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Abstract: This work presents an IDA-PBC control methodology for a quadrotor helicopter
to perform path tracking. The control law is designed considering the trajectory tracking
formulation for underactuated systems. The goal is to regulate the controlled degrees of freedom
(DOF), the translational position, x, y and z, and the yaw angle, w, and stabilize the remaining
DOF, the roll and pitch angles, ¢ and 6, respectively, using only one control loop. This
formulation leads to a set of partial differential equations constraints due to the underactuation
degree of the system. The IDA-PBC controller performance is corroborated through simulation
results, being compared with a backstepping controller.
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1. INTRODUCTION

Autonomous or semi-autonomous unmanned aerial vehi-
cles (UAVs) are increasingly common and have been the
subject of several research and academic works due to their
broad applicability and the challenge offered in the control
area. UAVs exist in several configurations, but one stands
out, the quadrotor, due to its ability to take off and land
vertically, perform stationary flight, high manoeuvrability,
low cost and maintenance (Erginer and Altug, 2007).

Quadrotor is a rotary-wing aircraft that makes use of four
rotors in which movement is performed by accelerating and
decelerating them. This kind of helicopter tries to achieve
flight stability using equilibrium forces produced by its
four rotors (Raffo et al., 2010). Despite all the advantages
that quadrotors present, there are some limiting factors in
their application: the high energy consumption and diffi-
culty in controlling them, since they have highly nonlinear
behaviour, high degree of coupling, underactuated and
unstable dynamics, and are constantly affected by external
disturbances.

The classic control strategy for helicopters assumes a linear
model obtained in a particular operating point, however
the application of the nonlinear modern control theory
can improve the system performance and allow tracking
of aggressive trajectories (Castillo et al., 2005).

In Bouabdallah and Siegwart (2005), the UAV dynamic
modeling was performed and two controllers, based on
backstepping and sliding mode techniques, were compared.
It was showed that the sliding mode control introduces
high frequency vibrations of low amplitude due to their
switching behavior, while the backstepping control proved
to be able to control the rotational motion in the presence
of large disturbances. Several variations of control laws
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using backstepping technique have been proposed in recent
years to control the quadrotor helicopter (Bouabdallah
and Siegwart, 2007; Al-Younes and Jarrah, 2008; Fang and
Gao, 2011; Saif et al., 2012).

Other control techniques have also been used to improve
the performance of the quadrotor in the path tracking task.
In Das et al. (2009), a control strategy with two feedback
loops was proposed. A control technique based on the
inverse dynamics is applied to the internal loop to perform
hovering. As the quadrotor dynamics are unstable, a
robust control law was applied to the outer loop to stabilize
the residual dynamics. A predictive control with integral
action and a robust nonlinear control have been developed
in Raffo et al. (2010) and Raffo et al. (2011b). The
predictive control is used to track the reference trajectory
while a nonlinear controller 77, stabilizes the rotational
movements. Both consider the integral of the position error
to reject disturbances. In Raffo et al. (2011b) was used
the same predictive controller for the control of X and
Y, whereas a nonlinear controller Z, for underactuated
systems was developed for altitude and attitude control.

In Raffo et al. (2011a) a control law based on the nonlinear
., theory for underactuated mechanical systems was pro-
posed for guidance of a modified model of quadrotor. This
model considers a tilt angle of the rotors to create coupling
between longitudinal and lateral movements and pitch and
roll motion. This procedure increases the controllability of
the quadrotor helicopter avoiding the necessity of using
cascade controllers or augmented space state.

The objective of this work consists in exploring the appli-
cation of a nonlinear control technique to solve the path
tracking problem for a mechanical system with underac-
tuation degree two, the quadrotor helicopter. The control
technique used is the IDA-PBC. The Interconnection and
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Damping Assignment (IDA) is a Passivity Based Control
(PBC) methodology, presented in Ortega et al. (2002b),
which is based on systems described by the Port Controlled
Hamiltonian (PCH) model. This methodology consists in
assigning a new PCH model in closed loop through the
interconnection and damping assignment.

