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Abstract: This paper deals with fault diagnosis of timed discrete event systems (TDESs), using
a nondeterministic model named labeled time Petri net (LTPN). Thanks to a skillful splitting
of time intervals assigned to the LTPN transitions, analyzing diagnosability in such a timed
context can be performed using techniques from the untimed context. Moreover, a deterministic
structure called augmented state class set graph (ASG) is built on the fly, for both analyzing
(∆-)diagnosability and deriving an online diagnoser.
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1. INTRODUCTION

Fault diagnosis on discrete event systems (DESs) has been
widely investigated and applied for high level analysis,
since most industrial systems can be abstracted as a DES
model to a certain degree (Lin, 1994).

DES diagnosis was first studied in the untimed context,
where system behavior is described by logical sequences
of events without time quantification. The pioneering
work (Sampath et al., 1995) gives necessary and sufficient
conditions for diagnosability (the ability to ensure that any
fault can be diagnosed in a finite delay), and provides an
approach for online diagnosis based on a structure called
diagnoser automaton. However, it is difficult to apply
this technique in the case of complex systems because
they are not really scalable. This leads some authors
to develop approaches based on time that allow us to
use more expressive formalisms such as timed automata
(TA) (Tripakis, 2002; Bouyer et al., 2005; Cassez and
Tripakis, 2008). Other authors propose approaches based
on formalisms such as time Petri nets (TPNs) that are
more powerful in terms of expression capacity (Ghazel
et al., 2009; Boel and Jiroveanu, 2013; Liu et al., 2013).

Our study is in the context of event-based diagnosis: the
event set Σ is partitioned into two sets, Σ = Σo]Σu, where
Σo is a finite set of observable events and Σu is a finite set
of unobservable events. Fault events are unobservable, i.e.,
Σf ⊆ Σu. Likewise, the set of transitions T , according to
the mapping between Σ and T , is partitioned into the sets
of observable and unobservable transitions: T = To ] Tu.
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Moreover, the faulty transitions are unobservable (Tf ⊆
Tu). Also, when various fault types are dealt with, the set
of fault events is partitioned into m sets: Σf =

⊎m
i=1 ΣFi ,

where ΣFi denotes one class of faults.

This study is an extension of the results in (Liu et al.,
2013), to discuss the fault diagnosis problem of TDESs
using a nondeterministic model, namely LTPN. The main
contributions in this paper are as follows:

(1) An appropriate splitting of transitions time interval
in such a way as to make explicit the differentiation
of various system executions according to both the
generated traces and the occurrence delays of observ-
able events. As a consequence, diagnosability analysis
can be advantageously brought to an untimed-like
context, and existing results from works on DES-
based untimed diagnosis can be used.

(2) A structure called ASG, which carries both reacha-
bility and fault propagation information, is built on
the fly. Although LTPNs can be transformed into
language-equivalent TA (Bérard et al., 2013), our
on-the-fly approach is different from the TA-based
approaches, which perform analysis on the basis of
an existing complete TA model, whereas we rather
compute the state space on the fly. The on-the-fly
technique helps tackling the state explosion problem
to a certain degree since, generally, a partial enu-
meration of the reachable states can be sufficient for
analyzing diagnosability offline, and (if the system is
diagnosable) emitting diagnosis verdicts online, with-
out using an exhaustive diagnoser.

2. PREMILINARIES

2.1 Labeled Time Petri Net

A TPN is a modeling notation of TDESs. By associating
with each transition an event, a TPN can be redefined as
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an LTPN such that each transition firing simultaneously
produces the corresponding event.

Definition 1. (Bérard et al., 2005) An LTPN is a tuple
(P, T,Σ, P re, Post,M0, ϕ, SIM), where: P is a finite set
of places; T is a finite set of transitions; Σ is a finite set
of events; Pre : P × T → N and Post : P × T → N
are the pre- and post-incidence mappings; M0 ∈ N|P | is
the initial marking; ϕ : T → Σ is the labeling function;
SIM : T → Q≥0 × (Q≥0 ∪ {+∞}) associates with each
transition a static interval mapping, where Q≥0 is the set
of non-negative rational numbers.

