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Colombia

Abstract: In this article, the problem of hybrid optimal control for DC-DC power converters is treated.
The designed control is of type bang-bang established from Pontryagin’s maximum principle. The
control is a state feedback and it is determined using an energy based minimization criterion derived
from the power balance of Port-Hamiltonian systems. The developed control has the advantage to be
easy to design and simple to implement in real time applications. The proposed control is applied to a
SEPIC converter and validated in simulation and experimentation.

1. INTRODUCTION

DC-DC power converters are employed in several applications,
including power supplies, electronic devices, DC motor drives,
etc. The control of the output voltage of this kind of converter
has received a great interest for many years and various control
techniques have been proposed such as Lyapunov-based con-
trol, deadbeat, sliding modes, predictive control [2][6][9][14].
Most of these techniques are based on a classical approach
where the switching behavior of those converters is approx-
imated by an average model. Unfortunately, this approach is
only used in a specific range of frequencies and does not take
into account the high frequency behavior of the system. While
considering these drawbacks, hybrid control theory is suitable
to deal with power converters.
Recently, hybrid optimal control of DC-DC converters has been
widely investigated but it is still a subject that has not received
sufficient interest. Due to the difficulties encountered in the
control of switched systems, the design of a state feedback
optimal control for DC-DC power converters is not an easy task
even though for low dimension systems[15][16]. When using
Pontryagin minimum principle to design the optimal control,
the main difficulty is the determination of the costate. The
dynamic expression of this latter results from the differentiation
of the Hamiltonian function with respect to the state. Such
differential equation is not simple to solve when the control is
restricted to a finite set. Authors in [5] propose an algebraic
approach for optimal control using the singular arcs. In this
method, the research of the arcs is carried out independently
of the costate. Next, a backward integration starting from the
singular arcs is used to generate the regular trajectories. Finally,
the state feedback obtained with this technique is given by the
interpolation of the optimal trajectories using neural networks.
Unfortunately, the drawback of this approach is that it can
only be used for low dimensional systems (i.e. 2,3). In [3], a
numerical framework for the optimal control is proposed where
the technique can be used for higher dimensional systems. The
drawback of this numerical method is its implementation in
real time. To the best of our knowledge, only [1] proposes a
state feedback where the costate is given explicitly. However,
this preliminary work allowed to design a control based on a
necessary optimal condition but it did not allow to fully design

an optimal control strategy. The work presented in the following
proposes to solve this problem.
The main contribution of this paper is the synthesis of a state
feedback optimal control for switched systems. Even if the ap-
proach is ultimately dedicated for the control of DC-DC power
converters the technique could be used for other applications.
A candidate costate is determined in order to design a control
law for power converters, which was the major pitfall of the
technique proposed in [5]. The approach consists in using an
optimal control derived form Pontryagin’s minimum principle
and port-Hamiltonian formalism. In contrast with our previous
work [1], the minimization criterion is the stored energy of
the closed loop system. Finally, the control law is validated in
practice on a real SEPIC converter.
The approach has the advantage to be easy to design and to
implement for different types of converters.
The paper is organized as follows: the problem statement is pre-
sented in Section 2. Notions of optimal control are introduced
in Section 3. In section 4, the proposed control approach for
DC-DC power converters is detailed. An example of applica-
tion to a single-ended primary inductor converter (SEPIC) is
presented with simulation and experimental results in Section
5. Conclusions and future works are given in Section 6.

2. PROBLEM STATEMENT

Consider the following affine system with one switching input

ż(t) = R(z(t))+S(z(t))u(t) (1)

where z(t) ∈ IRv is the state vector, v is the state dimension,
R(.) is the system dynamic function and S(.) is the input
function. The system (1) is a switched system since the control
signal u(t) ∈ U and U = {0,1}. The switching between the
different modes depends only on u(t). Autonomous switching
is assumed to be excluded. In the following sections, we will
assume that there is only one control signal since various DC-
DC power converters use one control signal. However, our
approach can be generalized to several control signals.

Let us define the operating points of (1) with respect to the
average model of this system. The set of operating points, Zre f ,
is given by the following equation
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Zre f = {zre f ∈ IRv : R(zre f )+S(zre f )ure f = 0,ure f ∈ co(U)}
(2)

where co(U) is a convex hull of U .

When ure f ∈ co(U)\U , there is no control u(t) which allows to
maintain the system on its operating point. Nevertheless, it is
possible to approach zre f as close as desired by a fast switching
control u(t) between 0 and 1. In this case, u(t) must have as an
average value ure f . This is proven by the density theorem given
in [12].
The optimal control problem that needs to be solved is:

min
u(.)

