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Abstract: In this paper we present a new cooperative coevolution hybrid Taguchi-genetic algorithm 

(CCHTGA) to solve high-dimensional optimization problems with continuous variables which are typical 

in large scale systems. The CCHTGA employs cooperative coevolution frame to decompose the problem 

into several subsystems and adopts a novel decomposition technique “random grouping strategy”. 

Subsystem optimizer is an improved hybrid Taguchi-genetic algorithm (HTGA) which is effective, more 

robust and rapidly convergent. The performance of the CCHTGA compared to a state-of-the-art 

cooperative coevolution particle swarm algorithm (CCPSO2). The simulation results obtained from the 

application of this method to function optimization indicate that CCHTGA can be a competitive 

algorithm to achieve better and robust results.   

Keywords: Cooperative coevolution, Evolutionary algorithms, Large-scale optimization, Random 

grouping, Taguchi method. 



1. INTRODUCTION 

Hybrid Taguchi-genetic algorithm (HTGA) is a robust, fast 

convergent and statistically sound evolutionary algorithm 

proposed by Tsai et al. (2004) which is shown to be an 

efficient algorithm to solve 100 dimension problems. In the 

proposed HTGA, the Taguchi method is combined in the 

genetic crossover operation to generate better offspring and 

give more robust results.    

In recent years, large scale optimization has received 

significant attention in evolutionary computation domain. 

The performance of many known optimization algorithms 

deteriorates as the number of decision variables increases. On 

the other hand, many real-world problems require optimizing 

large number of decision variables. Thus, new optimization 

algorithms should be capable of facing the challenges of 

optimization of high-dimensional problems.  

Divide-and-conquer (D&V) is a powerful strategy to face 

high-dimensional optimization problems. Potter and Jong 

(1994) introduced Cooperative Coevolution (CC) frame 

which adopts D&V strategy. CC is the most common frame 

to tackle large scale optimization problems which decompose 

a problem into several subsystems each evolved by a separate 

evolutionary algorithm (EA). 

The main challenge of CC is how to divide a whole 

evolutionary system into subsystems since the performance 

of it is highly dependent on variable interactions. The ideal 

decomposition strategy should evolve highly interacting 

variables in the same subsystem while retain the interaction 

between subsystems as low as possible (Liu et al. 2001). The 

presence of interactions between decision variables are 

generally known as non-separability (Salomon 1995) or 

epistasis (Klug et al. 2008). The simplest decomposition 

strategy is to divide a problem into a set of one dimensional 

problem. However, this strategy does not work well in 

presence of variable interactions. Two major efforts in 

collecting interacting variables in the same subsystem are 

random Grouping (Yang et al. 2008) and Delta Grouping 

(Omidvar et al. 2010). Yang shows that by increasing the 

frequency of random grouping process, the probability of 

capturing interaction variables in one subsystem increases. In 

delta grouping if interaction variables lie in different 

subsystems, the improvement interval of them would be 

limited. This is the central idea of delta grouping.  

The efficiency of an evolutionary algorithm is measured in 

terms of the number of fitness evaluations needed to discover 

the optimal solution. This is an important measure of an 

optimization algorithm, hence fewer fitness evaluation 

require less CPU time.  

Moreover, when running an EA for different runs under 

completely the same condition, the search trail is normally 

different for each run due to presence of randomness in 

nature of an EA. Correspondingly, the final solution of each 

run using the same EA under the same condition may result 

in dissimilar optimal solutions. These differences depend on 

the initial population or any random based evolutionary 

operator of an EA. An EA is said to be robust if its 

performance under all types of initial condition is similar. 

This is an important property for real-world optimization 

problems. The results of a robust EA are trustable and 

approximating the required fitness evaluation to find the 

optimal solution is possible. 

