

A Robust Evolutionary Algorithm for Large Scale Optimization

S.S. Poorjandaghi. A. Afshar*


Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran

* Corresponding author, Tel:9821-64543391; e-mail: aafshar@aut.ac.ir

Abstract: In this paper we present a new cooperative coevolution hybrid Taguchi-genetic algorithm

(CCHTGA) to solve high-dimensional optimization problems with continuous variables which are typical

in large scale systems. The CCHTGA employs cooperative coevolution frame to decompose the problem

into several subsystems and adopts a novel decomposition technique “random grouping strategy”.

Subsystem optimizer is an improved hybrid Taguchi-genetic algorithm (HTGA) which is effective, more

robust and rapidly convergent. The performance of the CCHTGA compared to a state-of-the-art

cooperative coevolution particle swarm algorithm (CCPSO2). The simulation results obtained from the

application of this method to function optimization indicate that CCHTGA can be a competitive

algorithm to achieve better and robust results.

Keywords: Cooperative coevolution, Evolutionary algorithms, Large-scale optimization, Random

grouping, Taguchi method.



1. INTRODUCTION

Hybrid Taguchi-genetic algorithm (HTGA) is a robust, fast

convergent and statistically sound evolutionary algorithm

proposed by Tsai et al. (2004) which is shown to be an

efficient algorithm to solve 100 dimension problems. In the

proposed HTGA, the Taguchi method is combined in the

genetic crossover operation to generate better offspring and

give more robust results.

In recent years, large scale optimization has received

significant attention in evolutionary computation domain.

The performance of many known optimization algorithms

deteriorates as the number of decision variables increases. On

the other hand, many real-world problems require optimizing

large number of decision variables. Thus, new optimization

algorithms should be capable of facing the challenges of

optimization of high-dimensional problems.

Divide-and-conquer (D&V) is a powerful strategy to face

high-dimensional optimization problems. Potter and Jong

(1994) introduced Cooperative Coevolution (CC) frame

which adopts D&V strategy. CC is the most common frame

to tackle large scale optimization problems which decompose

a problem into several subsystems each evolved by a separate

evolutionary algorithm (EA).

The main challenge of CC is how to divide a whole

evolutionary system into subsystems since the performance

of it is highly dependent on variable interactions. The ideal

decomposition strategy should evolve highly interacting

variables in the same subsystem while retain the interaction

between subsystems as low as possible (Liu et al. 2001). The

presence of interactions between decision variables are

generally known as non-separability (Salomon 1995) or

epistasis (Klug et al. 2008). The simplest decomposition

strategy is to divide a problem into a set of one dimensional

problem. However, this strategy does not work well in

presence of variable interactions. Two major efforts in

collecting interacting variables in the same subsystem are

random Grouping (Yang et al. 2008) and Delta Grouping

(Omidvar et al. 2010). Yang shows that by increasing the

frequency of random grouping process, the probability of

capturing interaction variables in one subsystem increases. In

delta grouping if interaction variables lie in different

subsystems, the improvement interval of them would be

limited. This is the central idea of delta grouping.

The efficiency of an evolutionary algorithm is measured in

terms of the number of fitness evaluations needed to discover

the optimal solution. This is an important measure of an

optimization algorithm, hence fewer fitness evaluation

require less CPU time.

Moreover, when running an EA for different runs under

completely the same condition, the search trail is normally

different for each run due to presence of randomness in

nature of an EA. Correspondingly, the final solution of each

run using the same EA under the same condition may result

in dissimilar optimal solutions. These differences depend on

the initial population or any random based evolutionary

operator of an EA. An EA is said to be robust if its

performance under all types of initial condition is similar.

This is an important property for real-world optimization

problems. The results of a robust EA are trustable and

approximating the required fitness evaluation to find the

optimal solution is possible.

In this paper, we present a robust algorithm, the CCHTGA,

which utilizes the CC frame to solve large scale optimization

problems and random grouping strategy to handle non-

separable functions. Furthermore, the improved HTGA

algorithm is employed for each subsystem optimizer to

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 7037

enhance the algorithm to be robust and efficient. The

motivation of this method is that a solution is not only of high

performance, but also of convincing robustness. Robustness

of an optimal solution can be seen from the viewpoint that it

is insensitive to minor variations of the design variables or

environmental parameters. There are two major approaches

to improve the robustness of an optimal solution. One is to

optimize the expectation of the objective function in a

neighbourhood of a target point (Tustsui 1997) and the other

is to minimize the variance of the objective function (Das

2000). None of these two approaches can individually

guarantee of finding a robust optimal solution. In the first

approach, it is possible that positive and negative deviations

from the target point cancel each other and therefore a robust

solution cannot be found. Alternatively, if the second

approach is used, the solution may not be optimal. Thus, it is

essential to consider both approaches as an objective. In other

words, a trade-off between optimality and robustness should

be used. In this paper, we defined a new taguchi criterion to

enhance the algorithm in order to find a robust optimal

solution.