In Ortega et al. (2002a), the IDA-PBC methodology is
applied to the problem of stabilizing underactuated me-
chanical systems, which leads to restrictions in the form
of partial differential equations to ensure asymptotic sta-
bility. In this work it was proved that the controlled
Lagrangian method can be viewed as a special case of
IDA-PBC methodology. In Wang and Goldsmith (2008),
a modified IDA-PBC methodology was presented to solve
the trajectory tracking problem of systems described by
Euler-Lagrange equations. This new approach gives a
new interpretation to the well known controllers as com-
puted torque, PD + (Proportional Derivative) control and
Slotine-Li. The new equations allow the application of
IDA-PBC to trajectory tracking to a wider range of HPC
systems and some underactuated non-passive systems.

Considering the quadrotor context, the possibility to in-
corporate information about the underactuated system
structure and to deal with the concept of energy in the con-
trol strategy, and considering the lack of works involving
passivity based control for this type of aircraft to perform
path tracking, motivated the research in this area.

This paper is organized as follows: in section 2 the model
used in the control design is developed; section 3 presents
the IDA-PBC control law design for the path tracking
problem; the simulation results obtained with the quadro-
tor helicopter model are illustrated in section 4; finally,
section 5 concludes this paper.

2. QUADROTOR MODELLING

The quadrotor dynamic equations can be easily found
through Euler-Lagrange formulation and expressed as fol-
lows:

M(q)dq +C(q,4)q+G(q) =B(q)T + T, (1)
ml3y3 —mR 7S(r)Wq ] [ € Ce(q,9) Cgy(q,q)
—mW;.’S(r)'R’] J(n) ] {n} ng(qvq) Cnn q,9) :| { ] .
JESRE MR
2

The inertia matrix, M(q), is composed by the helicopter
total mass, m, the Euler matrix, Wy, the skew symmetric
matrix, S(r), which is defined through the coordinates of
the vector r, the rotational matrix R s and the rotational
subsystem inertia matrix J(1). The vector r is the distance
between the center of the mass and the center of rotation,
as can be seen in Figure 1. The matrix C(q,q) represents
the Coriolis and centrifugal term, which can be obtained
through the Christoffel symbols of the first kind, G(q)
is the gravitational force vector, B(q) = [b1(q),...,bmq] €
R is the input matrix, I' € U is the control vector
composed by the total thrust 7" and the torques T,, being U
the m-dimensional actuation space, and I'y represents the
total effect of modeling errors and external disturbances.
The generalized coordinates vector  is defined as follows:

!/
= n=kyz9¢ 6yl (3)
that express the quadrotor position and orientation in
Euclidean space.

Fig. 1. Quadrotor helicopter scheme.

The model used to design the controller is a simplified one,
which the center of rotation and the center of mass are
assumed to be congruent, and the mechanical structure
is assumed to be symmetrical, resulting in a diagonal
inertia tensor matrix (see Figure 2). Additionally, a tilt of
the rotors toward the center of the quadrotor, originally
proposed in Raffo et al. (2011a), is adopted with the
purpose of increasing the controllability and the stability of
the model. This structural change, which is considered only
in the controller design, creates a force concentration point
above the helicopter and coupling in the control input
vector, causing the quadrotor to behave like a pendulum
and avoiding the need to use an augmented state space or

cascade control strategies.
Jing
:

Fig. 2. Quadrotor helicopter scheme for control purposes.

The force of each rotor depends directly on the rotational
speed of the propeller, that can be approxnnated according
to the following function, f; = bQ , where b is the thrust
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coefficient of each engine. The forces projected into each
quadrotor axis are given by'

being o the tilt angle of the rotor.

The applied torques with respect to the body fixed frame
are obtained as follows:
cos(0)(f2 = fa)l

I e

Tza Y cos(a) Ty
i=1

where [ is the distance between the center of the rotors
and the quadrotor rotation center and Ty; is the torque
generated by each rotor, which can be approximated in
steady state by Ty, = kTQ , with k; > 0 being the rotor
drag constant.

