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Abstract: Unmanned Aerial Vehicles (UAVs) need a large degree of tolerance towards faults.
If not diagnosed and handled in time, many types of faults can have catastrophic consequences
if they occur during flight. Prognosis of faults is also valuable and so is the ability to distinguish
the severity of the different faults in terms of both consequences and the frequency with which
they appear. In this paper flight data from a fleet of UAVs is analysed with respect to certain
faults and their frequency of appearance. Data is taken from a group of UAV’s of the same type
but with small differences in weight and handling due to different types of payloads and engines
used. Categories of critical faults, that could and have caused UAV crashes are analysed and
requirements to diagnosis are formulated. Faults in air system sensors and in control surfaces
are given special attention. In a stochastic framework, and based on a large number of data
logged during flights, diagnostic methods are employed to diagnose faults and the performance
of these fault detectors are evaluated against flight data. The paper demonstrates a significant
potential for reducing the risk of unplanned loss of remotely piloted vehicles used by the Danish
Navy for target practice.

1. INTRODUCTION

Fault Diagnosis (FD) and Fault Tolerant Control (FTC)
are techniques that can strengthen safety-critical systems,
such as controllers for Unmanned Aerial vehicles (UAV),
and make them more reliable. A more reliable control
system will of course produce a more beneficial and useful
end product, in this case for the entire Unmanned Aircraft
System (UAS). It is therefore important to include aspects
of fault diagnosis when designing a system. However in
some cases, for various reasons, this is not done. This paper
explores the possibilities to add on a diagnosis framework
to an existing UAS, where the aircraft do not have a build
in FD/FTC systems. The system is tested against a couple
of known faults that has occurred on these types of aircraft
and where the existing controller reacted undesirable, but
where information about the imminent fault was available
in sensor data.

The literature on research aiming at improving overall
safety and reliability of UAVs is quite rich. General treat-
ments of the subject were covered by (Edwards et al., 2010)
and (Zolghadri et al., 2013) highlighting some of the major
advances within in recent years. A full treatment of how
to accommodate to faults affecting the control of a UAS
was shown in (Ducard and Geering, 2008) and (Ducard,
2009) where manoeuvrability was the main focus.

Specific faults related to aircraft have been studied ex-
tensively and partly reported in the open literature. For
the case of control surface loss, estimation of the reduced

flight envelope and active FD was dealt with by (Bate-
man et al., 2011). In (Henry et al., 2012), methods using
linear parameter varying methods were shown to be ef-
ficient for this problem. Research on the airspeed sensor
related issues have been treated in (Samy et al., 2011)
and (Wheeler et al., 2011) who analysed performance of
linear time-invariant fault detection methods applied on
parallel airspeed sensors.

This overview paper draws upon results from airspeed
sensor system diagnosis (initial results in (Hansen et al.,
2010) and a detailed scrutiny in (Hansen and Blanke,
2014)) and diagnosis of control surface defects (with differ-
ent approaches presented in (Hansen and Blanke, 2012),
(Hansen and Blanke, 2013) and (Blanke and Hansen,
2013)).

The paper is organised in five sections. Following this
brief introduction a description of the diagnosis system is
provided as well as a description of the UAS it is made for.
After this a introduction to the types of faults considered
within this system is given, which precedes an example of
the diagnosis system and a conclusion.

2. BACKGROUND AND CONTEXT

The Danish Navy uses remotely operated drones for target
practice and other tasks. These aircraft are constructed
with aim at low complexity and low cost. They lack
redundancy in sensors and actuators and the build in
avionics is non-redundant as well. The type of drone dealt
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with in this paper lands by parachute, hence the remedial
action to critical faults will be an abortion of mission and
release of the parachute. Graceful degradation is possible
to a certain extent but need to be activated via telemetry:
operator commands can reconfigure the onboard autopilot
between a few predetermined modes and gains could be
changed. However, time to react to critical faults is rather
short, typically in the order seconds to minutes, so very
clear diagnostic messages and decision support need be
provided to an operator if he shall have a chance to react
timely.

