � pl, so that pl + de ≈ pl. In other
words, when the proximity for capture de is negligible
compared to the distance P travels till capture (pl), it is
relatively easier to calculate optimal strategies. However, if
de is comparable to pl for the problem in hand, even when
p = e, the locus of Pi is not the perpendicular bisector of
P0E0 as derived in Isaacs [1965].

3. OPTIMAL STRATEGIES FOR P AND E WHEN T
IS IMMOBILE

With a picture of the loci of Pi and Ei, it is possible to
derive optimal strategies for P and E when playing with
a point target T . As shown in the previous section, if de
cannot be neglected compared to pl, the loci are compli-
cated and therefore, the derivation of optimal strategies
is not straight forward. In many practical scenarios, the
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assumption that de � pl could well be satisfactory, in
which case, Pi and Ei would coalesce into the capture
point I. Therefore, the locus of I would be the capture
circle (referred to as CI henceforth) given by (9), which
will be used in the following sections.

3.1 Case ve < vp

In this case, CI encloses E0. T could be in two possible
locations - within CI at T1 or outside CI at T2 as shown
in Fig. 3(a). If T is at T1, E would reach T1 before P
and the game ends with T being sacrificed. However, if
T is at T2, he could be guarded. Let T be located at a
position T0 outside CI as shown in Fig. 5(a). P strives to
keep E as away from T as possible and E strives to do
the opposite. E will choose to head to the point closest
to T0 on CI to make sure that even if captured, he is at
the minimum possible distance from T at capture. This
point I is the intersection of the radial line CT0 with CI ,
as shown in the figure. P too will head to I expecting E
to play optimally.

When the game proceeds optimally on both sides, the
dynamics of the game look like as shown in Fig. 5(b). The
locations of P and E at two instants during the course
of the game are shown as P1, P2 and E1, E2 respectively.
The instantaneous capture circles CI1 and CI2 are drawn
at these two instants and their centers are marked as
C1 and C2 respectively. As both P and E have been
playing optimally, i.e., traveling straight along P0I and
E0I respectively right from the beginning, the center C of
the instantaneous capture circle CI also moves along the
line CI. In fact, P0E0 ‖ P1E1 ‖ P2E2 because 4E0P0I ∼
4E1P1I ∼ 4E2P2I. And by (11), C1 and C2 should
lie along P1E1 and P2E2 respectively. The instantaneous
capture circle CIt (the subscript I’s subscript t being the
time instant under consideration) reduces in size as the
game proceeds, finally coalescing to the capture point I.
Also, all the instantaneous capture circles CIt ’s touch each
other at I. The optimal strategies for P and E remain
the same at all instants during the game. Both of them
head towards the point of intersection of the instantaneous
radial line CtT0 with the instantaneous capture circle CIt ,
which remains as I if P and E play optimally through out
the game.

The capture point I(xi, yi) can be found in the following
way. Let the coordinates of T be T0(xt, yt). I lies on the
line CT0. Therefore, it’s slope

m =
yi − yt
xi − xt

=
yc − yt
xc − xt

(36)

=⇒ yi = m (xi − xt) + yt (37)

As I also lies on CI given by (9),

(xi − xc)
2

+ (yi − yc)
2

= R2 (38)

(39)

Substituting for yi from (37) in (38), we have

(xi − xc)
2

+ [m (xi − xt) + yt − yc]
2

= R2 (40)

=⇒
(
1 + m2

)
x2
i + 2 (mk − xc)xi

+ x2
c + k2 −R2 = 0

(41)

where k = yt − yc −mxt. Solving (41), we get

xi =
− (mk − xc)±

√
(1 + m2)R2 − (mxc + k)

2

1 + m2
(42)

Each xi has a corresponding yi. Out of these two points,
the point closest to the target T (xt, yt) is I.

3.2 Case ve > vp

The capture circle CI encloses P0 in this case, and like
before, T could be either at T1 inside CI or at T2 outside
as shown in Fig. 3(b). It is quite obvious that if T is at
T2, E can reach there before P and T is lost. However, if
T is at T1, one might be tempted to say that P can save
T . But it turns out that E will certainly reach T wherever
he is located in the plane, as shown later. Therefore, the
best P can do is to reach T ’s location and wait for E to
capture him there.