The input matrix can be rewritten as function of the
square of each rotor angular speed:

B(q)T" = B(q)Bmum = B s (q)um =

—bS(ax) 0 bS(x) 0
0 be((x) 0 bS(a) o3
_|Rs O bC(a) bC(a) bC(a) bC(x) ;
0 W, 0 IbC(at) 0 —InCla)|| Q|
—IbC(a) 0 IbC(x) 0 Q2
ktC(a) —ktC(at) ktC(a) —ktC(ax)

where Wy, is given by:

1 0 —sin6
Wy = [O cos @ sin(pcosel .
0 —sin¢ cos¢cosO

Given the simplifications and the proposed structural
modification of the quadrotor, the following model is
obtained:

s s (B fovs O ] [E] e
= [n e e [ )| )

To design controllers based on the IDA methodology, the
Port Controlled Hamiltonian (PCH) model is needed. PCH
represents a wide range of systems, including systems
described by Euler-Lagrange equations. These models are
characterized by individually represent the interconnection
portions and the dissipative elements revealing, in addi-
tion, the role played by the energy function in the system
dynamics. Consequently, it enables the incorporation of
information about the system. The representation of the
systems through the PCH is essential in the IDA-PBC
methodology and is given as follows:

X = [J(x) —R(x)] VxH (x) + B(x)u .

v = B/ (X)VyH(x). (™)

The new state vector is choosen as x = [q’, p'’, where q
represents the generalized coordinates, while p = M(q)q
is called generalized momentum. J(x) = —J'(x) is a skew
symmetric matrix that represents the system interconnec-
tion. The semi-defined positive matrix R(x) = R/(x) >0

possesses the system dissipative elements and is called
damping matrix. H(x) is the Hamiltonian, which in this
case has the total energy accumulation function interpre-
tation, u € R" and y € R" are the power ports variables,
since their product defines the exchanged power flux with
the environment (Ortega et al., 2002b). The total stored
energy contained in a mechanic system is given by the sum
of kinetic and potential energies yielding:

H(q,p)=%(q,p)+7%(q)
= %p’M’l(q)N% (a), (8)

in which J# (q,p) represents the kinetic energy and % (q) =
m- g, -z the potential energy, being g, the gravitational
acceleration.

Therefore, the quadrotor model (6) can be expressed in
terms of equation (7) with:

I(x) = {Ol H R(x) = {8 8}

3. PASSIVITY BASED CONTROL FOR PATH
TRACKING

8.1 Preliminaries about PBC Theory

Let us consider a system S, and its two power ports
variables u € R™ and y € R™, whose internal energy can
only be increased through external supply (Ortega et al.,
2002b). Associated to this system there is a function w:
R™x R™ — R called supply rate, which is locally integrable
for u € U, that is, satisfies:

/ () y(0)]dt < 00, ¥ 19 <11 )

fo

Assuming that X is a subset of R” containing the origin, it
is said that S is dissipative in X with the following supply

rate w(u,y) if there is a function H(x),H(0) =0, such that
for all x € X,
H(x)>0
HIx())~ Hlxti) = [ wlu@) 0l —d@), (10)

for allu € U and all #; > 0 such that x(¢) € X for all 7 € [r9,1].
H (x) is called storage function and d(7) is the function that
represents the dissipated energy through resistance and
friction.

It is know from Kalman-Yakubovich-Popov lemma that
for systems described by:
X =f(x)+gx)u
oA )
passivity is equivalent to the existence of a scalar function
H (x) such that (Ortega et al., 2001):

T
] s <0 =05,

Thus, if exists, for systems described by (11
function B(x) such that the PDE:

2] 0+ 6B 0] = AT (9B

), a vector

(12)
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is solved for an additional energy function H,(x), and
the desired energy function Hy(x) = H(x) + H,(x) has a
minimum in x,, thus, u = B(x) estabilizes x, with the
difference between stored and supplied energy constituting
a Lyapunov function.

3.2 IDA-PBC for path tracking

The application of the IDA-PBC methodology to systems
described by EL equations normally leads to the following
matching equation:
Ja(x) — Ra(x)] VxHa(x) = [=Ja(x) + Ra(x)] VxH (x) +g(x)u.
(13)
However, the regulation and trajectory tracking applied
to some underactuated systems requires modification of
the kinetic energy. The Equation (13) is not usable in
these cases (Wang and Goldsmith, 2008). Therefore, to
solve the problem of path tracking for the quadrirrotor,

the modified matching equations proposed in Wang and
Goldsmith (2008) will be used.