In this paper, we present a robust algorithm, the CCHTGA, 

which utilizes the CC frame to solve large scale optimization 

problems and random grouping strategy to handle non-

separable functions. Furthermore, the improved HTGA 

algorithm is employed for each subsystem optimizer to 
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enhance the algorithm to be robust and efficient. The 

motivation of this method is that a solution is not only of high 

performance, but also of convincing robustness. Robustness 

of an optimal solution can be seen from the viewpoint that it 

is insensitive to minor variations of the design variables or 

environmental parameters. There are two major approaches 

to improve the robustness of an optimal solution. One is to 

optimize the expectation of the objective function in a 

neighbourhood of a target point (Tustsui 1997) and the other 

is to minimize the variance of the objective function (Das 

2000). None of these two approaches can individually 

guarantee of finding a robust optimal solution. In the first 

approach, it is possible that positive and negative deviations 

from the target point cancel each other and therefore a robust 

solution cannot be found. Alternatively, if the second 

approach is used, the solution may not be optimal. Thus, it is 

essential to consider both approaches as an objective. In other 

words, a trade-off between optimality and robustness should 

be used. In this paper, we defined a new taguchi criterion to 

enhance the algorithm in order to find a robust optimal 

solution.   

This paper is organized as follows. In Section 2, the 

improved HTGA algorithm is introduced. Section 3 presents 

the CCHTGA. Section 4 demonstrates and analyses the 

experimental results. Finally Section 5 concludes this paper 

and present future works. 

2. Improved hybrid Taguchi-genetic algorithm 

The HTGA combines the traditional GA with the Taguchi 

method (Tsai 2004). The Taguchi method is based on 

statistical and sensitivity analysis and widely used in robust 

design (Phadke 1989). Taguchi used robust parameter design 

to determine the optimal levels of factors which minimize the 

sensitivity to noise. Thus, the mean response is close to the 

desired target while it has minimum variation.  Orthogonal 

array and the signal to noise ratio (SNR) are two major tools 

used in the Taguchi method. Several SNRs can be defined 

based on the type of problem characteristics: continues or 

discrete; nominal-is-the-best, smaller-the-best, or larger-the-

best. Further details can be found in (Phadke 1989). 

Many designed experiments use matrix structures called 

orthogonal arrays to distinguish the proper combination of 

factor levels. An orthogonal array is a fractional factorial 

matrix, which assures a balanced comparison of levels of any 

factors or interaction of factors (Tsai et al. 2004). Each rows 

of orthogonal array matrix represents the level of the factors 

in each experiment, and each column represents a definite 

factor. The general symbol for k-level standard orthogonal 

array is 

 1n
L kn


     (1) 

Where 2
m

n   which m  is a positive integer greater than 1, 

k  is the number of levels for each factor and 1n   in 

number of columns in the orthogonal array. Additional details 

of orthogonal arrays can be found in (Phadke 1989). 

In HTGA, the two tools of the Taguchi method, two-level 

orthogonal array and SNR, are employed. Taguchi method is 

used between crossover and mutation operations. Then, the 

combination of Taguchi with crossover operation is used to 

detect better genes to enhance the algorithm. 

In this paper, two major modifications are done with respect 

to the initial version of the HTGA proposed by Tsai (2004). 

First, we modify the SNR function to handle all types of 

optimization problems accurately and also define new 

mutation rule to enhance the search capability of the 

algorithm. This modified HTGA is then used as a subsystem 

optimizer in the CC frame. All subsystem optimizers perform 

individually. 

Here, we describe the modified HTGA as follows. 

Step 1) Initial population is generated by uniform random 

distribution within specified range for each variable. 

Step 2) Perform one cut-point Crossover operation (Tsai et al. 

2004) with probability of crossover rate pc .  

Step 3) Select a suitable two-level orthogonal array for matrix 

experiments. 

 Step 4) Choose two chromosomes randomly for Taguchi 

operation. 

Step 5) Calculate the function values and SNRs of n  

experiments in the orthogonal array  1
2

n
Ln


 as (2). Each 

column of  1
2

n
Ln


 represents a gene in chromosome. 

Experiments are built based on the fact that each gene of an 

offspring is belong to whether the first or second randomly 

chosen chromosome from step 4. That’s why the two-level 

orthogonal array is used.    

 
1 , 1, ...,2

ˆ( )
SNR i ni

z f yi

 


   (2) 

In (2) zi  is the function value for n th experiment. f  is the 

objective function and ŷ  is the best chromosome so far.  A 

large SNR value means lower squared deviation. The 

objective for attaining robust design is to have the highest 

SNR value. More description around (2) can be found at the 

end of this section. 

Step 6) Calculate the effects of the various factors (
1

E
f

 and 

2
E

f
) as follows. 