P0

E0

C

M2M1

(a) Range of locations E can
reach

P0

E0

C

E′

E′′

(b) Range of locations E can reach depending
on position and orientation w.r.t P

Fig. 6. Game dynamics when both P and E play optimally

To understand the dynamics of the game when ve > vp, it
is important to understand the range of positions that E
can reach for a given position of P . Let E be at E0(0, ye)
and P at P0(0, 0) as shown in Fig. 6(a), in accordance
with the simplified coordinate system used in section 2.2.
CI is then given by (34), which is shown in the figure. The
tangents drawn from E0 to CI meet at M1 and M2. Now,
the range of locations that E can reach safely without any
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chance of being captured by P is the unshaded region in
Fig. 6. This is because if E tries to reach any location
within the shaded region, he faces the possibility of being
intercepted by P on the arc M1M2. The tangents can be
found in the following way: Let the slope of the tangent
be mt. As the tangent passes through E0(0, ye), equation
of the tangent is

y − ye = mtx (43)

The point of tangency M1(xm1
, ym1

) lies on this tangent
and also on CI , therefore

x2
m1

+ (ym1
− yc)

2 = R2 (44)

=⇒ x2
m1

+ (ye + mtxm1
− yc)

2 = R2 (45)

=⇒ (1 + m2
t )x2

m1
+ 2mt(ye − yc)xm1

+ (ye − yc)
2 −R2 = 0

(46)

Now, for (43) to be a tangent at M1(xm1
, ym1

), (46) should
have a double root. Therefore,

4m2
t (ye − yc)

2 − 4(1 + m2
t )
[
(ye − yc)

2 −R2
]

= 0 (47)

=⇒ R2m2
t + R2 − (ye − yc)

2
= 0 (48)

=⇒ mt = ±

√(
ye − yc

R

)2

− 1 ≡ mt± (49)

From (34), we have yc = ye

1− e2

p2

and R = − e
p

ye

1− e2

p2

.

Therefore, (49) becomes

mt± = ±

√
e2

p2
− 1 (50)

which is independent of the instantaneous locations of E
and P ! The result means that the radius of CI varies with
the location E in such a way that the tangents to it from
E always make a constant angle with the line EP . The
points of tangency M1, M2 can be found as the intersection
of the line (43) and the radial line of CI perpendicular to
it, which can be written as

y − yc = − 1

mt±

x (51)

Solving (43) and (51), we get the points of tangency

M1, M2 as

(
mt+

1− e2

p2

ye, 0

)
and

(
mt−

1− e2

p2

ye, 0

)
respectively,

which lie on the line perpendicular to E0P0 and passing
through P0. Therefore, M1P0 ⊥ E0P0 and M1P0 ‖M1M2,
as shown in Fig. 6(a). As mt is independent of the
instantaneous locations of P and E, the line connecting the
instantaneous points of tangency always is perpendicular
to EP and passes through P .

As only the relative positions of E and P matter, by fixing
P to P0 and moving E w.r.t him, it is easier to analyze
the range of locations that E can reach mathematically.
Fig. 6(b) shows the inaccessible regions for E, depending
on his location w.r.t P0. If E is at E0, his inaccessible
region is the region shaded in red. However, if E is located
a little closer to P , like at E′, the region inaccessible to
him (indicated by the region in purple) is lesser than that
at E0. Therefore, as E moves closer to P , the range of
locations that he can reach without being intercepted by
P increases. If E is located at E′′, the inaccessible region
to him (indicated by the region shaded in green) is oriented
differently, opening up locations which were inaccessible to
him while at E0. Therefore, E can reach any location in

the plane by suitably positioning himself w.r.t P , merely
by virtue of his higher speed than P . To save T , P ’s only
option then is to reach T ’s position and wait to capture E
there. This would be P ’s optimal strategy. Any effort by
P to intercept E at a different location could result in the
loss of T . Similarly, the optimal strategy for E would be to
head straight to T . If P plays sub-optimally and happens
to be on his way, he should first get arbitrarily close to P
and then keep traveling along one of the tangents to the
instantaneous CI , till the tangent points in the direction of
T . At this point, he should leave along this tangent, thus
avoiding capture and acquiring T .

4. CONCLUSIONS

In this paper, the target guarding problem was solved for
the pursuer and evader having simple motions with differ-
ent speeds. The target guarding problem is fundamental to
systems that protect a target from enemies, for example,
unmanned vehicles trying to protect endangered animals
from poachers. Results discussed in this paper could be
applied to a single drone trying to protect a static animal,
under threat from a single poacher. The optimal strategy
for the drone would depend on the ratio of its speed to that
of the poacher. If the drone’s speed is higher than that of
the poacher (which is usually the case), it would be pos-
sible for the drone to keep the poacher at bay, depending
on their initial locations. However, if the poacher’s speed
is more than that of the drone, an interesting result from
the analysis done in this paper shows that it would not
be possible for the drone to keep the poacher away from
the animal if the poacher plays optimally. The best that
the drone could do in such a case is to go to the animal’s
location and wait there for the poacher to arrive.

To build field-fit drones that would help in anti-poaching
operations, the analysis done in this paper has to be
extended for mobile targets because, in reality, the animals
would be moving. Also, if interception is achieved when
the drone gets within a certain proximity of the poacher,
calculations for optimal strategies could become intense,
and it may not be possible to do such time consuming
mathematical computations in real-time. Therefore, algo-
rithms like Rapidly exploring Random Trees (RRT) will
have to be explored.
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