As shown in Figure 1(a), each LTPN transition is labeled
with an event in Σ and an event can be assigned to
different transitions. A state change of LTPN can be
driven either by the firing of some transition or by time
elapsing. Definitions of state, state class (SC) and their
corresponding transitions are the same as in TPNs. Given
two SCs C and C ′, C ′ is said to be reachable from C, if
C ′ can be obtained by firing a sequence σ ∈ T ∗, and we

denote it by C
σ−→ C ′. An LTPN is bounded iff it has a finite

number of SCs. For more details about the SC technique,
the reader can refer to (Berthomieu and Diaz, 1991).

2.2 LTPN Language

A dated firing sequence (DFS) (Diaz, 2001) is a pair (σ, u),
where σ ∈ T ∗ is a possible firing sequence, and u is the
sequence of firing dates of the transitions in σ. The set of
achievable DFSs is denoted by D.

Given a sequence of transitions (or events, dates) w, we
denote by wj the jth element in w, and |w| the length
(number of elements) of w. For a ∈ Σ and w ∈ Σ∗, we
write a ∈ w if there exists j such that wj = a. We also
write w = w1w2 · · ·wn to say that w is the concatenation
of w1, w2, . . . , wn, where w1, w2, . . . , wn are sequences of
transitions (or events, dates).

Definition 2. A labeled dated firing sequence (LDFS) of
DFS (σ, u) is defined by (s, u), where s = ϕ(σ), and ϕ
is the extended form of the labeling function ϕ : T ∗ → Σ∗.

Definition 3. The language generated by LTPN G is de-
fined by L(G) = {(ϕ(σ), u) | (σ, u) ∈ D}.

Here we use Dl to denote the set of LDFSs. With a slight
abuse of notation, we shall write L instead of L(G).

2.3 Diagnosability of LTPN

Given an LDFS p and a set of observable events Σo, let
Po(p) be the LDFS obtained by erasing from p all the
unobservable events and by summing up the relative delays
to the delay of the immediate following observable event.
Define the inverse projection operator P−1

o as P−1
o (r) =

{p ∈ L | Po(p) = r} for r ∈ (Σo×Q≥0)∗. Given a language
L ⊆ Dl and a string p ∈ L, the post-language of L after p
denoted by L/p, is the language L/p = {r ∈ Dl | pr ∈ L}.
In this paper, we will discuss the diagnosability in the
framework of LTPNs. Without loss of generality, we con-
sider only one class of faults.

Definition 4. Given an LTPN G, we say G is diagnosable
if ∃ ∆ ∈ Q≥0 such that ∀ (s, u) ∈ L, if s|s| ∈ Σf , sj 6∈ Σf

for j < |s| and ∀ (w, z) ∈ L/(s, u),
∑|z|
j=1 z

j ≥ ∆, then the

following holds: r ∈ P−1
o (Po(sw, uz))⇒ ∃ e ∈ Σf s.t. e ∈ r

We also say here that G is ∆-diagnosable.

In simple terms, any fault in a diagnosable LTPN can be
diagnosed within a finite delay upon its occurrence. Like
for diagnosability of TA discussed in (Tripakis, 2002), for
an LTPN there exists ∆min such that, G is ∆-diagnosable
for any ∆ ≥ ∆min, and G is not ∆-diagnosable for any
∆ < ∆min. Looking for the ∆min of a diagnosable LTPN
is an interesting issue of practical significance since, in
practice, we wish that the fault can be diagnosed as soon
as possible and it is important to determine the minimum
delay in which we ensure a fault can be diagnosed.

Before discussing the diagnosability of LTPNs, we make
the following assumptions:

• The LTPN is bounded;
• No achievable cycle of unobservable transitions exists;
• Faults are permanent, i.e., when a fault occurs the

system remains infinitely faulty.

Here we make similar assumptions to those for diagnosabil-
ity analysis in the untimed context, since we will analyze
the diagnosability of timed models using untimed analyti-
cal techniques. Note that the liveness condition is relaxed.

3. REACHABILITY ANALYSIS FOR LABELED TIME
PETRI NETS WITH FAULT INFORMATION

In this section, we will first develop a structure which car-
ries both the reachability relation between SCs and their
corresponding fault information. This structure, called
augmented state class graph, will be the basis of the di-
agnosability analysis of LTPNs in the sequel.