Assume a system as (7) whose desired dynamic is given
by:
X = [Ja(X) — Ra(X)] VzHq(X),
in which X=[q’, P’|’. The equation (13) can be rewritten
as follows:
[J(x) —R(x)]VxH(x) + g(x)u—%x+X=

[Ja(X) —Ra(X)] VxH,(X) ,
Further, it yields to:
g(x)u = [Ja(X) —Ra(X)] VxHa(X)—
[J(x) — R(x)] VxH (x) +X — X.

If the position and velocity errors are taken as the new set
of state variables, it leads to:

X= [qelv peq/a Qe =9q—qr, Pe=Ma(qe)Ge,
in which ge are the position errors and the new generalized
momentum is described by pe = Md(qe)qe, With e = [q —
qr]', and g represents the references of x, y, z and yaw
angle, y.

The new energy function is given by:

1 _
H;(qe,pe) = Epe/Md I(Qe)pe +Ua(qe)
where H;(qe,pe) is required to has its minimum at q = q;-.

In the PBC theory is possible to separate the control action
into two parts (Ortega et al., 2002a):

U= Upe + Uaa, (14)

where upe is the portion of the control action responsible
by the energy shaping, while u,, assigns damping. The
desired interconnection and damping matrices are defined
as follows:

Ja(x) = —Ja(x) = [_J(:uz/ j::ﬂ -
15
Ra(x) = Ra(x)' = [8 Rﬁﬂ] >0,

The therm Rg,, is introduced to create damping in the
system. This is achieved through the negative feedback of

the new passive output y =B +'VpH,(q,p). Thus, it leads
to:

Uaa = _KVBJ/VpHd(qvp) ) (16)
being Ky a diagonal and positive gain matrix. Replacing
equations (15) and (14) in (13), the following is obtained:

VoH —d4r = Jay, Vp Ha
7VqH +Bs (llme — KVBj/VpeHd) =
_szzlv%Hd + (szz - Rdzz)VPeHd +Pr-
Solving V,H and V,, Hy, and making p=M(q)q and pe =

Ma(ge)qe it follows that Ja,,de = q — g thus Ja,, = Lyxn.
From the second equation, the expression is extracted:

B Ume = VqH — Vg Hy +Ja,,Ma ' pe + Pr - (17)

#
Multiplying both sides of (17) by [ll;jj_} by the left side,
S

Lyxa B,
— | o7 |L
|:®2><4:| Ume |:BJ} d,
where Ly is the right side of (17), and B, and B, are the

full rank pseudo-inverse and the left annihilator of B s,
respectively, and satisfies the next equality:

BLB,=0.

gives:

(18)

From the last equation of (18) we obtain the control com-
ponent e and the following set of constraint equations:

BLV {Vq (p/Milp) - qu (pe/Mdilpe)
+2Ja,Ma'pe+pr} =0 (19)
B (Vg% — Vg, %} =0.(20)

The second equation, in comparison with the first one, is
a simple PDE that must be solved for %,. The challenge
for solving these constraints is to find the solution of the
PDE (19) for the elements of the matrices Mg and Jg,,. To
simplify this task, the following equality is used:

Vg[s'P(q)s] = {Vq[P(a)s]}'s (21)
for all s € R™ and all simetric matrix P € R™*". By this

way, the constraint equation (19) can be simplified as
follows:

/ /

B {[Va(M'p)]'p— [Vo.(Ma~'pe)] e

+2JapMa ™ 'pe+pr} = 0. (22)
3.8 IDA-PBC applied to the quadrotor

The control methodology presented in this work to solve
the path tracking of underactuated mechanical systems
problem led to a set of constraint equations of complex
solution, composed by (20) and (22). The control action
Upe is isolated in the equation (17) using the pseudo inverse
of B », once B is a non invertible matrix with full rank:

Upe = B]#(VqH —V4.Hya +Jd22Md7]pe +Pr) - (23)

In this work, the control law (14), composed by (23) and
(16), is applied to the quadrotor.
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Disregarding the constraints, since the solution of these
equations is a problem that remains outstanding, the can-
didate solutions have been proposed assuming the matrix
Ja,, equal to zero, while the matrix Mq is considered as
free parameters for tuning the control law. Furthermore,
since the goal of the controller is to take the states x, y, z
and Y error position to zero, the following function % is

proposed:
1
Ug = 3 kpi (x —xq)> +kpa (y—ya)* +kp3 (z— z4)°

(24)
+kpa (¥ — ‘I/d)z]

The kp gains weigh the position errors, and the diagonal
matrix Ky € R"*" weighs the velocity errors. It is impor-
tant to remark that the proposed control law has shown to
guarantee closed-loop tracking property regardless of the
solution of (22) and (20).