∫ t f

0
L (z(t)− zre f ,u)dτ

s.t. ż(t) = R(z(t))+S(z(t))u(t)
z(0) = z0, u(t) ∈U

(3)

where L : IRv → IR is the cost function and t f is the final time.

For the sake of simplicity, time dependency of the variables is
omitted. In order to simplify the equations, we rewrite (3) under
Mayer’s form by introducing a new state variable which is equal
to the optimization criterion:

ρ(t) =
∫ t

0
L (z(τ)− zre f (τ),u)dτ (4)

where
x = [zT

,ρ ]T
x0 = [z0

T
,0]T

f (x) = [RT (z),L (z− zre f ,u = 0)]T

g(x) = [ST (z),
∂L (z− zre f ,u)

∂u
]T

The optimal control problem (3) becomes

min
u(.)

[ 0 0 . . . 1 ]x(t f )

s.t. ẋ = f (x)+g(x)u
x(0) = x0, u(t) ∈U

(5)

with x ∈ IRn and n = v+1.

The objective of the control is to determine a control law u∗(t)∈
U for t ∈ [0, t f ] that minimizes ρ(t f ) for an arbitrary initial state
x0. The following section is devoted to the determination of a
solution for (5).

3. OPTIMAL CONTROL

In this section, it is shown that the straightforward application
of Pontryagin’s minimum principle to (1) provides an admissi-
ble solution if the case of the singular arcs is not considered.
Since the control is restricted to a finite set, it is not always
possible to find a control solution. Indeed, this solution is influ-
enced by the hybrid nature of the system, which makes it pass
through a singular arc. Fortunately, DC-DC power converters
do not encounter this problem in practice.
In the next subsections, the optimal control problem, the Pon-
tryagin’s minimum principle and the singular control solution
are presented.

3.1 Minimum principle of Pontryagin

The Hamiltonian function for the problem (5) is given by

H(x,λ ,u) = λ T ( f (x)+g(x)u) (6)

The dynamics of the state x and the costate λ are given by

ẋ =
∂H
∂λ

, λ̇ =−
∂H
∂x

(7)

The application of the theorem given in [5] to the problem (5)
leads to the following corollary:

Corollary 1. Let a pair (x∗,u∗) that solves the problem (5), then
there exists an absolutely continuous function λ ∗ : [0, t f ]→ IRn

such as for almost all t ∈ [0, t f ] the following conditions are
verified :

• The minimum condition on the Hamiltonian

H∗ = H(x∗,λ ∗
,u∗) = in f

u∈U
H(x∗,λ ∗

,u) (8)

• The first transversality condition For all t ∈ [0, t f ]

H(t) =Cte (9)

where Cte is a constant and Cte = 0 if t f is not specified.

• The second transversality condition

λ ∗(0) f ree and λ ∗(t f ) = [0, . . . ,0,1] (10)

This corollary supposes a preexisting solution (x∗,u∗) which it
is not always the case. If the set U does not contain any solution,
the control domain U must be extended to its convex hull
co(U). Therefore, if the relaxed problem (i.e. when u ∈ co(U))
has a bang-bang solution, it solves the original problem (5).
Otherwise, if such a solution does not exist, then the control
u(t) takes its values in the convex hull co(U). This last solution
cannot be applied to the original problem (5) but it can be
approximated by a fast switching between the different modes
so that the solution of the relaxed problem will be the averaged
value of the switching control [7][18].

3.2 Type of solutions

Let us define the following function, called switching function

φ(t) =
∂H
∂u

= λ T g(x) (11)

According to (6) and (8), minimizing H with respect to u with
u ∈ {0,1} leads to the following control:

u =

{

0 i f φ > 0
1 i f φ < 0
? i f φ = 0

(12)

As mentioned before, the case where φ vanishes over a time
interval (singular arc) is not taken into account. Then, the
optimal control is a bang-bang solution and u has the following
expression:

u =
1− sign(φ)

2
(13)

4. FEEDBACK CONTROL LAW

Port-Hamiltonian theory provides a geometric description of
network models of physical systems. This theory combines the
Hamiltonian systems with respect to a power-conserving geo-
metric structure capturing the basic interconnection laws with
a Hamiltonian function given by the total stored energy. The
port-Hamiltonian modeling provides a unified framework for
the physical description of different types of converters [11]. In
this section, the properties of the port-Hamiltonian formalism
are used to construct a Lyapunov function. The analysis of this
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function allows to obtain a candidate costate vector. The port-
Hamiltonian model for a DC-DC power converter with one
switch is given by

ż = P[J1 + J2u−R]z+P[B1 +PB2u]E (14)

