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Abstract: The paper introduces an XML schema complying with PMML standard suitable for
a general fuzzy model formulation. It also presents a graphical user interface that is a part of a
tool for analysis and control of production dynamics, which was developed at the Competence
Center for Advanced Control Technologies. The interface is used for eFuMo model identification,
validation and simple conversion from an eFuMo model to a standardized XML message and vice
versa. The conversion can be carried out via a DOM object, which enables manipulation of XML
structure in Matlab, or directly. The XML files that comply with the PMML standard provide
a way for applications to describe and exchange models produced by data-mining and machine-
learning algorithms. The goal of the presented work is to provide a platform for including fuzzy
models into the PMML framework and thus stimulate interoperability of various applications
that take advantage of fuzzy models, e.g. in production dynamics analysis and control, as well
as in other implementations.

1. INTRODUCTION

The production management is typically divided to several
hierarchical levels, according to IEC 62264 standard (see
IEC [2007]). The topmost level involves economic analysis
and planning of future strategic goals. The goals are
then presented to the lower (production) level in order
to schedule and divide the production tasks. On this
level, both strategic goals and dynamical properties and
limitation of the production process have to be taken into
account. Usually, the production process optimization is
carried out on this level as well. The lowest level deals
with the production process control, where suitable control
loops ensure stable operation within process constraints.

Due to a large number of variables that influence produc-
tion performance, effective optimization and control on the
production level is generally a very complex task, which is
usually carried out by production managers. However, the
lack of tools for decision-making support often results in
non-optimal decisions.

In the increasingly global competition on product quality
and production cost, many manufacturing companies ad-
just their production by focusing on customized product
and fast time to market. Modular simulation and modeling
enable a flexible production and rapid product innovation.
Cyber-Phisical-Systems within a factory of the future will
need to enable communication between humans, machines
and products (see Brettel et al. [2014]). However, suitable
production models are needed to achieve this goal. On the
production level, several variations of MES (Manufactur-
ing Execution Systems) can be applied. However, MES
support is frequently limited to archiving and displaying
production variable measurements and lacks solid support
for production optimization and control. Therefore, the
concept of holistic production control has been introduced
by Zorzut et al. [2009]. Holistic production control employs

production data analysis in order to obtain suitable models
of production dynamics that allow for effective optimiza-
tion of production with regard to the strategic goals. The
idea is to have a decision-making support system that
would help the production manager to make effective deci-
sions so as to optimize the production process (see Glavan
et al. [2013b,a]).

The Competence Center for Advanced Control Technolo-
gies (see CCACT [2013]) is a Slovenia-based research-
development center focusing on new developments in con-
trol technology (automation, computerization and cyber-
neticisation). Within the Center, a tool for production
dynamics analysis and control has been developed.The
tool has a modular design, which allows for a clear and
comprehensible structure, distributed operation on sev-
eral systems and possibility of a later development and
addition of new modules that are not limited to one
programming language. In order to successfully integrate
the tool into a production process, it is vital to provide
support for a standardized form of messages that are used
for communication in business and production information
systems. Therefore, XML messages have been chosen for
this task. Their structure can be generally defined in a
xsd schema, as described in the PMML (Predictive Model
Markup Language) standard (see DMG [2013]). The goal
of the PMML standard is to provide a unified formulation
of a wide range of classes of data-mining models and hence
enable interoperability of various applications and tools
from different manufacturers by simplifying the model and
data transfers among various environments.

In the paper, we propose an XML structure that supports
a general fuzzy model formulation and complies with the
PMML standard. Furthermore, we present a part of the
tool for production analysis and control that provides a
graphical user interface with user-friendly functions for
evolving identification of fuzzy models and functions for
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Fig. 1. Graphical user interface

their conversion to a standardized XML message and vice
versa.

2. FUZZY MODEL FORMULATION BASED ON XML

Among other complex dynamical properties many real
industrial processes express distinct nonlinearities. A well
established approach to modeling nonlinear systems non-
linearities employs fuzzy logic, see Babuška [1996], Babuška
and Verbruggen [1996], Škrjanc and Matko [2001], Škrjanc
et al. [2005].