4. SIMULATION RESULTS

In this section we present the results obtained with
the controller developed in the previous section using
Matlab(©)/Simulink(@© simulation environment. To this
end, the model (2) was used to emulate the quadrotor
helicopter with the model parameters presented in Table
1, while the equations (6), represented through the PCH,
are used to design the IDA-PBC controller.

Table 1. Quadrotor model parameters.

Description Parameter Value
Quadrotor mass m 2.24kg
Distance between rotor 1 0.332m
and center of mass

Rotor thrust coefficient b 9.5¢ — 6Ns>
Rotor drag coefficient ke 1.7¢e — INms>
Gravity acceleration g 9.81m/s?
Axis x inertia L 0.0363kg.m*
Plane xy inertia Ly —0.88307¢ — 3kg.m>
Plane xz inertia I, —0.20331¢ — 3kg.m?
Axis y inertia L, 0.0363kg.m*
Plane yz inertia Iy, —0.41908¢ — 3kg.m>
Axis z inertia I, 0.0615kg.m>
Distance between % and Ty —0.00069m
center of mass on x

Distance between % and ry —0.0014m
center of mass on y

Distance between % and T, —0.0311m

center of mass on z

The trajectory used in the simulations is illustrated in
Figure 3. The quadrotor starts from the initial position
(1,1,0) with the angles (0,0,0) and null speed. In order to
evaluate the results obtained from the IDA-PBC controller
presented here, a backstepping controller, which is a well
known cascade control strategy, is used and the results
of both controllers are compared. It was introduced a
white noise on the system acceleration outputs and a
perturbation of impulse type on the system translational
forces inputs. These impulses were introduced at 4, 48 and
80 sec on X, Y and Z respectively. The controller gains are
adjusted according to the Table 2.

Through Figure 3 one can observe the path tracking on
the tridimensional space, while Figures 4 and 5 shown
that the IDA-PBC controller tracks the controlled degrees

Table 2. Weights for the controllers.

IDA-PBC Backstepping
Parameter Value Parameter  Value
kpi 10 cl 10
kpa 11 123 10
kp3 45 c3 10
kps 0.4 c4 10
kv 50 x 1010 cs 2
kvy 60 x 1010 ce 2
kvs 3.75 x 1010 7 20
kvy 5% 1010 cs 5
kvs 5% 100 co 3
kve 20 x 1010 10 3
mg m C11 3
L L C12 3
1)‘_\11 [yy
Izzd IZZ
o 4°
Ja,, 0

of freedom x, y, z and y, while stabilizes roll and pitch
motion.

Despite the control strategy presented in this work, based
on the IDA-PBC methodology, uses only one control loop,
it presented similar performance during simulation results
when compared with the cascaded backstepping control
approach. It should be noted that the proposed control
law, in comparison with the backstepping controller, pos-
sesses less degrees of freedom to adjust the entire control
loop to perform path tracking of the quadrotor. It is due
to the proposed goal, which pursue only the stabilization
of the roll and pitch angles, while in a cascade strategy
they are regulated around a reference value gives by the
outer loop.

——IDA
Backstepping
- - Reference

25

Y [m] -5 -5 X [m]

Fig. 3. Path tracking.

5. CONCLUSION

This work presented the design of an IDA-PBC strategy
to solve the path tracking problem for a quadrotor, that
avoids the use of cascaded controllers and augmented
state space. This is achieved due to a change in the
helicopter mechanical model, which is used only for the
controller design purposes. Despite this mechanical change
decreases the effectiveness of the actuators, since it is
obtained considering that the rotors are tilted toward the
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Fig. 6. Control signal.

center of the quadrotor, it increases the controllability and
stability of the quadrotor helicopter model. Furthermore,
the constraint equations solution problem, which arise due
to the fact that the system is underactuated, is presented.
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