This paper is organized as follows. In Section 2, the

improved HTGA algorithm is introduced. Section 3 presents

the CCHTGA. Section 4 demonstrates and analyses the

experimental results. Finally Section 5 concludes this paper

and present future works.

2. Improved hybrid Taguchi-genetic algorithm

The HTGA combines the traditional GA with the Taguchi

method (Tsai 2004). The Taguchi method is based on

statistical and sensitivity analysis and widely used in robust

design (Phadke 1989). Taguchi used robust parameter design

to determine the optimal levels of factors which minimize the

sensitivity to noise. Thus, the mean response is close to the

desired target while it has minimum variation. Orthogonal

array and the signal to noise ratio (SNR) are two major tools

used in the Taguchi method. Several SNRs can be defined

based on the type of problem characteristics: continues or

discrete; nominal-is-the-best, smaller-the-best, or larger-the-

best. Further details can be found in (Phadke 1989).

Many designed experiments use matrix structures called

orthogonal arrays to distinguish the proper combination of

factor levels. An orthogonal array is a fractional factorial

matrix, which assures a balanced comparison of levels of any

factors or interaction of factors (Tsai et al. 2004). Each rows

of orthogonal array matrix represents the level of the factors

in each experiment, and each column represents a definite

factor. The general symbol for k-level standard orthogonal

array is

 1n
L kn


 (1)

Where 2
m

n  which m is a positive integer greater than 1,

k is the number of levels for each factor and 1n  in

number of columns in the orthogonal array. Additional details

of orthogonal arrays can be found in (Phadke 1989).

In HTGA, the two tools of the Taguchi method, two-level

orthogonal array and SNR, are employed. Taguchi method is

used between crossover and mutation operations. Then, the

combination of Taguchi with crossover operation is used to

detect better genes to enhance the algorithm.

In this paper, two major modifications are done with respect

to the initial version of the HTGA proposed by Tsai (2004).

First, we modify the SNR function to handle all types of

optimization problems accurately and also define new

mutation rule to enhance the search capability of the

algorithm. This modified HTGA is then used as a subsystem

optimizer in the CC frame. All subsystem optimizers perform

individually.

Here, we describe the modified HTGA as follows.

Step 1) Initial population is generated by uniform random

distribution within specified range for each variable.

Step 2) Perform one cut-point Crossover operation (Tsai et al.

2004) with probability of crossover rate pc .

Step 3) Select a suitable two-level orthogonal array for matrix

experiments.

 Step 4) Choose two chromosomes randomly for Taguchi

operation.

Step 5) Calculate the function values and SNRs of n

experiments in the orthogonal array  1
2

n
Ln


 as (2). Each

column of  1
2

n
Ln


 represents a gene in chromosome.

Experiments are built based on the fact that each gene of an

offspring is belong to whether the first or second randomly

chosen chromosome from step 4. That’s why the two-level

orthogonal array is used.

 
1 , 1, ...,2

ˆ()
SNR i ni

z f yi

 


 (2)

In (2) zi is the function value for n th experiment. f is the

objective function and ŷ is the best chromosome so far. A

large SNR value means lower squared deviation. The

objective for attaining robust design is to have the highest

SNR value. More description around (2) can be found at the

end of this section.

Step 6) Calculate the effects of the various factors (
1

E
f

 and

2
E

f
) as follows.

, 1, 2E sumof SNR for factor f at level l l
fl l
 

Where i is the experiment number, f is the factor name, and

l is the level number.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7038

Step 7) One optimal chromosome is generated based on the

results from Step 6.

Step 8) Repeat Steps 4 through 7 until the expected

 1
2

M pc  has been met. In which M is the population

size and pc is the crossover rate.

Step 9) The population via the Taguchi method is generated.

Step 10) Perform mutation operation with probability of pm .

First choose half of chromosome genes randomly, and then

mutate these genes as follows.

 

(0.5)

()

ˆ2 1

if p

x l r u li i i i

else

x b r y yi i i i



   

     

 (3)

Where p and r are random numbers between 0 and 1, xi is

the ith gene value of chromosome, li and ui are the lower

and upper bounds for xi , ŷi is the corresponding gene value

of best chromosome, and yi is the ith gene of the best

experience of current chromosome which is under mutation

process.

