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Abstract: This paper explores some important characteristics of a system of linear equations
containing parameters. Such a system of equations arises in many branches of engineering
including electrical circuits, hydraulic networks and truss structures. A parametrized solution
of a set of linear equations can be obtained by applying Cramer’s rule. In many practically
important cases the parameters appear with rank one dependency, resulting in parametrized
solutions to be of a rational multilinear form, which will be monotonic in each parameter. This
monotonic characteristic has practical importance in the analysis and design of linear systems
with parameters having interval uncertainties. In particular, extremal values of system variables
occur at the vertices of the parameter boxes.
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1. INTRODUCTION

The problem of analyzing and controlling interval systems
is important for practical applications and has been open
for the last few decades. Several results concerning robust-
ness analysis of systems with real parametric uncertainty
can be found in the early works of Horowitz [1963], Siljak
[1969], Ackermann [1980, 1993] and Bhattacharyya et al.
[1995]. Kharitonov [1978] theorem, later generalized by
Chapellat and Bhattacharyya [1989], provided a means
to evaluate the stability of an interval plant by testing
a finite number of polynomials for stability. An extension
of the Kharitonov’s theorem, known as the edge theorem,
discovered by Bartlett et al. [1988], states that the stability
of a polytope of polynomials is equivalent to the stability of
its one-dimensional exposed edge polynomials. Jetto and
Orsini [2009] showed that the Schur stability analysis of
an interval polynomial family can be performed through
a uniquely defined extreme polynomial. The sign-definite
decomposition method, introduced by Elizondo-Gonzalez
[2000] and followed up by Knap et al. [2011], can be used to
decide the robust positivity (or negativity) of a polynomial
over a box of uncertain parameters by evaluating the sign
of the decomposed polynomials at the vertices of the box.
An application of sign-definite decomposition method to
the synthesis of stabilizing controllers of a fixed structure
is studied by Mohsenizadeh et al. [2011]. A method is
also proposed by Anai and Hara [2000] to design fixed-
structure robust controllers based on a special Quantifier
Elimination (QE) technique and a sign-definite condition.

Also, recent results on the robust control of linear systems
are provided by Bhattacharyya et al. [2009].

This paper concentrates on the class linear systems con-
taining real parameters with interval uncertainties and
presents an extremal result. It will be shown that if in an
unknown linear system the uncertain parameters appear
with rank one dependency, then the extremal values of
some set of system variables over a box in the parameter
space occur at the vertices of that box. This enables
us to evaluate the performance of an unknown interval
system over a box of uncertain parameters by checking
the respective performance index at the vertices.

An application of the Cramer’s rule to a set of linear
equations containing parameters yields an expression for a
parametrized solution of the set. A parametrized solution
can be seen as a system variable whose value is to be
evaluated over a box in the parameter space. The deter-
minants appearing in Cramer’s formula can be expanded
as polynomial functions of the parameters, resulting in a
rational polynomial form for the parametrized solutions.
We will show that the coefficients of these polynomials can
be determined directly from a small number of measure-
ments and does not require the knowledge of the linear
equations describing the system. If the uncertain parame-
ters appear with rank one dependency, which is the case
in many applications, then the rational polynomial form
for the parametrized solutions reduces to a rational multi-
linear function, being monotonic in each parameter. This
monotonic characteristic leads us to extract our extremal
results.
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This paper is organized as follows. In Section 2 we provide
some mathematical preliminaries on the parametrized so-
lution of a set of linear equations. Section 3 presents our ex-
tremal result for unknown linear systems with parameters
appearing with rank one dependency. Some illustrative
examples of current, power level and flow rate control
problems are given in Section 4. Finally, we summarize
with our concluding remarks in Section 5.

2. LINEAR EQUATIONS WITH PARAMETERS

Consider the system of linear equations

Ax = b, (1)

where A is an n × n matrix, and x and b are n × 1
vectors, all with real or complex entries. Let |.| denotes
the determinant. Assuming that |A| 6= 0, there exists a
unique solution x and, by Cramer’s rule, the ith element
xi of x is given by

xi =
|B|
|A|

, i = 1, 2, . . . , n (2)

where B is the matrix obtained by replacing the ith column
of A by b.

In order to show the parameter dependency of A and b
explicitly, let us rewrite (1) as

A(p)x = b(q), (3)

where p = [p1, p2, . . . , pl]
T and q = [q1, q2, . . . , qm]T are

vectors of system parameters. With this notation, (2)
becomes

xi(p, q) =
|B(p, q)|
|A(p)|

, i = 1, 2, . . . , n. (4)

Suppose that the parameter vector p appears affinely in
A(p). Thus, we can write

A(p) = A0 + p1A1 + p2A2 + · · ·+ plAl. (5)

To proceed, consider the special case of a scalar parameter
p = p1 and

A(p) = A0 + p1A1. (6)

Lemma 1. With A(p) as in (6), |A(p)| is a polynomial of
degree at most r1 in p1 where

r1 = rank [A1] . (7)

Proof. The proof follows easily from the properties of
determinants. 2

According to the form (6) and the rank condition in (7),
we say that p1 appears in A(p) with rank r1 dependency.
The statement of Lemma 1 can be generalized to the case
with more than one parameter.