3.1 Augmented State Class (ASC)

Definition 5. An ASC is a pair x = (C, y), which is
associated to an achievable firing sequence σ ∈ T ∗ such

that C0
σ−→ C, and y is computed by:

y =

{
F if ∃ j, σj ∈ Tf
N otherwise

where SC C is reachable from the initial SC C0 upon σ.

The initial ASC is defined by x0 = (C0, N), as we consider
that there is no fault in the system initially. Two ASCs
x = (C, y) and x′ = (C ′, y′) are equivalent, iff C = C ′,
i.e., C and C ′ have the same marking and the same firing
domain (Berthomieu and Diaz, 1991), and y = y′.

Let N be the set of ASCs relative to a given LTPN,
mapping ζ : N × T ∗ → N defines transitions between
ASCs. We say an ASC x′ = (C ′, y′) is reachable from

x = (C, y) by σ ∈ T ∗, denoted by x
σ−→ x′, iff C

σ−→ C ′ and

y′ =

{
F if (y = F ) ∨ (∃ k, σk ∈ Tf )

N otherwise

Consequently, the number of ASCs is at most twice the
number of SCs. Thus, a bounded LTPN has a finite
number of ASCs.

Given an ASC x, we shall call a candidate sequence of x
any sequence of transitions σ ∈ T ∗uTo which is achievable
starting from x. We denote by Can(x) the set of candidate
sequences of x. To each candidate sequence, one assigns a
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relative framing to its duration (Ghazel et al., 2009). This
obtained interval contains all the possible firing dates of
transition t relatively to x. We use the notation SD(σ) to
denote the sequence duration of a sequence σ.

3.2 Augmented State Class Graph (ASC-graph)

An ASC-graph, obtained through an ε-reduction on the SC
graph, is a directed graph (X ,A, γ, x0), where:

• X ⊆ N is the set of ASC-graph nodes;
• x0 = (C0, N) is the initial ASC-graph node;
• γ : X × Σo → 2X is the transition mapping between

nodes. Given x ∈ X , e ∈ Σo, γ(x, e) = {x′ | ∃ σ ∈
Can(x), ϕ(σ) = e, x

σ−→ x′};
• A ⊆ X × Σo × I × X is the set of directed arcs of

the ASC-graph: A = {(x, e, i, x′) | ∃ σ ∈ Can(x), x′ ∈
γ(x, e), s.t. SD(σ) = i, ϕ(σ) = e}, where I denotes
the set of time intervals.

Example 6. Consider the LTPN G in Figure 1(a), where
Tu = Tf = {t1} and To = {t2, t3, t4}. The SC graph is
given in Figure 1(c), where the grey boxes indicate SCs
reached immediately after an observable transition.

(a) LTPN G (b) The ASC-graph of G

(c) The SC graph of G

Fig. 1. The figures of Example 6

4. CHECKING DIAGNOSABILITY

Without loss of generality, we first discuss the diagnos-
ability for one class of faults ΣF . The generalization of
our approach can be obtained just by repeating the same
process for each class ΣFi

. First, let us look at the time
interval splitting technique.

4.1 Basic Interval Set (BIS)

The goal behind splitting a given finite set of time inter-
vals is to generate a new set of split intervals fulfilling
some constraints, that we call BIS. For this aim, we first
introduce some basic notations on time intervals that will
be used afterward.

Definition 7. A left semi-interval is a left-open interval:

• a[ = {x ∈ Q≥0 | x < a} = [0, a[ with a ∈ Q≥0, or
• +∞[ = {x ∈ Q≥0} = [0,+∞[, or

• a] = {x ∈ Q≥0 | x ≤ a} = [0, a];

a right semi-interval is a right-open interval, defined by

• ]a = {x ∈ Q≥0 | x > a} =]a,+∞[ with a ∈ Q≥0, or
• [a = {x ∈ Q≥0 | x ≥ a} = [a,+∞[.

Given an interval i, the corresponding left (resp. right)
semi-interval is denoted by l(i) (resp. r(i)), and the com-
plementary set of semi-interval α is denoted by α. For
β = a] (resp. a[; ]a; [a), we denote bound(β) = a and
border(β) = ] (resp. [; ]; [).