Step 11) Offspring population is generated.

Step 12) Selection survivals using roulette wheel approach

with stochastic universal sampling.

Two major improvement of the proposed HTGA include

modifying SNR function and using new mutation rule,

respectively in Step 5 and 9. In (2), consider the term

 
2

ˆ()z f yi  . We call this term best-squared deviation

(BSD). For a group of n solutions, if the function values are

, , ...,
1 2

z z z zni  , then the BSD for this group of n

solutions can be derived as follows resulting in (4). Let

ˆ()f y m and
m

z
 , then

     

 

 

   

2 2 2

1 2

2

1

2 2

1

2 22 2

1

1
...

1
2

1
2

1
2

n

n

i i

i

n

i

i

n

i

i

BSD z m z m z m
n

z z m m
n

z zm m
n

z z z z m
n







      

  

  

    

  







   

   

2 2

1

2 22 2 2

1

1

n

i

i

z z z m
n

BSD z m z  



   

     


 (4)

According to (4), the responses at each setting of solutions

are treated as a measure that would be indicative of not only

the mean of some quality characteristics, but also the

variance of those characteristics.

Since the minimization problem is considered in this paper

(smaller-the-better measure); the target could be set as zero.

Therefore, by setting ˆ() 0f y m  in (4), (5) is obtained.

2 2
BSD z  (5)

Equation (5) is related to the 1
2SNRi

zi

 which is defined

in (Tsai et al. 2004). Equation (5) works well for the

problems with zero target value, but many real-world

problems have different target values. The advantage of using

(4) is that one can achieve results in all cases. Besides, this is

a self-adaptive characteristic, as the algorithm improves,

ˆ()f y get closer to the optimal value. Therefore, in the

beginning of the algorithm, SNR performs more exploration,

while at the end it has exploitation function.

In Step (9), two mutation update rule each with probability of

p is performed. The value of p can be simply set as 0.5.

The first update rule clearly performs exploration, while the

second performs exploitation near the best chromosome. By

changing the value of p , these two process can be handled

through the running of the algorithm, but in this paper it is

simply set as 0.5.

3. Cooperative Coevolution Hybrid Taguchi-Genetic

Algorithm

In this algorithm, we use CC framework to solve large scale

optimization problems. Using this approach the decision

variables are divided into several subsystems each of which is

optimized with a separate improved HTGA. In order to

handle non-separable problems, we use random grouping

strategy with more frequent grouping to increase the

probability of capturing interacting variables into the same

subsystem. Besides, to avoid bound violation, we use a

simple mirror method as follows.

2 :

2

i i i i

i i i i i

i i i i

l x x l

x x l x u

u x x u

  


   
   

 (6)

In which xi is the decision variable, li and ui are

respectively lower and upper bounds of xi and xi
 is the

modified value for xi . In this method, the search space is

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7039

doubled in each dimension and reconnected from the

opposite bounds to avoid discontinuities, i.e., if a

chromosome exceeds the bound, it is returned to the search

space in proportion to the violation distance. This approach

helps the algorithm to find the optimal solutions which exist

near the bound. For two dimensions, this idea is presented in

Fig. 1. It’s obvious that just infeasible solution is reflected in

the feasible space.

The algorithm framework of CCHTGA is described as

algorithm 1.

Algorithm 1: Pseudo code of CCHTGA

Generate initial population

Arrange the decision variables vector randomly

Divide n decision variables into K subsystems each with s

dimension where s is randomly chosen from a set of

denominators of n which are divisible to K , so n K s 

for t=1 to maxIterations do

 if            
1 1 1

ˆ ˆ ˆ ˆ ˆ0.1
t t t t t

f y f y or f y f y f y
  

    then

 Perform random Grouping

 for each subsystem  1...j K do

 for each chromosome  1... .i pop size do

 if      , . , .
j i j i

f best j G x f best j G y then

 . .
j i j i

G y G x

 if      ˆ, . , .
j i j t

f best j G y f best j G y then

 ˆ. .
j t j i

G y G y

 if     ˆ ˆ, .
j t t

f best j G y f y then

 jth part of ˆ ˆ.
t j t

y G y

 Bound handling of ŷt

 end

 end

 for each subsystem  1..j K do

 HTGA operation of
j

G

 end

end

In which n is the number of decision variables,

maxIterations is the maximum number of iterations, ŷt is the

best chromosome of tth iteration and ˆ()
0

f y max real

value, .pop size is the population size, G j is the jth

subsystem, xi is the ith chromosome, yi is the best

experience of xi , .G xj i is the ith chromosome of G j (same

meaning for .G yj i and ˆ.G ytj) and (,)best j z is the

function which replaces the jth part of ŷt with z .