Fuzzy logic emerges from the theory of fuzzy sets (see
Zadeh [1965]), which introduces the concept of the degree
of membership into the classic theory of crisp sets (see
Babuška [1998]). An element is not just included or not
included in a particular set, but can also be a fuzzy member
of that set, i.e., can be included to a certain degree between
0 (not included) and 1 (included).

In this manner it is possible to include some adverbs
expressing a degree or extent, such as very, rather, mod-
erately etc. in the theory of sets. Fuzzy sets also introduce
some linguistic variables, which can have some linguistic

value that can be interpreted using fuzzy sets and mem-
bership degrees.

An advantage of the fuzzy models is the intuitive de-
scription of causal dynamical connections between inputs
and outputs of a system using if–then sentences (see Gir-
imonte and Babuška [2004]). An essential property of the
fuzzy model is that they can be regarded as universal
approximator of nonlinear dynamics (see Castro [1995],
Girosi and Poggio [1990]). It is possible to approximate
any continuous nonlinear function to an arbitrary precision
using fuzzy models.

Fuzzy logic and fuzzy models represent a useful derivative
of the theory of fuzzy sets and can be employed in modeling
of real complex dynamical systems.

Fuzzy models can be formulated as XML messages, but
no general standard has been widely accepted yet. There
are several XML solutions that are mainly intended for
fuzzy controller formulation, such as FCL (see IEC [2013])
with IEC 61131-7 standard, FML (see Acampora [2013]).
However, these formulations are not adequate for a general
fuzzy models, such as the models used for production
dynamics analysis and control.
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2.1 PMML standard

There is an evident need for a standardized formulation of
fuzzy models. Therefore, we developed a XML formulation
that is based on the PMML standard (see DMG [2013]),
which was slightly adapted so as to include fuzzy model
formulations. The basic PMML schema comprises several
various elements that can be used to describe a model.
There is also a set of useful data structures defined in the
schema.

According to the PMML schema, the root element of
the XML file containing the model is called <PMML>.
The element <PMML> includes an element <Header>,
which contains the header of the XML file, and an element
<DataDictionry>, which contains the description of the
data used in the model. In general, <PMML> can also in-
clude an element from the <MODEL-ELEMENT> group,
which is described later. Furthermore, it can include a
<MiningBuildTask> element, which describes the learn-
ing (identification) data, and a <TransformationDic-
tionary> element comprising the eventual data transfor-
mations, such as normalization, discretizing etc.

The group<MODEL-ELEMENT> supports the following
model formulations: AssociationModel, BaselineModel,
ClusteringModel, GeneralRegressionModel, MiningModel,
NaiveBayesModel, NearestNeighborModel, NeuralNetwork,
RegressionModel, RuleSetModel, SequenceModel, Score-
card, SupportVectorMachineModel, TextModel, TimeSeries-
Model, and TreeModel. Despite the large set of possible
models it does not comprise a formulation that is suitable
for a general fuzzy model. Therefore, we used the extension
element, which is supported in the PMML schema: instead
of a model from the <MODEL-ELEMENT> group 1 ,
we used a ne subelement called <Extension>. <Exten-
sion> allows for user-defined contents and can hence be
used to store the whole structure enabling the reconstruc-
tion of a fuzzy model.

2.2 Structure of the XML formulation for fuzzy model
within the PMML standard

The XML formulation must meet three main requirements:

• It complies with the PMML standard, which means
that it can be validated against the XSD Schema
in file pmml-4-1.xsd (can be downloaded from DMG
[2013]).

• It supports a most general fuzzy model formulation.
• It has a clear and comprehensible structure so that
it is possible to derive the fuzzy model from the
XML file without any particular tools or additional
knowledge.