For two left (or two right) semi-intervals α and β, we
say α = β, if bound(α) = bound(β) and border(α) =
border(β).

We define an order relation “≺” between semi-intervals by:

• α ≺ β, if bound(α) < bound(β);
• c[ ≺ [c ≺ c] ≺ ]c, for c ∈ Q≥0;
• α ≺ +∞[, if α 6= +∞[.

The objective of defining this order relation between semi-
intervals is to reorganize a set of semi-intervals for further
computing basic interval sets (cf. Lines 3 and 7 in Algo-
rithm 1). In order to eliminate nondeterminism in LTPNs,
time interval splitting techniques will be developed to
reassign each observable event with an interval in the BIS,
such that each firing of an observable event with its relative
time brings the system to a unique minimal ASC-set.

Definition 8. Given a finite time interval set A, the BIS
of A, denoted by BIS(A), is a set of disjoint non-empty
time intervals βj subject to:

• ∀ k 6= j, βk ∩ βj = ∅;
• ∀ α ∈ A,∃ β1, β2, · · · , βm ∈ BIS(A) such that
α =

⋃m
j=1 βj ;

• ∀ β1, β2 ∈ BIS(A), β1 6= β2,∃ α ∈ A such that
β1 ∩ α = ∅, β2 ∩ α 6= ∅.

Here we emphasize that, for any finite interval set A,
BIS(A) has been proved to be finite and unique (Liu,
2014). Then the BIS of a finite interval set can be com-
puted by Algorithm 1.

Algorithm 1 Computation of BIS
1: Input: A; . A is a finite interval set.

2: Output: B; . B = BIS(A)

3: C ← ∅; . C is a list of semi-intervals ordered according to ≺.

4: for all α ∈ A do C ← C ∪ {l(α)} ∪ {r(α)};
5: reorder C according to ≺;

6: c0 ← c1; . cj (j = 1, 2, . . .) denotes, in the order of ≺, the jth

element of C.

7: C ← C ∪ {c0};
8: for j from 1 to (|C| − 1) do

9: if cj−1 is a right semi-interval then α← cj−1;

10: else α← cj−1;

11: if cj is a left semi-interval then β ← cj ;

12: else β ← cj ;

13: B ← B ∪ {(α ∩ β)};
14: return B;

4.2 Augmented State Class Set (ASC-set)

In order to determinize an LTPN for state estimation and
diagnosability analysis, we will gather the states reached
by the same timed observation (observable event and its
occurrence date) in some sets called ASC-sets.
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An ASC-set is then an element of 2X . The initial ASC-set
is defined by {x0}.
Given an ASC-set g, we say e ∈ Σo is a candidate event
of g, if ∃ x ∈ g, γ(x, e) 6= ∅. We denote by CES(g) the
candidate event set of g.

The candidate interval set (CIS) of g relative to e is defined
by CIS(g, e) = BIS(Y ), where Y = {SD(σ) | ∃ x ∈ g, σ ∈
Can(x), s.t. ϕ(σ) = e}. In other words, CIS(g, e) is the
BIS relative to the intervals corresponding to the possible
delays for e to occur from an element in g.

Let G be the set of reachable ASC-sets. Given g ∈ G,
e ∈ CES(g) and i ∈ CIS(g, e), the transition mapping
between ASC-sets ξ : G × Σo × I → G is defined by:

ξ(g, e, i) = {x′ | ∃ x ∈ g, σ ∈ Can(x), ϕ(σ) = e, x
σ−→

x′ s.t. i ⊆ SD(σ)}.
The ASC-set g is said to be

• normal, if ∀ (C, y) ∈ g, y = N ;
• F-certain, if ∀ (C, y) ∈ g, y = F ;
• F-uncertain, otherwise.

We denote tag(g) = N (resp. F,U), if g is normal (resp.
F-certain, F-uncertain).

4.3 Augmented State Class Set Graph (ASG)

The ASG is a deterministic digraph which will serve as a
basis to check diagnosability. Here the term “determinis-
tic” means that, given an ASC-set, upon the occurrence of
an observable event, we can deduce with certainty which
minimal candidate ASC-set the system will be possibly
in. This will be ensured while discriminating between the
candidate sequences using their sequence duration.