J1 and J2 are n× n skew-symmetric matrices, called structure
matrices. They correspond to the power interconnections on
the system. B1 and B2 are the input matrices. P is a diagonal
parametric matrix. R is the dissipation matrix. u is the switching
input and E is a constant input. It can be proven for power
converters that the system (1) is equivalent to system (14).
Consider the tracking error z̃ = (z− zre f ). We know that zre f is
constant then żre f = 0 and ż = ˙̃z (See equations (2) and (14)).
The tracking error dynamic can be written as

˙̃z = P[J1 + J2u−R](z̃+ zre f )+P[B1 +B2u]E (15)

The Hamiltonian function that represents the stored energy in
the system (15) is given by

H (z) =
1
2

z̃T P−1z̃ (16)

Recall that R is a symmetric matrix and J1 and J2 are skew-
symmetric matrices. Then, z̃T J1z̃= 0 and z̃T J2z̃= 0. The deriva-
tive of (16) is given by

Ḣ (z) =−z̃T Rz̃+ z̃T (J1 + J2u−R)zre f + z̃T (B1 +B2u)E (17)

For this representation, we consider the stored energy as the
minimization criterion

∫ t f

0
L (z̃,u) =

1
2

z̃T P−1z̃ (18)

where t f is not specified.

The following cost function could be defined

L (z̃,u) = z̃T (J1 + J2u−R)zre f + z̃T (B1 +B2u)E − z̃T Rz̃ (19)

This function is exactly the power balance of a port-Hamiltonian
system. It represents the difference between the supplied power
and the dissipation power [11].
Let us write (14) as a Mayer’s problem with the cost function
(19). From (4) let us consider ρ =

∫ t f
0 L (z̃,u)dτ . Then, (14)

becomes
ẋ = f (x)+g(x)u (20)

with

x =

[

z
ρ

]

f (x) =

[

P(J1 −R)(z̃+ zre f )+PB1E 0
zT

re f (J1 −R)T z̃− z̃T Rz̃+ z̃T B1E 0

]

g(x) =

[

PJ2(z̃+ zre f )+PB2E 0
zT

re f JT
2 z̃+ z̃T B2E 0

]

Now, we propose the following candidate costate and investi-

gate the optimality of the obtained control

λ T = [−z̃T P−1 1] (21)

The control law becomes

u =
1− sign([−z̃T P−1 1]g(x))

2
(22)

To check the optimality of the costate candidate, it is primordial
to verify the necessary condition given in (7)

λ̇ T =−
∂H
∂x

(23)

The computation of the derivative of the candidate gives the
following

λ̇ T = [− ˙̃zT P−1 0]

=
[

−(z̃+ zre f )
T [J1 + J2u−R]T −ET [B1 +PB2u]T 0

]

(24)
The expression (23) can be seen as

λ̇ T =−λ T ( fx(x)+gx(x)u) (25)

where fx(x) =
∂ f (x)

∂x
and gx(x) =

∂g(x)
∂x

.

The expressions of fx(x and gx(x) are given by

fx(x) =

[

P(J1 −R) 0
zT

re f (J1 −R)T −2z̃T R+BT
1 E 0

]

gx(x) =

[

PJ2 0
zT

re f JT
2 +BT

2 E 0

]

Since the matrices J1 and J2 are skew-symmetric, it is possible
to write the following

−2z̃T Rz̃ = z̃T [(J1 + J2u−R)T +(J1 + J2u−R)
]

z̃

And the derivative of this last equation with respect to x is

−
∂2z̃T Rz̃

∂x
=
[

z̃T ((J1 + J2u−R)T +(J1 + J2u−R)
)

0
]

Then, fx(x) becomes

fx(x) =








P(J1 −R) 0

zT
re f (J1 −R)T

+z̃T [(J1 + J2u−R)T +(J1 + J2u−R)
]

+BT
1 E 0









Straightforward computations of −λ T ( fx(x) + gx(x)u) shows
that

−λ T ( fx(x)+gx(x)u) = −(z̃+ zre f )
T [J1 + J2u−R]T

−ET [B1 +PB2u]T
(26)

Equations (24) and (26) show that (23) is satisfied. Further-
more, the verification of the second transversality condition
(10) is trivial. Since t f is not specified, the Hamiltonian H(t)
is supposed to be null which is the case with the proposed
costate state. In coclusion, all Pontraygin’s principle conditions
are verified and the control (22) is optimal.

5. EXAMPLE OF APPLICATION

This section is dedicated to the validation, in simulation and in
experimentation of the control proposed in the previous section
on a SEPIC converter.