Systems that are constructed with fault tolerance in mind
already from the design stage, would have a system and
software architecture that enable diagnosis and fault ac-
commodation. The means to do so are well known but
have emerged only slowly in aerospace applications, see eg.
(Bak et al., 1996) and (Goupil, 2010). With an air vehicle
operator (AVO) in the loop, diagnosis need be timely and
the ratio between detection and false alarm probability
must be very high. Otherwise, the diagnostic system will
soon loose credibility by the AVO’s rendering the decision
support useless.

The aim for the research collaboration described in this
paper was hence,

• Make early warning possible from telemetry data.
• Make detection and false alarm probabilities essential
design parameters.

• Use mainly data driven diagnosis as detailed mod-
elling may not be an option.

• Ensure robustness to parameter changes due to load-
ing etc.

The starting point for this diagnosis framework is a low-
complexity UAV used for target practice which has the
basic sensor suit consisting of IMU (Inertial Measurement
Unit), airspeed sensor, height sensor and a GPS receiver.
An onboard autopilot controls the aircraft to follow a route
of waypoints send to it from a base station. The route can
be changed online however the aircraft must at all time be
within range of the base stations radio transmitter. More
details about the UAS can be found in (Meggitt Defence
Systems Ltd., 2008).

3. DIAGNOSIS SETUP DESCRIPTION

The suggested diagnosis system should attempt to diag-
nose certain critical faults using a low-complexity aircraft
model and the available telemetry data, without adding
any new hardware or modify the existing control system
of the aircraft.

The general approach is shown in Fig. 1. Given the com-
mands it is possible to calculate the expected behaviour of
aircraft. By comparing this to the sensor values returned
in the aircraft telemetry it is possible generate residual
signals. Small variations in these residual signals can be
used to tune the model parameters to better describe the
specific aircraft and the influences of surrounding factors
such as wind. A large variation on the residuals indicate
a fault. The ability to distinguish variations due to dis-
turbances from variations due to faults is critical for this
setup. The Generalised Likelihood Ratio Test (GLRT) has
been used for change detection, with good results. The

Fig. 1. Block diagram of the diagnosis setup.

GLRT is used to distinguish between the following two
hypothesis about signal x at sample n.

H0 : xn =wn

H1 : xn =A+ wn. (1)

The H0 hypothesis is the nominal case where the expected
noise w is present. In the alternative H1 hypothesis the
signal has been offset by a mean around 0 by some
value A. If the difference between observations and the
model are statistically significant within a desired false
alarm probability PF and detection probability PD a
fault hypothesis is confirmed. GLRT detectors are derived
according to the observed distribution of residuals.

From Fig. 1 it is also realised that an effect of a fault
will be present on the model parameters as a result of
the adaptation feedback from the residual. Changes on
the model parameters are therefore also monitored. A
significant increase in the performance of the diagnosis
system was achieved by combining both change detector
outputs, utilising the joint distribution of test statistic for
residuals and parameters, see (Blanke and Hansen, 2013)
for details. It is noted that the parameter adaptation of the
residual generator is stopped when residual’s test statistic
change. Otherwise faults would be masked and change
detection using the strong detectability assumption of the
model (1) could not be applied on residuals.

To distinguish between the hypotheses (1) the GLRT
expresses a ratio between the two maximum likelihood
estimates over a data window of size M given the residual
x(i) and subject to the hypothesis,

Sk
j (x, A) = ln

k∑
i=k−M

p (x(i);H1)

p (x(i);H0)
(2)

The well-known GLRT test statics g(k) for this model is
obtained for a Gaussian, IID signal x(i) as

g(k) = max
k−M≤j≤k

max
A

Sk
j (x(i), A) (3)

where j is the hypothetical instant when the change oc-
curs. The decision H1 is taken if g(k) > γ where A and the
change instant are estimated by the GLRT. The threshold
value γ is usually fixed or time-varying (adaptive), as
used by (Verdier and Vila, 2008), but an obstacle is that
theoretical calculation of γ requires the distribution of
residuals to be known and the residual itself to be IID. An
obstacle to residual evaluation is that residuals observed
from numerous UAV flights show heavily correlation. The
setup employed in this paper is therefore to estimate a
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threshold from data: the distribution of test statistic is
estimated and a threshold is calculated based on a required
PF . This approach was introduced in (Blanke et al., 2012)
and further explored in (Galeazzi et al., 2013)).