The ASG is a digraph (G,R, ξ, g0), where:

• G ⊆ 2X is the set of ASG nodes;
• g0 = {x0} = {(C0, N)} is the initial node;
• ξ is the transition mapping between ASCs;
• R ⊆ G × Σo × I × G is the set of ASG arcs: R =
{(g, e, i, g′) | g′ = ξ(g, e, i)}.

The ASG can be computed by Algorithm 2. It is worth
noticing that in our technique the ASG is built on-the-fly
from the SC graph.

Algorithm 2 Construction of the ASG
1: Input: the ASC-graph (X ,A, γ, x0);

2: Output: the ASG;

3: g0 ← {x0}; . initialization

4: Gcon ← {g0}; . Gcon is the set of ASCs to be considered.

5: Gvst ← ∅; . Gvst is the set of ASCs that have been considered.

6: while Gcon 6= ∅ do

7: pick a node g ∈ Gcon s.t. g 6∈ Gvst;

8: for all e ∈ CES(g) do

9: Y ← CIS(g, e);

10: for all i ∈ Y do

11: Gcon ← Gcon ∪ {ξ(g, e, i)};
12: Gcon ← Gcon\{g};
13: Gvst ← Gvst ∪ {g};

An ASG node g′ is reachable from g, if there is a path
from g to g′ in the ASG. We write succ(g) to denote all
the successor (or reachable) nodes from g. Therefore, given
an ASG (G,R, ξ, g0), G = succ(g0).

Fig. 2. The ASG of the LTPN in Figure 1(a)

4.4 Conditions for Undiagnosability

As explained earlier, the ASG offers a state representation
that distinguishes between reachable states based on an
explicit discrimination taking into account both observable
events and their possible occurrence dates. Defining such a
structure makes it possible to use similar analysis as in the
untimed context. However, the following considerations
related to time still need to be taken into account.

Condition 1: indeterminate cycle

Recall that the necessary and sufficient condition for
the diagnosability of an automaton is the absence of
an indeterminate cycle as proved in (Sampath et al.,
1995). We can extend this condition for the diagnosability
analysis of LTPN based on the ASG, since the time interval
splitting technique makes it possible to derive an untimed-
diagnoser-like structure, by making explicit the distinction
between sequences on the basis of temporal criteria in the
ASG model structure.

By analogy with the untimed context, we define an inde-
terminate cycle in an ASG as a cycle composed of finite
nodes in the graph, such that for any node g in this cycle,
two ASCs x1, x2 ∈ g exist, x1 is a faulty ASC in a cycle
composed of faulty nodes in the ASC-graph, while x2 is a
normal ASC in a cycle composed of normal nodes.

Proposition 9. The LTPN is undiagnosable if an indeter-
minate cycle in the ASG exists.

This is obvious according to the explanation of indeter-
minate cycle. Note that a cycle of F-uncertain ASCs in
the ASG (Figure 3(a), where the black boxes are faulty
ASCs and the white ones are normal) is not necessarily
an indeterminate cycle. If this cycle corresponds to two
ASC cycles in the ASC-graph such that one is a normal
cycle (x1, x3) and the other is a faulty one (x2, x4) as in
Figure 3(b), then g1 and g2 form an indeterminate cycle.
Otherwise, they do not (Figure 3(c)).

Condition 2: infinite sequence duration in certain cases

We define mapping fdelay : G → Q≥0 ∪ {+∞} as follows:

• If tag(g) = N , then fdelay(g) = 0.
• Otherwise, if g′ is the predecessor of g, and
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(a) (b) (c)

Fig. 3. Illustration of indeterminate cycle

· If tag(g′) = N , i.e., ∃ x′ ∈ g′, x ∈ g, σ′ ∈

(Tu\Tf )∗, tf ∈ Tf , σ ∈ T ∗uTo, such that x′
σ′tfσ−−−→

x, then fdelay(g) = max{SD(σ)}, or
· If tag(g′) 6= N , i.e., ∃ x′ ∈ g′, x ∈ g, σ ∈ T ∗uTo,

such that x′
σ−→ x, then fdelay(g) = fdelay(g′)+

max{SD(σ)}.
During the on-the-fly building of the ASG, whenever
g is equal to an existing node g′′, both fdelay(g)
and fdelay(g′′) should be updated by max{fdelay(g),
fdelay(g′′)}. In other terms, fdelay(g) always records the
maximum time delay between the first occurrence of fault
and g, which will be used to determine the undiagnosabil-
ity or compute (if the LTPN is diagnosable) ∆min.