Lemma 2. With A(p) as in (5), let

ri = rank [Ai] , i = 1, 2, . . . , l. (8)

Then, |A(p)| is a multivariate polynomial in p of degree ri
or less in pi, i = 1, 2, . . . , l and

|A(p)| =
rl∑

il=0

· · ·
r2∑

i2=0

r1∑
i1=0

αi1i2···ilp
i1
1 p

i2
2 · · · p

il
l . (9)

Proof. This follows immediately from Lemma 1. 2

Remark 1. In the formula (9), the number of coefficients

αi1i2···il are
∏l

i=1(ri + 1).

According to the form (5) and the rank conditions in (8),
we say that pi appears in A(p) with rank ri dependency.

Let us assume that b(q) can be decomposed as

b(q) = b1q1 + b2q2 + · · ·+ bmqm, (10)

where b1, b2, . . . , bm are n× 1 vectors with real or complex
entries. The decomposition given in (10) is a characteris-
tic of linear systems obeying the Superposition Principle.
Based on the above lemmas, we have the following char-
acterization of parametrized solutions.

Theorem 1. With A(p) as in (5),

xi(p, q) =
|B(p, q)|
|A(p)|

:=
β(p, q)

α(p)
, i = 1, 2, . . . , n, (11)

where β(p, q) and α(p) are multivariate polynomials in
(p, q) and p, respectively.

Proof. The proof follows from (4) and Lemma 2. 2

Remark 2. The matrix B(p, q) in (11) can be written as

B(p, q) = B0 + p1B1 + · · ·+ plBl

+ q1Bl+1 + · · ·+ qmBl+m. (12)

But, since q1, q2, . . . , qm appear only in one column of
B(p, q), then

rank[Bi] = 1, i = l + 1, l + 2, . . . , l +m. (13)

Thus, β(p, q) in (11) becomes

β(p, q) =

1∑
il+m=0

· · ·
1∑

il+1=0

rl∑
il=0

· · ·
r1∑

i1=0(
βi1···ilil+1···il+m

pi11 · · · p
il
l q

il+1

1 · · · qil+m
m

)
. (14)

The number of coefficients βi1···ilil+1···il+m
in (14) are

2m
(∏l

i=1(ri + 1)
)

.

Remark 3. In physical systems, the parameters p usually
appear in A(p) with rank one dependency. For instance,
branch resistors, impedances and dependent sources in an
electrical circuit, mechanical properties of links in a truss
structure, pipe resistances in a linear hydraulic network,
and blocks in a signal flow block diagram, all appear with
rank one dependency in the characteristic matrix of the
system.

3. MAIN RESULTS

Suppose that a linear physical system can be described by
the following set of linear equations

A(p)x = b(q), (15)

where A(p) is referred to as the system characteristic
matrix, p and q are vectors of system parameters and
inputs, respectively, and x is the vector of unknown system
variables, such as currents in an electrical circuit or flow
rates in a hydraulic network. We make the following crucial
assumption regarding the set of equations (15).

Assumption 1. There exists no p such that A(p) is a
singular matrix.

This assumption is usually true for physical systems,
because if there exists a vector p0 so that A(p0) becomes a
singular matrix, then the corresponding vector of system
variables, x in (15), will not have a unique value which is
not the case for physical systems.
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We define the following sets:

P := {p, q} = {p1, p2, . . . , pl, q1, q2, . . . , qm}, (16)

X := {x1, x2, . . . , xn}. (17)

Let us consider the ith element of X , xi, whose value over
a box in the parameter space D, where D ⊂ P, is to be
evaluated. In the following subsections we summarize our
results for 3 cases:

(1) D = {p1},
(2) D = {p1, p2},
(3) D = P.

3.1 Case 1: D = {p1}

In this case there is only one parameter, p1. We state the
following theorem.

Theorem 2. Supposing that rank[A1] = 1 in (6), the
function xi(p1) in (11) can be determined by setting p1
to 3 different values and measuring the corresponding xi
values.