Fig. 2 shows the cumulative distribution function (CDF)
for the test statistic (g(k)) of residuals for normal flights
(H0). The dotted line in the probability plot is the esti-
mated CDF for the distribution. A false alarm probability
PF = 0.0005 is obtained by selecting γ = 50 on the
abscissa axis that corresponds to 1 − PF = 0.9995 on the
ordinate axis. The test statistic is denoted TL in the title
fields of the plots.
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Fig. 2. Probability plot of three flights under H0 with
detection threshold.

Fig. 3 shows the CDF of data during H1 for two different
control surface faults. Case I is a low severity mechanical
slip of an aileron actuator where the AVO should be
warned about the fault but mission could be continued,
however at higher risk. The low detection probability
PF = 0.5 would be an issue with this fault and supple-
mentary information from parameter estimation could be
beneficial. Case II is a high severity event giving loss of
control of an aileron where early detection is essential to
allow the AVO sufficient time to react to the event.

4. FAULT CATEGORIES INVESTIGATED

Within this framework, mainly two categories of faults
has been investigated since data logs from several events
of these types were available for analysis. The faults are:
a) airspeed system defects, b) control surface actuator or
fin detects. The defects are subdivided according to their
severity: level L has low severity, aircraft flight envelope is
not affected during normal manoeuvres; level H has high
severity, aircraft flight envelope is affected during normal
manoeuvres.

A summary of flight records available without any faults
and with either of these types of defects are shown in
Table 1. Both fault types has a course which makes them
well suited for this kind of diagnosis in that they are visible
in the telemetry data some time before aircraft control is
lost, in case of severity level H, and for the remaining
duration of flight in case of severity level L. This means
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Fig. 3. Probability plot of the change detectors output for
different faults.

Table 1. Flight time records under not normal
conditions and all analysed flights

time with fault time span analysed

airspeed sensor 234 s 1500 min
control surface (sev. L) 9534 s 1250 min
control surface (sev. H) 42 s 1250 min

that a certain reaction time is available for the AVO to
react to a timely warning about a defect diagnosed.

It is important to note that one cannot draw any conclu-
sions on aircraft reliability based on the numbers in Ta-
ble 1. This only shows the amount of data analysed during
designs of the different parts of the diagnosis system. The
amount of flight time with a fault is also limited for the
level H faults, since these always leads to a crash fairly
quickly after occurrence.

4.1 Airspeed System Defect

In order to measure the airspeed a pitot static system
is often employed on aircraft. By measuring the pressure
difference between two ports mounted on the body of the
aircraft it is possible to measure the airspeed. This is an
important measure since it enables the control system to
keep the aircraft within its specified velocities and avoid
stalls. The pitot static system used is very sensitive to
clogging of the ventilation ports. Especially moist or dew
on the aircraft tends to freeze up in higher altitudes and
thereby clog the ports.

Fig. 4 shows data from an incident with icing of a pitot
tube. The aircraft ground speed estimated by the GPS
is plotted together with the airspeed indicated by the
pitot static system. At approximately t = 2140 s the
fault begins to be visible as a high increase in the ground
speed compared to airspeed. The increase in speed is the
autopilot responding to the decrease in measured airspeed
as a result of the fault.

Using the measurements often available on this type of
aircraft, namely, the airspeed measurement vpitot, velocity
measured by GPS and compensated for wind vgps2air, and
the expected velocity vthrust obtained at a known engine
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Fig. 4. Data from pitot tube and GPS velocity shown for
a case where the pitot tube clogs.

shaft speed, it is possible to obtain a set of residuals
describing the differences between these measurements.
This gives rise to three residuals described by their parity
relations shown in Table 2. In the table a ”1” indicate that

Table 2. Parity relations.