The basic structure of XML file is defined in the PMML
standard. As described later, we have used the elements
and data structures provided by the PMML standard for
the fuzzy model formulation ta a large extent. We have also
taken to the rules defined in the PMML into consideration.

the first compulsory subelement of the root element
<PMML> is <Header>. It can have two attributes: copy-
right and description. In our case copyright can contain the
1 A model from the <MODEL-ELEMENT> group is not compul-

sory in the PMML schema.

author of the XML formulation. The <Header> element
supports several subelements: <Application> element,
<Annotation> element and <Timestamp> element. In
our case, the <Annotation> element, can provide a com-
ment on the fuzzy model, whereas the <Timestamp> el-
ement incorporates the time of creation of the XML for-
mulation.

The next compulsory subelement of the root element
<PMML> is <DataDictionary>, which can have a non-
negative integer attribute numberOfFields. <DataDic-
tionary> element also comprises a subelement <DataField
>, which can have the following attributes: name, which
must be of a FIELD-NAME type; optype, which can be
either categorical, ordinal or continuous ; dataType with a
limited set of types; displayName; taxonomy; and isCyclic.
The attributes name, optype and dataType are compul-
sory, whereas the attributes displayName, taxonomy and
isCyclic are not.

The next subelement of the root element <PMML> is
usually from the <MODEL-ELEMENT> group. As men-
tioned, the group does not comprise a formulation that
would be suitable for a general fuzzy model. Therefore,
we used the <Extension> element, which is supported
in the PMML schema and can be used to store all the
data needed for the reconstruction of the fuzzy model. The
<Extension> element can have three attributes: extender,
name and value. In our case we use the attribute name
that contains the string ”fuzzyModel”, denoting that the
element contains a fuzzy model. The<Extension> element
comprises a subelement <FuzzyModel>, which supports
a general fuzzy model. The element can have several at-
tributes: functionName, defining a function, modelName
with the name the fuzzy model and modelType contain-
ing the type of the model. The <FuzzyModel> element
comprises five subelements: <MiningSchema>, which ref-
erences the appropriate signals used in the model; <Re-
gressorDefinition>, which defines the signals and the de-
lays making up the regressor; <OutputDefinition>, which
defines the output signals of the model, with their respec-
tive delays; <Rules>, containing the rule-set of the fuzzy
model; and <GeneralParameters>, which comprises the
other parameters that are crucial for model reconstruction.

The<RegressorDefinition> element has an attribute num-
berOfInputs, with the number of particular signals mak-
ing up the regressor of the model. Each signal in the
regressor result in a <RegressorInput> subelement, with
its identification attribute id and a user-friendly name,
which describes the particular regressor signal and its
delay, e.g. Fp(k− 4). The <RegressorInput> element con-
tains a <Delay> subelement, defining the delay, and a
<DerivedField> complex subelement, which is defined in
the PMML standard and references the appropriate signal
from the <DataDictionary> set.

In a similar way as the <RegressorDefinition> element,
the <OutputDefinition> element defines the output sig-
nals in its <FuzzyModelOutput> subelements.

The <Rules> element has a numberOfRules attribute,
which contains the number of rules in the fuzzy model. The
element comprises an appropriate number of <Rule i>
subelements, each with its identification attribute i. Each
<Rule i> element is made up of the antecedent part,
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defined in the <IfPart> subelement, and the consequent
part, defined in the <ThenPart> subelement.

The antecedent part comprises the fuzzy membership func-
tion in the <MembershipFunctionDefinition> subelement.
The subelement has a type attribute, which in our case
contains the string c̈luster̈. This is because the membership
functions in the eFuMo model are defined as clusters. How-
ever, in general, any other type of membership functions
could be used instead.

A cluster defining a membership function is formulated
as a standard PMML element <Cluster>. In our case, it
comprises two standard PMML subelements: <Array> el-
ement defines the center of the cluster, whereas <Covari-
ances> element defines the shape of the cluster using a
covariance matrix.

The consequent part <ThenPart> has a type attribute,
which in our case contains the string l̈ocalLinearModel̈.
It contains a <LocalLinearModel> subelement, where the
local linear model appurtenant to the respective rule in
<Rule i> is defined.

The <GeneralParameters> element comprises a <Num-
berOfOutputs> subelement, which contains the number of
outputs, and the parameters defining the method for cal-
culating the membership values contained in the <Mem-
bershipDegreeCalculationParameters> subelement. The
latter is made up of <MembershipDegreeCalculating-
Method>, <FuzzinessFactor> and <OverlappingFac-
tor> subelements.