Proof. Since rank[A1] = 1, and based on Lemma 1, then
xi(p1) can be expressed as:

xi(p1) =
β̃0 + β̃1p1
α̃0 + α̃1p1

. (18)

We note that for α̃0 = α̃1 = 0, xi → ∞,∀p1, which is
not physically possible. Hence, we rule out this case. If
α̃1 6= 0, then the numerator and denominator of (18) can
be divided by α̃1:

xi(p1) =
β0 + β1p1
α0 + p1

. (19)

The function xi(p1) in (19) can be determined by setting
p1 to 3 different values, measuring the corresponding
xi values and solving the following set of measurement
equations:  1 p11 −x1i

1 p21 −x2i
1 p31 −x3i


︸ ︷︷ ︸

M

[
β0
β1
α0

]
︸ ︷︷ ︸

u

=

 x1i p11x2i p
2
1

x3i p
3
1


︸ ︷︷ ︸

m

. (20)

The set of equations (20) has a unique solution for β0, β1
and α0 if and only if |M | 6= 0. If |M | = 0, then as the first
two columns of M are linearly independent, xi will be:

xi(p1) = β0 + β1p1, (21)

where β0 and β1 can be obtained from any 2 experiments
conducted earlier. Equation (21) corresponds to the case
where α̃1 = 0 in (18) and the numerator and denominator
of (18) are divided by α̃0. 2

The linear fractional form in (19) has some important
practical aspects which is explained below.

Remark 4. Taking the derivative of (19) with respect to
p1 yields:

dxi
dp1

=
β1α0 − β0
(α0 + p1)2

. (22)

Therefore, we can state the followings:

(1) The function in (19) is monotonic in p1. For example,
if β1α0 − β0 > 0 (see Fig. 1), then xi will monoton-
ically increase as p1 increases. The upper and lower
bounds of xi for this case are:

β0
α0
≤ xi ≤ β1. (23)

The range in (23) is called the achievable range.

p1

xi

β0/α0

β1

Fig. 1. xi(p1) for the case where β1α0 − β0 > 0

(2) This monotonic characteristic is beneficial in solving
design problems. For instance, suppose that the sys-
tem variable xi is to lie within the range x−i ≤ xi ≤
x+i by adjusting p1. If [x−i , x

+
i ] is inside the achievable

range, then there exists a unique interval of values for
p1, p−1 ≤ p1 ≤ p+1 , such that the constraint on xi is
satisfied.

The parameter p1 can be viewed as an uncertain parameter
varying in an interval I = [p−1 , p

+
1 ]. We now state our first

extremal result.

Theorem 3. Assuming that rank[A1] = 1 in (6), and p1
is varying in an interval, I = [p−1 , p

+
1 ], then the extremal

values of xi can be obtained from:

min
p1∈I

xi(p1) = min{xi(p−1 ), xi(p
+
1 )},

max
p1∈I

xi(p1) = max{xi(p−1 ), xi(p
+
1 )}.

Proof. The proof follows from Theorem 2 and Remark 4.
2

3.2 Case 2: D = {p1, p2}

Here there are two parameters, p1 and p2, and therefore
the characteristic matrix A(p) can written as

A(p) = A0 + p1A1 + p2A2. (24)

We state the following theorem.

Theorem 4. Supposing that rank[A1] = rank[A2] = 1 in
(24), the function xi(p1, p2) in (11) can be determined
by assigning 7 different sets of values to (p1, p2) and
measuring the corresponding xi values.

Proof. According to Lemma 2, since rank[A1] = rank[A2] =
1, by following the same strategy described in the proof on
Theorem 2, xi(p1, p2) will be:

xi(p1, p2) =
β0 + β1p1 + β2p2 + β3p1p2
α0 + α1p1 + α2p2 + p1p2

. (25)

A corresponding function for xi(p1, p2) can be obtained if
|M | = 0 in this case (see proof of Theorem 2). 2

Remark 5. Taking the derivative of xi in (25) with respect
to p1 and fixing p2 = p∗2 yields[

dxi
dp1

]
p2=p∗

2

=
a+ bp∗2 + cp∗22

(α0 + α2p∗2 + (α1 + p∗2)p1)2
, (26)

where
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a = α0β1 − α1β0, (27)

b = α0β3 + α2β1 − α1β2 − β0, (28)

c = α2β3 − β2, (29)

which is of the form in (22) and is monotonic in p1. A
similar relationship for [(dxi/dp2)]p1=p∗

1
can be derived.

Therefore, the function xi(p1, p2) in (25) is monotonic in
each parameter p1 and p2.

Theorem 3 can be generalized for this case as below.