Residual vpitot vgps2air vthrust
R1 1 1 0
R2 1 0 1
R3 0 1 1

the current residual is depending on this variable. This
means that a fault occurring on vpitot will affect residual
R1 and R2, but not R3. The possibility of isolating a fault
is evident for cases of single faults. Isolation if multiple
faults should occur could be accomplished using active
fault isolation techniques (Poulsen and Niemann, 2008),
(Gelso and Blanke, 2009). The remedial action in case of
an airspeed sensor system fault would be to avoid using
airspeed in the avionics. This is an option in the particular
system that can be activated by the AVO.

The estimates of airspeed are obtained in different ways
each of which require that solutions to specific issues are
obtained. The main obstacle in using the GPS velocity is to
transform this into the frame of the airspeed. An estimate
of the wind field is needed to make the connection.

To obtain this connection a simplified 2D perspective on
the velocities is taken. The aircraft velocity relative to air
vrel is related to the ground speed vector vg with this
vector sum: vg = vrel + vw. The wind velocity vector,
vw is defined such that it points in the direction the wind
blow. The size of the airspeed can then be formulated using
the standard cosine rule for triangles

v2rel = v2w + v2g − 2vgvw cos (ψw − ψg), (4)

where the vectors are put into polar form. In this, ψw, is
the wind angle and the heading of the aircraft is denoted
ψg.

The airspeed measurement given by the pitot tube is offset
by the aircraft angle of attack α and side slip β, in relation

to vrel. Since measurements of α and β are not available
the following simplified conversion is used:

vpitot = cos (α) cos (β)vrel ≃ avrel (5)

An Extended Kalman Filter (EKF) is now used to estimate

[vw, ψw, a]
T
. These are modelled as random walk processes.

By using the EKF estimates and combining (4) and (5) it
is possible to generate a residual honouring the first row
in Table 2.

R1 = vpitot− â
√
v̂2w + v2gps − 2vgpsv̂w cos (ψ̂w − ψgps) (6)

The thrust based velocity vthrust is generated using a
model of the engine and propellers delivered thrust at
certain throttle settings. The longitudinal dynamics can
in general be described by:

mv̇pitot = m(rv − qw) + FAx −mg sin (θ) + FT (7)

with [p, q, r]
T
being the angular rates of the aircraft, θ the

pitch angle, m the mass, FT the thrust force and FAx the
aerodynamic force in this axis. This is approximated by

FAx = 1
2ϱSv

2
pitotΘuu = mF1(vpitot, t) (8)

Using an observer vpitot can be estimated using the dy-
namic equation and thereby the second residual of Table 2
is formed.

R2 = vpitot + (9)(∫
g sin (θ)− Tnnn

2 + Tnunv̂pitot
m

−F1(v̂pitot, t)Θ̂uudt
)
− L(vpitot − v̂pitot).

With n being the propeller angular velocity, Tnn and Tnu
is thrust coefficient of the propeller, and L is the observer
gain.

Following the voting scheme described in Table 2 the
third residual is the difference between the two estimates
of airspeed. Since both vgps2air and vthrust relies on the
airspeed measurement in their estimation procedures, it is
impossible achieve independence of vpitot. However, since
the purpose of R3 is to ensure isolability of the airspeed
measurement fault, its value is only required when R1

and/or R2 indicate an alarm. With

R3 = vgps2air − vthrust (10)

and setting adaptation on hold when a fault is detected, R3

can be used for isolation. If an airspeed fault is detected,
vpitot can not re-enter in calculations that estimate vgps2air
and vthrust. These estimates will therefore after a while
become increasingly uncertain, which in turns affects R3.
However, as long as R3’s value is reliable up to and shortly
after detection, it serves the purpose.