The grouping structure is checked for update at the beginning

of iteration. The update condition is defined with the purpose

of increasing the random grouping frequency. This would

help the algorithm to capture interaction variables into the

same subsystem.

The first nested loops update the best experience of ith

chromosome in the jth subsystem (.G yj i) and the subsystem

best chromosome (ˆ.G yj). Besides, the jth subsystem best

ˆ.G yj is used to update the ŷt . In the second loop each

subsystem is applied to the improved HTGA operation as

subsystem optimizer. The bound handling method is just

applied to the ŷt vector to facilitate population diversity.

Fitness evaluation of ith chromosome in jth subsystem is

calculated as   , .f best j G xj i . This is the coevolution

part of the algorithm, since the collaboration is made through

the vector ŷt . Note that the original dimension array is

recorded to restore the actual dimension arrangement when it

is necessary.

Fig. 1. 2D Bound handling presentation

4. Simulation studies

4.1 Benchmark functions

We use 6 benchmark functions for our simulations which are

adopted by CEC 2008 Special session and Competition on

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7040

Large Scale Global Optimization (Tang et. al 2007). These

functions are presented in Table 1.

The comparison results between CCHTGA and CCPSO2 (Li

and Yao 2011) is done on CES’08 functions with D=1,000

and presented in Table 2. Each test function was simulated

with 25 independent runs. The mean function value and the

standard deviation of the function values are all recorded.

The population size was set to 30, the maximum number of

fitness evaluations set to 5000 n (where n is the number of

dimensions), the mutation rate is set to 0.7 and the crossover

rate is 0.8.

Table 1 Summary of the six CEC’08 test functions

Functions Modality Separability

1 :f Shifted Sphere Unimodal Separable

2 :f Shifted Schwefel Unimodal Nonseparable

3 :f Shifted Rosenbrock Multimodal Nonseparable

4 :f Shifted Rastrigin Multimodal Separable

5 :f Shifted Griewank Multimodal Nonseparable

6 :f Shifted Ackley Multimodal Separable

4.2 Results of CEC’08 functions

According to Table 2, the proposed CCHTGA can find

optimal or close-to-optimal solutions. The best results among

two algorithms are shown in bold. For
1
f ,

2
f ,

3
f ,

4
f and

5f , CCHTGA outperforms the CCPOSO2. Regardless of

better result of CCPSO2 on
6

f , the mean fitness value of

CCHTGA is certainly close to optimal solution. Except for

the test function
6

f which is a separable function, the

CCHTGA gives smaller standard deviations of function

values than the CCPSO2; therefore, the CCHTGA has a more

stable solution quality. Moreover, the small differences

between mean and standard deviation values in most

functions indicate that the CCHTGA is relatively a robust

algorithm.

It can be seen from Table 2 that CCHTGA outperforms

CCPSO2 on non-separable functions which are more difficult

to optimize. Furthermore, its performance on separable

functions is quite well. Therefore, the proposed CCHTGA

can find the optimal or near-optimal solutions, and give better

mean solution quality and more stable solution quality than

CCPSO2. Moreover, the comparison results among

CCHTGA, MLCC (Yang et al. 2008) and DECC-ML

(Omidvar et al. 2010) on CEC’08 functions over 1,000

dimensions are presented in Table 3. The results of MLCC

and DECC-ML are based on the literature (Ren and Wu

2013). The best results among the three algorithms are shown

in bold. According to Table 3, CCHTGA outperforms the

other algorithms on two out of three functions, and regardless

of better performance of DECC-DML on
6f , the final results

of CCHTGA is close to what is achieved by DECC-DML.

The convergence result of the 3f test function is shown in

Fig. 2. In order to save more space, the convergence results

for other test functions are not shown, as they look almost

identical. We can see that CCHTGA shows faster

convergence behaviour in little iteration compared to

CCPSO2. It shows that the CCHTGA has great global search

capability that helps the optimizer to find the optimal

solution. CCPOS2 tended to converge slower than CCHTGA.

This may be attributed to the use of the Cauchy distribution

in CCPSO2 to encourage more exploration (Li and Yao

2011). On the other hand, CCHTGA converged particularly

fast thanks to exploitation capability of orthogonal arrays

which is employed by taguchi method.