Proposition 10. An LTPN is undiagnosable if ∃ g ∈ G s.t.
fdelay(g) = +∞, while the ASG is built on the fly.

Proof. According to the definition of mapping delay,
delay(g) = +∞ means that a possible occurred fault
cannot be diagnosed in a finite delay after its occurrence,
thus the LTPN is undiagnosable. �

Condition 3: dead subset in certain cases

Note that here we also deal with non-live systems. For this,
let us introduce the following definitions. An ASC-set g is:

• undead or non-blocking, if ∀ x ∈ g,∃ t ∈ T s.t. x
t−→;

• dead, if ∀ x ∈ g, 6 ∃ t ∈ T s.t. x
t−→;

• quasi-dead, otherwise.

Given a quasi-dead ASC-set g, we define the dead subset of
g as the set of all dead ASCs in g, which can be formalized

as: DS(g) = {x ∈ g | 6 ∃t ∈ T s.t. x
t−→}.

We will now discuss some conditions for undiagnosability
w.r.t the liveness of ASCs.

Proposition 11. An LTPN is undiagnosable if a quasi-dead
ASC-set g exists, such that

(3) DS(g) is F-uncertain, or
(4) DS(g) is F-certain and a normal successor ASC-set g′

exists, such that g′ may be reached upon an infinite
delay (+∞).

Proof. For (3), an F-uncertain dead subset means that
some ASCs in this set may be reachable by firing a
sequence containing a fault, while others can be reached
without any fault having occurred. Furthermore, it is
impossible to distinguish them by further observation,
since they are all dead and the system will remain in F-
uncertain state forever. For (4), if g′ is reachable upon an
infinite delay, one cannot determine whether the system is
blocked in the (faulty) dead subset of g (DS(g)), or it is
still on the way to g′, which means that it is possible that
no fault has occurred in the state g′ in a finite delay after
the fault, i.e., we do not know if a fault has occurred. �

4.5 On-the-Fly Checking of Diagnosability

Proposition 12. A bounded LTPN is diagnosable iff none
of the conditions in Propositions 9, 10 and 11 holds.

Proof. (⇒) : This condition is proposed from three per-
spectives that we consider:

(1) With the help of splitting time intervals, the behavior
of LTPN is characterized as in the untimed context,
where the absence of indeterminate cycle has been
proved to be necessary and sufficient condition for
diagnosability (Sampath et al., 1995).

(2) This is the restriction from the definition of diagnos-
ability of LTPN.

(3) This is the restriction from the perspective of consid-
ering non-live TDESs.

(⇐) : The negation of these three conditions have been
proved to be necessary by Propositions 9, 10 and 11, since
each of the conditions in Propositions 9, 10 and 11 is
sufficient for undiagnosability. �

We have shown that diagnosability can be checked while
building ASG. Actually, building the whole ASG would
be similar to the approach based on state enumeration,
often consuming much memory while dealing with large
systems, even if this burdensome work could be performed
offline. Yet, there is still a difference w.r.t this approach,
since ASG branch building is stopped as soon as an F-
certain ASC-set is found or if one of the conditions for
undiagnosability (cf. Propositions 9, 10 and 11) holds.
In order to tackle this problem, we will propose a new
approach to checking diagnosability on the basis of on-
the-fly building of the ASG, as shown in Algorithm 3.
Moreover, we determine the minimum value ∆min for
which the system is diagnosable. Hence, when the system is
diagnosable and with ∆min being determined, the system
is ∆-diagnosable for any ∆ ≥ ∆min and is not ∆-
diagnosable for any ∆ < ∆min. Note that this on-the-
fly investigation of diagnosability is the adaptation of
the techniques that we have developed for the untimed
context (Liu et al., 2014).