4.2 Control Surface or Actuator Defect

One of the most critical faults that can happen to an
aircraft is partly or totally loss of one of the control
surfaces. This reduces manoeuvrability of the aircraft
significantly and will in most cases lead to a crash. This is a
defect of high severity, denoted level H. Less critical faults
include misalignment of the actuator to fin linkage and will
mainly affect steady state trim and also the available range
of control surface deflection, the latter due to mechanical
limits. These are denoted severity level L.
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Data logging from an incident with a typeH fault is shown
in Fig. 5. The figure shown the selected telemetry data
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Fig. 5. Top: Roll and pitch signals. Bottom: Command
signal to ailerons. An incident where control of an
aileron is lost during flight.

for the aircraft up to and just after an incident happens
to the aileron. Just before t = 4110 s the aircraft starts
rolling right, even though the commanded signal is for a
left roll. From this point on there is no relation between
the commanded signal and the aircraft’s manoeuvres.
The aircraft crashed shortly after and the subsequent
investigation determined that control of an aileron was
lost during flight.

A system to diagnose this type of fault can be created
using the dynamic models of the aircraft. Aircraft math-
ematical modelling requires a 6 degree of freedom model,
where both dynamic and kinematic equations of motion
are needed to characterise the aircraft, see eg. (Stevens
and Lewis, 2003). Utilising this model implies detailed
knowledge about the aerodynamic coefficients and this
information is not always available for the cheaper UAV’s.
For control surface fault diagnosis the important feature
is the relationship between surface deflection and angular
rates of the aircraft.

Earlier studies investigated how dynamic and semi-static
models could be used for diagnosis of control surface
faults on this family of aircraft (Hansen and Blanke, 2012)
and the issue has been dealt with for large aircraft with
hydraulic actuators in (Varga, 2010). For small aircraft
with uncertain or lacking model information, an adaptive
and very simple model of this relationship was found useful
(Blanke and Hansen, 2013). The following three relations
for roll rate (p), pitch rate (q) and yaw rate (r), calculated
at sample k, are related to the commanded deflections to
aileron δa and elevator δe as,

p[k] = apaδa[k] + bpa (11)

q[k] = aqeδe[k] + bqe (12)

r[k] = araδa[k] + brar[k − 1] + cra, (13)

where bpa, bqe and cra are bias terms and apa, aqe and ara
are gain factors. Equation (13) includes the integrating

effect between the aileron and yaw rate in the bra term.
This approach separates the lateral and longitudinal states
since the aileron is only related to roll and yaw and the
elevator only to pitch. Neglecting essential dynamics of the
aircraft, and couplings between some motions, this model
is indeed over-simplified with respect to describe dynamic
behaviours. However, as will be shown, the model is
sufficient and effective for fault diagnosis when means are
taken to make change detection robust to both unmodelled
dynamics and to natural parameter variations.

Each of the parameters in equations (11) - (13) must be
determined to fit the aircraft response to get the best result
of the diagnosis as possible. From the block diagram of
Fig. 1 it is seen that the parameters are adapted during
flight such that small deviations from aircraft to aircraft
are removed. The equations are on a form of an ARX
function and hence a Recursive Least Squares (RLS) filter,
as the following, can be used to estimate the parameters.

ε[k] = y[k]−φ[k]
T
Θ̂[k − 1] (14)

P [k] =
(
λfP [k − 1]−1 +φ[k]φ[k]

T
)−1

(15)

Θ̂[k] = Θ̂[k − 1] + P [k]φ[k]ε[k]. (16)

In this, λf is the forgetting factor and P [k] is the covari-
ance. The initial value of P [k] can be determined from
some average of test flights: running the estimator for data
from steady wings-level flight without faults would give
an a-priori value of P [k]. The forgetting factor is tunable
and this is one of the parameters to be considered when
combining parameter identification with residual evalua-
tion for diagnosis. Control surface defects will give rise
to rapid change in the input/output signals and hence in
the prediction error (14) and subsequently appear as a
parameter adaptation to the faulty case.