, 1, 2E sumof SNR for factor f at level l l
fl l
    

Where i  is the experiment number, f is the factor name, and 

l  is the level number. 
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Step 7) One optimal chromosome is generated based on the 

results from Step 6. 

Step 8) Repeat Steps 4 through 7 until the expected 

 1
2

M pc   has been met. In which M  is the population 

size and pc  is the crossover rate. 

Step 9) The population via the Taguchi method is generated. 

Step 10) Perform mutation operation with probability of pm . 

First choose half of chromosome genes randomly, and then 

mutate these genes as follows. 

 

( 0.5)

( )

ˆ2 1

if p

x l r u li i i i

else

x b r y yi i i i



   

     

   (3) 

Where p and r   are random numbers between 0 and 1, xi  is 

the ith  gene value of chromosome,  li  and ui are the lower 

and upper bounds for xi , ŷi  is the corresponding gene value 

of best chromosome, and yi  is the ith gene of the best 

experience of current chromosome which is under mutation 

process. 

Step 11) Offspring population is generated. 

Step 12) Selection survivals using roulette wheel approach 

with stochastic universal sampling.   

Two major improvement of the proposed HTGA include 

modifying SNR function and using new mutation rule, 

respectively in Step 5 and 9. In (2), consider the term 

 
2

ˆ( )z f yi  . We call this term best-squared deviation 

(BSD). For a group of n  solutions, if the function values are 

, , ...,
1 2

z z z zni  , then the BSD for this group of n  

solutions can be derived as follows resulting in (4). Let 

ˆ( )f y m  and 
m

z
 ,  then 

     

 

 

   

2 2 2

1 2

2

1

2 2

1

2 22 2

1

1
...

1
2

1
2

1
2

n

n

i i

i

n

i

i

n

i

i

BSD z m z m z m
n

z z m m
n

z zm m
n

z z z z m
n







      

  

  

    

  







  

   

   

2 2

1

2 22 2 2

1

1

n

i

i

z z z m
n

BSD z m z  



   

     


   (4) 

According to (4), the responses at each setting of solutions 

are treated as a measure that would be indicative of not only 

the mean of some quality characteristics, but also the 

variance of those characteristics. 

Since the minimization problem is considered in this paper 

(smaller-the-better measure); the target could be set as zero. 

Therefore, by setting  ˆ( ) 0f y m   in (4), (5) is obtained. 

2 2
BSD z      (5)    

Equation (5) is related to the 1
2SNRi

zi

 which is defined 

in (Tsai et al. 2004). Equation (5) works well for the 

problems with zero target value, but many real-world 

problems have different target values. The advantage of using 

(4) is that one can achieve results in all cases. Besides, this is 

a self-adaptive characteristic, as the algorithm improves, 

ˆ( )f y  get closer to the optimal value. Therefore, in the 

beginning of the algorithm, SNR performs more exploration, 

while at the end it has exploitation function. 

In Step (9), two mutation update rule each with probability of  

p  is performed. The value of p  can be simply set as 0.5. 

The first update rule clearly performs exploration, while the 

second performs exploitation near the best chromosome. By 

changing the value of p , these two process can be handled 

through the running of the algorithm, but in this paper it is 

simply set as 0.5.  

 

3. Cooperative Coevolution Hybrid Taguchi-Genetic 

Algorithm 

In this algorithm, we use CC framework to solve large scale 

optimization problems. Using this approach the decision 

variables are divided into several subsystems each of which is 

optimized with a separate improved HTGA. In order to 

handle non-separable problems, we use random grouping 

strategy with more frequent grouping to increase the 

probability of capturing interacting variables into the same 

subsystem. Besides, to avoid bound violation, we use a 

simple mirror method as follows. 

2 :

2

i i i i

i i i i i

i i i i

l x x l

x x l x u

u x x u

  


   
   

    (6)   

In which xi  is the decision variable, li  and ui  are 

respectively lower and upper bounds of xi  and xi
  is the 

modified value for xi . In this method, the search space is 
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doubled in each dimension and reconnected from the 

opposite bounds to avoid discontinuities, i.e., if a 

chromosome exceeds the bound, it is returned to the search 

space in proportion to the violation distance. This approach 

helps the algorithm to find the optimal solutions which exist 

near the bound. For two dimensions, this idea is presented in 

Fig. 1. It’s obvious that just infeasible solution is reflected in 

the feasible space. 