5. ONLINE DIAGNOSIS OF LTPN

Let us discuss how online diagnosis for a diagnosable
LTPN model is performed, using a deterministic structure
called labeled timed diagnoser (LTD) that will be devel-
oped. By observing events with their corresponding oc-
currence dates online, one can deduce with certainty which
state (Normal, F-uncertain or F-certain) the system may
be in and give the verdict pertinent to fault occurrences.

The LTD is obtained from the ASG by erasing all the
information except fault tags for each node in the ASG and
observable events labeling the arcs with their correspond-
ing intervals. This procedure deletes all the information
unnecessary for online diagnosis.

As shown in Figure 5, for each F-uncertain quasi-dead
node g, a virtual node g′ labeled with “F” is created as
a successor to g, and the arc from g to g′ is labeled with
(ε, i), where ε is an empty event indicating that no event is
observed, i is the interval from the maximum firing date of
the other firable transitions to +∞. Note that, this virtual
node does not belong to the LTD, it just helps to diagnose
a fault when dealing with non-live systems.
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Algorithm 3 On-the-fly building of ASG, checking diag-
nosability and computing ∆min

1: Input: the ASC-graph;

2: Output: diagnosability of G and (if G is diagnosable) ∆min;

3: g0 ← {x0};
4: ∆min ← 0;

5: Gvst ← ∅;
6: Gcon ← {g0};
7: while Gcon 6= ∅ do pick a node g ∈ Gcon;

8: for all e ∈ CES(g, e) do I ← CIS(g, e);

9: for all i ∈ I do g′ ← ξ(g, e, i);

10: if tag(g′) = N then

11: if g has a flag and max(SD(i)) = +∞ then

12: return G is undiagnosable;

13: if g′ 6∈ Gvst then Gvst ← Gvst ∪ {g′};
14: Gcon ← Gcon ∪ {g′};
15: if tag(g′) = U then

16: if fdelay(g′) = +∞ then return G is undiagnosable;

17: if tag(DS(g′)) = U then return G is undiagnosable;

18: if tag(DS(g′)) = F then give g′ a flag;

19: if ∃ g′′ ∈ Gvst s.t. g′′ = g′ then

20: if g′ is in an indeterminate cycle then

21: return G is undiagnosable;

22: else if fdelay(g′) > fdelay(g′′) then

23: ∆ = fdelay(g′)− fdelay(g′′);

24: UpdFdelay(g′′,∆,∆min);

25: else Gvst ← Gvst ∪ {g′};
26: Gcon ← Gcon ∪ {g′};
27: if tag(g′) = F then

28: if fdelay(g′) = +∞ then return G is undiagnosable;

29: else ∆min ← max(∆min, fdelay(g′));

30: Gvst ← Gvst ∪ {g′};
31: Gcon ← Gcon\{g};
32: return G is ∆min-diagnosable;

33: function UpdFdelay(g,∆,∆min)

34: for all z ∈ succ(g) do

35: if tag(z) 6= N then fdelay(z)← fdelay(g) + ∆;

36: ∆min ← max{∆min, fdelay(z)};
37: UpdFdelay(z,∆,∆min);

The tags associated with each node in an LTD provide the
same information as those in the ASG nodes:

• “N” means that no fault has occurred;
• “U” denotes that a fault has possibly occurred, and

further observation is needed;
• “F” denotes that a fault has occurred with certainty.

Given a system behavior presented by a sequence of ob-
servable events with their corresponding event occurrence
dates, one can find whether a fault has occurred or not,
with the help of the LTD.

Fig. 4. Diagnoser of the LTPN in Figure 1(a)

6. CONCLUSION

This study shows that, compared with the untimed con-
text, considerations on both logical and timing system
behavior make it more challenging to discuss the state
evolution and fault propagation. Thanks to the time inter-
val splitting technique that we have developed, the timed
diagnosis problem can be handled in a similar way as in the
untimed context. The necessary and sufficient conditions
for diagnosability of LTPN models are given on the basis
of on-the-fly building of a dedicated structure called ASG,

which carries the necessary pieces of information to check
diagnosability. Furthermore, a diagnoser named LTD can
be derived for online diagnosis in a straightforward way.

As future directions, we will consider using other notations
to characterize the dynamic behavior of LTPNs, e.g., zone
graph (Gardey et al., 2004), to simplify the reasoning
process and improve the efficiency of the approach.
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