Several elements comprise data formulated in a matrix
form. Therefore, in such a case the standard PMML
element <Matrix> is used. The element is made up of
one subelement <Array> for each row in the matrix.
The <Array> element is also predefined by the PMML
standard. In our case, the compulsory type attribute
contains the string r̈eal̈. The <Array> element contains
the element values in the particular row of the matrix
separated by spaces.

Below there is a collapsed example of an XML file contain-
ing a fuzzy model.

<?xml version="1.0" encoding="utf-8"?>

<PMML>

<Header .../>

<DataDictionary .../>

<Extension>

<FuzzyModel>

<MiningSchema .../>

<RegressorDefinition .../>

<OutputDefinition .../>

<Rules .../>

<GeneralParameters .../>

</FuzzyModel>

</Extension>

</PMML>

2.3 eFuMo fuzzy model

In our case, production dynamics has been modeled using
a powerful Matlab tool for evolving identification of fuzzy
models eFuMo (evolving fuzzy model), which was devel-
oped based on the algorithms published in Dovžan and
Škrjanc [2010a,b, 2011]. The method for identifying dy-
namical systems includes recursive input-output space par-

titioning using several clustering methods. Furthermore,
it enables identification of local linear models within their
respective clusters. In addition, it comprises the algorithms
for effectively increasing and decreasing the number of
clusters during the identification procedure. The result
of the identification is an efm type Matlab object. The
object includes the structure and all parameters of the
identified fuzzy model. What is more, it comprises all the
settings used in the identification and evolving clustering
algorithms. However, all this data makes the efm object
itself a rather extensive and complex structure. On the
other hand, when using a fuzzy model for predicting the
behavior of the modeled system all these setting are not
needed. Therefore, we are can use only a limited amount
of data of the identified model in order to be able to fully
reconstruct the fuzzy model for prediction.

Let us assume we have an eFuMo object named named
eFuMo loaded in the Matlab workspace. The set of data
that allows to fully reconstruct the fuzzy model for pre-
diction is made up of the following parts of the eFuMo ob-
ject: the distance definition eFuMo.id_md_calc_method;
the number of identified clusters that can be obtained
using n_clust=size(eFuMo.clust,2); the number by
which the problem-space dimension decreases when pro-
jecting from the input-output into the input space
eFuMo.projekcija; a selected set of data on the identified
clusters that are found under eFuMo.clust.

As mentioned, each cluster is defined using a selected
set of data that are found under eFuMo.clust. The sets
are made up of: cluster index i; a matrix with the
center coordinates of i-th cluster eFuMo.clust(i).Vi; a
fuzzy covariance matrix defining the shape of i-th cluster
eFuMo.clust(i).Fi_input; parameters of the local linear
model appurtenant to i-th cluster eFuMo.clust(i).teta;
fuzziness parameter of fuzzy sets eFuMo.clust(i).n; and
distance definition parameter eFuMo.clust(i).nu_fuzz.

The aforementioned data set enables the reconstruction
of the efm object. Obviously, the reconstructed object
comprises less information than the original object, how-
ever, the selected data-set enables full derivation of the
prediction model.

3. GRAPHICAL USER INTERFACE

The basic goal of the graphical user interface (GUI) for
identification and conversion between efm object with
eFuMo model for prediction and XML file (see Fig. 1) is
to enable the user to work with eFuMo models easily and
intuitively. GUI supports identification of eFuMo models
from suitable data, validation of the identified models,
and conversion of the models formulated as efm objects
to XML files. The conversion from an efm object to
an XML file and vice versa can be carried out via a
DOM object (org.apache.xerces.dom), which allows for
user manipulation of XML structure within Matlab (see
Fig. 2).The conversion can be conducted directly as well.