The algorithm framework of CCHTGA is described as 

algorithm 1. 

Algorithm 1: Pseudo code of CCHTGA 

Generate initial population 

Arrange the decision variables vector randomly 

Divide n  decision variables into K subsystems each with s  

dimension where s  is randomly chosen from a set of 

denominators of n  which are divisible to K , so n K s      

for t=1 to maxIterations do 

    if            
1 1 1

ˆ ˆ ˆ ˆ ˆ0.1
t t t t t

f y f y or f y f y f y
  

     then 

    Perform random Grouping 

    for each subsystem  1...j K  do 

        for each chromosome  1... .i pop size  do 

            if      , . , .
j i j i

f best j G x f best j G y  then 

                 . .
j i j i

G y G x   

            if      ˆ, . , .
j i j t

f best j G y f best j G y  then 

                 ˆ. .
j t j i

G y G y  

            if     ˆ ˆ, .
j t t

f best j G y f y  then 

                jth part of ˆ ˆ.
t j t

y G y   

             Bound handling of ŷt  

        end 

    end 

    for each subsystem  1..j K    do 

                 HTGA operation of 
j

G   

    end   

end 

In which n  is the number of decision variables, 

maxIterations is the maximum number of iterations, ŷt  is the 

best chromosome of tth iteration and ˆ( )
0

f y max real 

value, .pop size  is the population size, G j  is the jth 

subsystem, xi  is the ith chromosome, yi  is the best 

experience of xi , .G xj i  is the ith chromosome of G j (same 

meaning for .G yj i  and ˆ.G ytj ) and ( , )best j z  is the 

function which replaces the jth part of ŷt  with z .     

The grouping structure is checked for update at the beginning 

of iteration. The update condition is defined with the purpose 

of increasing the random grouping frequency. This would 

help the algorithm to capture interaction variables into the 

same subsystem.    

The first nested loops update the best experience of ith 

chromosome in the jth subsystem ( .G yj i ) and the subsystem 

best chromosome ( ˆ.G yj ). Besides, the jth subsystem best 

ˆ.G yj is used to update the ŷt . In the second loop each 

subsystem is applied to the improved HTGA operation as 

subsystem optimizer. The bound handling method is just 

applied to the ŷt  vector to facilitate population diversity.  

Fitness evaluation of ith chromosome in jth subsystem is 

calculated as   , .f best j G xj i . This is the coevolution 

part of the algorithm, since the collaboration is made through 

the vector ŷt . Note that the original dimension array is 

recorded to restore the actual dimension arrangement when it 

is necessary. 

 

Fig. 1. 2D Bound handling presentation 

4. Simulation studies 

4.1 Benchmark functions 

We use 6 benchmark functions for our simulations which are 

adopted by CEC 2008 Special session and Competition on 
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Large Scale Global Optimization (Tang et. al 2007). These 

functions are presented in Table 1.  

The comparison results between CCHTGA and CCPSO2 (Li 

and Yao 2011) is done on CES’08 functions with D=1,000 

and presented in Table 2.  Each test function was simulated 

with 25 independent runs. The mean function value and the 

standard deviation of the function values are all recorded. 

The population size was set to 30, the maximum number of 

fitness evaluations set to 5000 n  (where n  is the number of 

dimensions), the mutation rate is set to 0.7 and the crossover 

rate is 0.8. 

Table 1 Summary of the six CEC’08 test functions 

Functions Modality Separability 

1 :f  Shifted Sphere Unimodal Separable 

2 :f  Shifted Schwefel Unimodal Nonseparable 

3 :f  Shifted Rosenbrock Multimodal Nonseparable 

4 :f  Shifted Rastrigin Multimodal Separable 

5 :f  Shifted Griewank Multimodal Nonseparable 

6 :f  Shifted Ackley Multimodal Separable 

 

4.2 Results of CEC’08 functions 

According to Table 2, the proposed CCHTGA can find 

optimal or close-to-optimal solutions. The best results among 

two algorithms are shown in bold. For
1
f , 

2
f , 

3
f , 

4
f  and 

5f , CCHTGA outperforms the CCPOSO2. Regardless of 

better result of CCPSO2 on
6

f , the mean fitness value of 

CCHTGA is certainly close to optimal solution. Except for 

the test function 
6

f  which is a separable function, the 

CCHTGA gives smaller standard deviations of function 

values than the CCPSO2; therefore, the CCHTGA has a more 

stable solution quality. Moreover, the small differences 

between mean and standard deviation values in most 

functions indicate that the CCHTGA is relatively a robust 

algorithm.  