5.1 SEPIC converter

A Single-Ended Primary Inductor Converter (SEPIC) is a DC-
DC power converter that can have the output voltage either
greater than, either less than or equal to the input voltage (see
Fig. 1). The SEPIC has the advantage that it can maintain the
same polarity and the same ground reference for the input and
output. It has a shutdown mode: when the switch is turned off,
its output drops to 0 V [8][10].

Circuit modeling The port-Hamiltonian model (14) of the
SEPIC is given by

ż = P[J1 + J2u−R]z+PB1E (27)
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Fig. 1. SEPIC converter
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.

where L1, L2, C1 and C2 are the input and output inductors and
capacitors respectively. R1 and R2 are the equivalent internal
resistors of the inductances. Ro is the load resistor. IL1 and
IL2 denote the inductance currents. VC1 denotes the voltage of
capacitor C1. Vo denotes the output voltage, and E denotes the
input voltage. The state vector contains the currents, voltages
and the load conductance of the circuit z = [ IL1 VC1 IL2 Vo ]

T .
The converter is controlled via the switching input u.

Control Design Consider the optimal problem (5) of the
system (27) and assume that t f is not specified, the aim of the
control is to maintain the output voltage Vo around the chosen
reference. Afterward, the control must maintain the state around
the reference in steady state. Furthermore, another difficulty
is that only one control input is used to derive four states. In
practice, the output reaches a limit cycle where the considered
reference is the averaged value of this cycle.
The optimal control is determined in such way that the follow-
ing criterion is minimized

∫ t f

0
L (z̃,u) =

1
2

L1I2
L1
+

1
2

C1V 2
C1

+
1
2

L2I2
L2
+

1
2

C2V 2
o (28)

Simulation results The proposed control law is applied on
a SEPIC switched model in simulation using MATLAB. The
parameters of the circuit are : L1 = 2.3× 10−3H, L2 = 330×
10−6H, C1 = 190× 10−6F , C2 = 190× 10−6F , R1 = 2.134Ω,
R2 = 0.234Ω and E = 20V . The sampling frequency is 20kHz
and the simulation time is t = 1s. The operating points zre f are
generated using (2) with two different duty cycles; the first one
ure f = 0.52 corresponds to an output voltage of 20V and the
second one ure f = 0.45 corresponds to 15V as output voltage.
The reference variation is operated at the instant t = 0.4s. Fig. 3
and Fig. 6 show the evolution of the currents and voltages of the
converter. The rising time for the output voltage is ts = 0.09s.

The currents and voltages of the SEPIC converter reach a cycle
around their references. The ripple of Vo in the positive and
negative senses respectively is +0.1V and −0.1V .

Experimental results The developed control law is applied on
a testing bed Fig.2. The sampling frequency is 20kHz. A current
sensor ’LEM LTSP 25-NP’ is used to measure the current IL1 .
The control is implemented using ’Real-Time Windows Target
Simulink Library’ on a ’dSpace-DS1104’ board. The output
voltage reference is switched from 15V to 20V at time t = 0.4s
to show the reference tracking performance of the control law.
Fig. 7 to Fig. 10 show the evolution of the currents IL1 and IL2
and the voltages VC1 and Vo of the converter. The output voltage
is driven to a limit cycle around its reference. As expected, one
can see that the output voltage (Fig. 10) follows the reference.
In steady state, a marginal tracking error of 0.3V could be
noticed. Beside, the output voltage reaches the new reference
after 0.02s.

Fig. 2. Test bed

6. CONCLUSION

In this article, we designed an optimal control for DC-DC
power converters with a single control input in continuous con-
duction mode. Pontaryagin’s principle is employed to obtain a
bang-bang control. Using an energy based minimization crite-
rion, we proposed a candidate costate to design a state feedback
and to overcome the problems raised by the approach based
on the research of the singular arcs. Then, we investigated the
optimality of the proposed control. The technique is validated
on a SEPIC converter in simulation and in experimentation. The
approach proposed in the paper can be generalized for all DC-
DC power converters.
The extension of the technique to multiple control inputs, tak-
ing into account the state constraints, the consideration of the
discontinuous conduction mode are proposed as perspective
works. Also, the results must be compared with classic tech-
niques.
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Fig. 3. The current IL1 : Simulation
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Fig. 4. The voltage Vc1 : Simulation
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Fig. 5. The current IL2 : Simulation
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Fig. 6. The output voltage Vo: Simulation
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Fig. 7. The current IL1 : Experimentation
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Fig. 8. The output voltage VC1 : Experimentation
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Fig. 9. The current IL2 : Experimentation
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Fig. 10. The output voltage Vo: Experimentation
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