The basic window of GUI is divided into four main panels
(see Fig. 1): panel Identification for identifying an eFuMo
model; panel Validation for validating an eFuMo model;
panel eFuMo for manipulating an eFuMo model; and panel
DOM for working with DOM objects and XML files.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4355



efm DOM XML

eFuMo 2 DOM

DOM 2 eFuMo

Show DOM as XML

Save DOM as XML

Load DOM as XML

Fig. 2. Conversion options

Panel Identification includes a subpanel Identification data
with two buttons. Load a new structure loads a new pre-
formatted data structure, whereas Import data imports
raw data from data files *.sim or *.cD that are used in
production analysis. During the import operation the user
sets a new sampling time, selects the relevant signals and
sets their respective delays in the regressor. Finally, the
data structure is saved as a data file that can be easily
loaded in the GUI. The path to the selected active data
structure is shown in the field on the top of the subpanel.
The path can also be entered manually. From the next
subpanel Identification of eFuMo model it is possible to
run the eFuMo configuration tool. The user can select
a segment of data for identification in the appropriate
fields and start the identification algorithm with the Start
identification button. The user can also plot the relevant
signals using the Plot data button.

Panel Validation includes a subpanel Validation data with
a button Load a new structure loads a new pre-formatted
data structure for validation. The path to the selected
active data structure is shown in the field on the top of the
subpanel. The path can also be entered manually. In the
next subpanel Validation of eFuMo model it is possible to
select a segment of data for validation in the appropriate
fields and start the validation algorithm with the Start
validation button. The user can select between either a k -
step prediction or a simulation. Here, k is a user defined
parameter. After the validation is carried out, the results
are plotted and the validation criteria MSE (mean squared
error) (1) and NPE (normalized prediction error) (2) are
calculated and displayed.

MSE =

∑N

k=1
(ŷ(k)− y(k))2

N
(1)

NPE =

√

√

√

√

∑N

k=1
(ŷ(k)− y(k))2

∑N

k=1
(y(k))2

· 100% (2)

Panel eFuMo is made up of two subpanels: Selected eFuMo
subpanel and Conversion from eFuMo subpanel. The Se-
lected eFuMo subpanel allows the selection of the efm
structure with the relevant eFuMo model. The selected
active data structure is shown in the field on the top of
the subpanel. It can be entered using the Select a new
eFuMo button or manually. The Conversion from eFuMo
subpanel includes two buttons. eFuMo 2 DOM button
converts the selected eFuMo model into a DOM object,
whereas eFuMo 2 XML button converts it directly into an
XML file. The algorithm first gathers the relevant data of
the fuzzy model for prediction and then organizes it in a
DOM object or an XML file.

Panel DOM is made up of three subpanels: Selected DOM
subpanel, Conversion to eFuMo subpanel, and XML and

DOM subpanel. The Selected DOM subpanel allows the
selection of the DOM structure with the relevant eFuMo
model for prediction. The selected active object is shown
in the field on the top of the subpanel. It can be entered
using the Select a new DOM button or manually. The
Conversion to eFuMo subpanel includes two buttons.
DOM 2 eFuMo button converts the selected DOM object
into an eFuMo model for prediction, whereas XML 2
eFuMo button extracts the efm object directly from an
XML file. The XML and DOM subpanel includes three
buttons. The buttons Show DOM as XML and Save DOM
as XML enable obtaining an XML file from the selected
DOM object and displaying or saving it, respectively. Load
XML to DOM button loads an XML file and converts it
into a DOM object.

4. EXAMPLE

Below we present an illustrative example of an XML for-
mulation, which was obtained by identifying a fuzzy model
of the Tennessee Eastman process simulation dynamics
benchmark (see Downs and Vogel [1993]). Note that for
clarity reasons the structure is is not fully expanded.

<?xml version="1.0" encoding="utf-8"?>

<PMML xmlns="http://www.dmg.org/PMML-4_1" xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance" version="4.1">

<Header copyright="GorazdK">

<Annotation>This is a prediction model derived from an eFuMo

object. The XML formulation complies with the PMML standard

(xmlns="http://www.dmg.org/PMML-4_1").</Annotation>

<Timestamp>2013-07-08T03:10:23+02:00</Timestamp>

</Header>

<DataDictionary numberOfFields="6">

<DataField dataType="double" displayName="F_p" name="F_p"

optype="continuous"/>

...