It can be seen from Table 2 that CCHTGA outperforms 

CCPSO2 on non-separable functions which are more difficult 

to optimize. Furthermore, its performance on separable 

functions is quite well. Therefore, the proposed CCHTGA 

can find the optimal or near-optimal solutions, and give better 

mean solution quality and more stable solution quality than 

CCPSO2. Moreover, the comparison results among 

CCHTGA, MLCC (Yang et al. 2008) and DECC-ML 

(Omidvar et al. 2010) on CEC’08 functions over 1,000 

dimensions are presented in Table 3. The results of MLCC 

and DECC-ML are based on the literature (Ren and Wu 

2013). The best results among the three algorithms are shown 

in bold. According to Table 3, CCHTGA outperforms the 

other algorithms on two out of three functions, and regardless 

of better performance of DECC-DML on 
6f , the final results 

of CCHTGA is  close to what is achieved by DECC-DML.  

The convergence result of the 3f  test function is shown in 

Fig. 2. In order to save more space, the convergence results 

for other test functions are not shown, as they look almost 

identical. We can see that CCHTGA shows faster 

convergence behaviour in little iteration compared to 

CCPSO2. It shows that the CCHTGA has great global search 

capability that helps the optimizer to find the optimal 

solution. CCPOS2 tended to converge slower than CCHTGA. 

This may be attributed to the use of the Cauchy distribution 

in CCPSO2 to encourage more exploration (Li and Yao 

2011). On the other hand, CCHTGA converged particularly 

fast thanks to exploitation capability of orthogonal arrays 

which is employed by taguchi method. 

Table 2 Results on CEC’08 functions over 1,000 dimensions 

Functions CCHTGA CCPSO2 

1f  1.26e-41 (8.71e-37) 5.18e-13 (5.76e-8) 

2f  1.30e-03 ( 6.98e-04) 7.82e+01 (3.54e+02) 

3f   1.38e-04 (3.87e-03) 1.33e+03 (9.17e+04) 

4f  1.06e-14 (3.91e-15) 1.99e-01 (5.41e+01) 

5f  1.11e-16 ( 8.42e-14) 1.18e-03 (1.93e-01) 

6f  3.38e-08 (2.98e-08) 1.02e-12 (9.37e-13) 

 

Table 3 Results on 3f  , 4f  and 6f   functions over 1,000 

dimensions 

Functions 
CCHTGA MLCC 

DECC-

DML 

3f   1.38e-04 

(3.87e-03) 

1.7e+03 

(1.80e+02) 

9.69e+02 

(3.51e+02) 

4f  1.06e-14 

(3.91e-15) 

1.73e-11 

(2.21e+00) 

1.62E+02 

(2.98E+01) 

6f  3.38e-08 

(2.98e-08) 

1.28e-13 

(3.70e-12) 
1.10e-13 

(8.22e-15) 
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Fig. 2. Convergence plot for 3f  

6. CONCLUSIONS 

In this paper, we proposed the CCHTGA to improve the 

performance of the HTGA on large scale optimization 

problems. The CCHTGA utilizes the CC frame and Taguchi 

method to enhance the algorithm.  Some new techniques have 

been used to enhance the global search ability of the 

algorithm. The algorithm employs the random grouping 

strategy to handle non-separable problems. The CCHTGA 

was compared with state-of-the-art evolutionary algorithm 

CCPSO2. The simulation results showed that the CCHTGA 

outperformed CCPSO2 on five out of six CEC’S 2008 test 

functions, while it had faster convergence speed. Moreover, 

the systematic reasoning ability of the Taguchi method is 

combined into the algorithm to obtain better and more robust 

results.  

In future, we are planning to apply CCHTGA to solve the 

real-world problems, such as large scale reservoir operation 

problems. In addition, new decomposition techniques as well 

as extension of the idea to multi-objective optimization 

problems will be taken into consideration. 
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