Table 2 Results on CEC’08 functions over 1,000 dimensions

Functions CCHTGA CCPSO2

1f 1.26e-41 (8.71e-37) 5.18e-13 (5.76e-8)

2f 1.30e-03 (6.98e-04) 7.82e+01 (3.54e+02)

3f 1.38e-04 (3.87e-03) 1.33e+03 (9.17e+04)

4f 1.06e-14 (3.91e-15) 1.99e-01 (5.41e+01)

5f 1.11e-16 (8.42e-14) 1.18e-03 (1.93e-01)

6f 3.38e-08 (2.98e-08) 1.02e-12 (9.37e-13)

Table 3 Results on 3f , 4f and 6f functions over 1,000

dimensions

Functions
CCHTGA MLCC

DECC-

DML

3f 1.38e-04

(3.87e-03)

1.7e+03

(1.80e+02)

9.69e+02

(3.51e+02)

4f 1.06e-14

(3.91e-15)

1.73e-11

(2.21e+00)

1.62E+02

(2.98E+01)

6f 3.38e-08

(2.98e-08)

1.28e-13

(3.70e-12)
1.10e-13

(8.22e-15)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7041

Fig. 2. Convergence plot for 3f

6. CONCLUSIONS

In this paper, we proposed the CCHTGA to improve the

performance of the HTGA on large scale optimization

problems. The CCHTGA utilizes the CC frame and Taguchi

method to enhance the algorithm. Some new techniques have

been used to enhance the global search ability of the

algorithm. The algorithm employs the random grouping

strategy to handle non-separable problems. The CCHTGA

was compared with state-of-the-art evolutionary algorithm

CCPSO2. The simulation results showed that the CCHTGA

outperformed CCPSO2 on five out of six CEC’S 2008 test

functions, while it had faster convergence speed. Moreover,

the systematic reasoning ability of the Taguchi method is

combined into the algorithm to obtain better and more robust

results.

In future, we are planning to apply CCHTGA to solve the

real-world problems, such as large scale reservoir operation

problems. In addition, new decomposition techniques as well

as extension of the idea to multi-objective optimization

problems will be taken into consideration.

REFERENCES

Phadke, M.S. (1989). Quality engineering using robust

design. Prentice Hall

Potter, M.A., and De Jong K.S. (1994). A cooperative co-

evolutionary approach to function optimization. Proceedings

of the third conference on parallel problem solving nature,

pp 249-257.

Salomon, R. (1995). Re-evaluating genetic algorithm

performance under coordinate rotation of benchmark function

– a survey of some theoretical and practical aspects of genetic

algorithms. BioSystems, 39:263-278.

Tustsui, S. (1997). Genetic algorithms with a robust solution

searching scheme. IEEE Transactions on Evolutionary

Computation, 1(3):201-208.

Das, I. (2000). Robustness optimization for constrained

nonlinear programming problems. Engineering Optimization,

32(5):585-618.

Liu, Y., Yao, X., Zhao, Q. and Higuchi, T. (2001). Scalling

up fast evolutionary programming with cooperative

coevolution. Proceeding of Congress on Evolutionary

Computation, pages 1101-1108.

Tsai, J.T., Liu, T.K. and Chou, J.H. (2004). Hybrid tagushi-

genetic algorithm for global numerical optimization. IEEE

Trans. Evol. Comput., vol. 8, no. 4, pp. 365-377.

Tang k., Yao X., Suganthan PN., MacNish C., Chen YP,.

Chen CM., Yang Z. (2007). Benchmark functions for the

CEC’2008 special session and competition on large scale

global optimization. Tech Rep, Nature Inspired Computation

and Application Laboratory, USTC, China.

Klug, W.S., Cummings, M.R., Spencer, C., Spencer, C.A.

and Palladino M.A. (2008). Concepts of Genetics. Pearson, 9

edition.

Yang, Z., Tang K. and Yao X. (2008). Large scale

evolutionary optimization using cooperative coevolution.

Information Science, 178:2986-2999.

Omidvar M.N., Li, X. and Yao X. (2010). Cooperative co-

evolution with delta grouping for large scale non-separable

function optimization. Proceeding of IEEE Congress on

Evolutionary Computation (CEC), pages 1762-1769.

Li, X.D., Yao, X. (2011). Cooperatively coevolving particle

swarms for large scale optimization. IEEE Transaction

Evolutionary Computation, 16(2):210-224.

Ren, Y.F., Wu, Y. (2013). An efficient algorithm for high

dimensional function optimization. Soft Computing, col1.17,

no.6, pp. 995-1004.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7042