5. DIAGNOSIS EXAMPLE

This section shows a brief example to illustrate the diag-
nosis system properties for a case of a control surface fault
of severity L.

The first step in a diagnostic procedure is always to
ensure that false alarms are not triggered during normal
conditions. To validate this, Fig. 2 showed a probability
plot of the test statistic from the GLRT test on residuals
with no faults occurring. The fault incidence considered
here is that one of the servos controlling an aileron flap
slips in the teeth of the cogwheel that connects the servo
with the fin. Data from two of the residuals are shown
in Fig. 6. A shaded (yellow) area in Figure 6 illustrates
where the fault occurs, the actual onset is believed to be
where sudden fluctuations occur in the residual, or slightly
previous to this. The fault is not critical for the continues
flight and therefore of severity L according to Table 1. This
is hence a case where post flight maintenance is the focus
and time to detect is not a key point. The detection of the
fault is delayed 20 s from its occurrence due to effects of
the windowing in the change detectors.

The vertical black line indicates the detector threshold of
50 and test statistic values above this threshold will trigger
the H1 hypothesis. Data points for the entire shaded area
of Fig. 6 are plotted. The probability plot in Fig 7 shows
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Fig. 6. Residuals for a servo fault of low severity. The
fault occurs in the beginning of the shaded area and
remains.

that around 10% of the time series data are above the
threshold level. This indicates that if the threshold is
based solely on change in test statistics of the residual,
the threshold should be increased by a factor 5 to obtain
a false alarm probability below 0.05%. When a combined
threshold of parameter change and test statistics of the
residual are used for hypothesis testing, the threshold
of the latter can be lowered to obtain higher detection
performance.
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Fig. 7. Probability plot of test statistic data for the flight
when under H1 in the case of the low severity fault.
Detection threshold is shown as the vertical dotted
line.

Fig. 8 shows a scatter diagram of the change detector
output and two parameters of Eq. (13). This illustrates
that a change happens in estimated parameter values
for this particular fault that has low severity. The test
statistics of the residual-based change detector reacts late
on the change, and the low severity fault is captured by
the change in parameter values.
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Fig. 8. Scatter plot of the residuals change detector output
and the model parameters in case of a fault of low
severity.

Fig. 9 shows a scatter diagram of the change detector
output and the two parameters when a fault of high
severity occurs. The residual-based change detector shows
a large response in test statistic when the fault occurs.

The incidents illustrate that by combining hypothesis
testing of parameter changes with change in test statistics
of the residuals, a better detection performance is obtained
in comparison with applying change detectors to the
individual quantities.

0 50 100 150
0

0.05

0.1

0.15

0.2

a ra

Test statistic vs. parameters for R
ra

 

 

Nominal
Faulty

0 50 100 150
0

0.5

1

T
L
 for R

ra

c ra

Fig. 9. Scatter plot of the residuals change detector output
and the model parameters in case of a fault of high
severity.

Use of combined parameter and test statistic change
detection gave fault isolation with very favorable detection
and false alarm probabilities, and also rapid detection in
cases of type H faults on control surfaces (Blanke and
Hansen, 2013). The case presented here illustrates that
the type L fault is best detected by a parameter estimating
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scheme, but that the combined approach captures the fault
irrespective of its severity.

6. CONCLUSION

This paper has given an overview of a fault diagnosis
system designed specifically to diagnose two high severity
types of faults for a UAV. The diagnosis approach assumed
that only basic system knowledge and standard UAV sen-
sors where available. We employed self-tuning methods
to generate models for diagnosis. Diagnosis was designed
to work on telemetry data from the aircraft. Examples
of the capabilities of the diagnostic were demonstrated.
High severity faults were detected rapidly and, in the cases
investigated, timely enough to avoid a failure of mission.
Low severity events were diagnosed with low probability
of false alarm. Further improvement is envisaged to be ob-
tainable from exploitation of the joint probability between
parameter estimates and residual test statistic.
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