</DataDictionary>

<Extension name="fuzzyModel">

<FuzzyModel functionName="regression" modelName=

"eFuMo prediction model" modelType="efuMoPredictionModel">

<MiningSchema>

<MiningField name="F_p"/>

...

<MiningField name="OpCost"/>

</MiningSchema>

<RegressorDefinition numberOfInputs="11">

<RegressorInput id="1" name="F_p(k-1)">

<Delay value="1"/>

<DerivedField dataType="double" optype="continuous">

<FieldRef field="F_p"/>

</DerivedField>

</RegressorInput>

<RegressorInput> ... </RegressorInput>

...

<RegressorInput> ... </RegressorInput>

</RegressorDefinition>

<OutputDefinition numberOfOutputs="1">

<FuzzyModelOutput id="1" name="OpCost(k)">

<Delay value="0"/>

<DerivedField dataType="double" optype="continuous">

<FieldRef field="OpCost"/>

</DerivedField>

</FuzzyModelOutput>

</OutputDefinition>

<Rules numberOfRules="8">

<Rule_i i="1">

<IfPart>

<MembershipFunctionDefinition type="cluster">

<Cluster>

<Array type="real"> ... </Array>

<Covariances>

<Matrix nbCols="12" nbRows="12">

<Array type="real"> ... </Array>
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...

<Array type="real"> ... </Array>

</Matrix>

</Covariances>

</Cluster>

</MembershipFunctionDefinition>

</IfPart>

<ThenPart>

<OutputFunctionDefinition type="localLinearModel">

<LocalLinearModel>

<Matrix nbCols="1" nbRows="12"> ... </Matrix>

</LocalLinearModel>

</OutputFunctionDefinition>

</ThenPart>

</Rule_i>

<Rule_i i="2"> ... </Rule_i>

...

<Rule_i i="8"> ... </Rule_i>

</Rules>

<GeneralParameters>

<NumberOfOutputs>1</NumberOfOutputs>

<MembershipDegreeCalculationParameters>

<MembershipDegreeCalculatingMethod>

Euclidean component distance with exponent function

</MembershipDegreeCalculatingMethod>

<FuzzinessFactor>2</FuzzinessFactor>

<OverlappingFactor>1</OverlappingFactor>

</MembershipDegreeCalculationParameters>

</GeneralParameters>

</FuzzyModel>

</Extension>

</PMML>

5. CONCLUSION

The presented XML structure is compliant with the
PMML standard and supports general fuzzy model for-
mulations. The graphical user interface enables the user to
manipulate with eFuMo models easily and intuitively. It
provides user-friendly functions for quick and easy evolv-
ing identification of eFuMo models and simple tools for
converting between efm objects, DOM objects and XML
files.

The XML files that comply with the PMML standard
provide a way for applications to describe and exchange
models produced by data-mining and machine-learning
algorithms. The goal of the presented work is to provide
a platform for including fuzzy models into the PMML
framework and thus stimulate interoperability of various
applications that take advantage of fuzzy models, e.g. in
production dynamics analysis and control, as well as in
other implementations.
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R. Babuška and H. B. Verbruggen. An overview of fuzzy
modelling for control. Control Engineering Practice, 4
(11):1593–1606, 1996.

M. Brettel, N. Friederichsen, M. Keller, and M. Rosenberg.
How virtualization, decentralization and network build-
ing change the manufacturing landscape: An industry
4.0 perspective. International jornal of mechanical,
industrial science and engineering, 8(1):37–44, 2014.

J. Castro. Fuzzy logic controllers are universal approxima-
tors. IEEE Trans. System Man Cybernet, 25:629–635,
1995.

CCACT. Competence centre for advanced control tech-
nologies. 2013. URL http://www.kcstv.si/en/.

DMG. Predictive model markup language. 2013. URL
http://www.dmg.org/v4 1/GeneralStructure.html.

D. Dovžan and I. Škrjanc. Predictive functional control
based on an adaptive fuzzy model of a hybrid semi-batch
reactor. Control Engineering Practice, 18(8):979–989,
2010a.
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