Theorem 5. If rank[A1] = rank[A2] = 1 in (24), and p1
and p2 are varying in a rectangle, R (see Fig. 2),

R = {(p1, p2) | p−1 ≤ p1 ≤ p
+
1 , p

−
2 ≤ p2 ≤ p

+
2 }, (30)

with vertices:

A = (p−1 , p
−
2 ), B = (p−1 , p

+
2 ),

C = (p+1 , p
+
2 ), D = (p+1 , p

−
2 ),

then the extremal values of xi happen at the vertices of R:

min
p1,p2∈R

xi(p1, p2) = min{xi(A), xi(B), xi(C), xi(D)},

max
p1,p2∈R

xi(p1, p2) = max{xi(A), xi(B), xi(C), xi(D)}.

p1
-

p1
+

p2
-

p2
+

p1

p2

A

B C

D

Fig. 2. Rectangle of (p1, p2)

Proof. The proof follows immediately from Remark 5.
2

3.3 Case 3: D = P

The results developed in the previous subsections can be
generalized to the case where all system parameters (p, q)
are considered. In this case A(p) can be decomposed as
the form given in (5),

A(p) = A0 + p1A1 + p2A2 + · · ·+ plAl, (31)

and B(p, q) will be

B(p, q) = B0 + p1B1 + · · ·+ plBl

+ q1Bl+1 + · · ·+ qmBl+m, (32)

as described in (12). We now state the following general
theorems. The proofs follow from the results provided in
the previous subsections and are thus omitted here.

Theorem 6. If rank[Ai] = 1, i = 1, 2, . . . , l in (31), the
function xi(p, q) in (11) can be determined by assigning
2l(2m + 1)− 1 linearly independent sets of values to (p, q),
measuring the corresponding values of xi and solving a
system of measurement equations.

Theorem 7. If rank[Ai] = 1, i = 1, 2, . . . , l in (31), and
(p, q) are varying in a box, B,

B = {(p, q) | p−i ≤ pi ≤ p
+
i , i = 1, 2, . . . , l,

q−j ≤ qj ≤ q
+
j , j = 1, 2, . . . ,m}, (33)

with v := 2l+m vertices, labeled V1, V2, . . . , Vv, then the
extremal values of xi occur at the vertices of B:

min
p,q∈B

xi(p, q) = min{xi(V1), xi(V2), . . . , xi(Vv)},

max
p,q∈B

xi(p, q) = max{xi(V1), xi(V2), . . . , xi(Vv)}.

Before ending this section, we mention that the evaluation
of extremal values of xi can be accomplished by either of
the following ways:

(1) Directly assign values corresponding to the vertices
of B, to the vector of parameters and measure xi, or

(2) First, find the functional dependency for xi, as states
in Theorem 6 by conducting a small number of
measurements, and then evaluate that function at the
vertices of B.

4. ILLUSTRATIVE EXAMPLES

In this section three illustrative examples are presented to
explain the results developed in Section 3.

Example 1. Consider the linear DC circuit shown in Fig.
3. This system can be described mathematically by the
following set of linear equations

A(p)x = b(q), (34)

where p = [R1, R2, . . . , R13,K1,K2]T , q = [V, J1, J2]T ,
and x is the vector of unknown currents. In this example
Ri, i = 1, 2, . . . , 13, i 6= 5 are resistors, R5 is a gyrator
resistance, V , J1, J2 are independent sources and V1,
V2 are dependent sources with amplifier gains K1 and
K2, respectively. We assume that the system is unknown,
implying that p and q are unknown.

R4

J2

R2

R5

R3R1

V V1

+

-

+ +

--J1

R6

R7

R8 R9 R11R10

R12 R13

+ -

V2

Fig. 3. An unknown DC circuit

Suppose that the objective is to find the extremal values
of I2, if R1 is varying in the interval I = [R−1 , R

+
1 ] =

[10, 30] (Ω). Since the circuit is unknown, A(p) and b(q) in
(34) are unknown; but, in fact, one can write

A(R1) = A0 +R1A1, (35)

with rank[A1] = 1. This infers that R1 appears in A(p)
with rank one dependency, and accordingly the results
of Section 3.1 can be applied. Based on Theorem 3, the
extremal values of I2 occur at R−1 = 10 (Ω) and R+

1 =
30 (Ω). Assigning these values to R1 gives:

I2,min = 4.7 (A),

I2,max = 6.3 (A). (36)

An alternative approach to evaluate the extremal values of
I2 is to firstly find the function I2(R1). Based on Theorem
2, one can find the function I2(R1) by assigning 3 different
values to R1, measuring the corresponding current I2, and
solving the measurement equations (20) for β0, β1 and α0.
Table 1 shows the numerical values of the measurements
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for this example. Solving (20) for β0, β1 and α0 and
substituting these constants into (19) yields

I2(R1) =
21.9 + 8R1

11.7 +R1
, (37)

which is plotted in Fig. 4. It can be verified from Fig. 4
that the extremal values of I2 are as obtained in (36).

Exp. No. R1 (Ω) I2 (A)

1 7 4.2

2 18 5.6

3 32 6.4

Table 1. Numerical values of the measurements
for Example 1

0 20 40 60 80 100
1

2

3

4

5

6

7

8

R
1
 (Ω)

I 2 (
A

)

Fig. 4. I2(R1) for Example 1

Example 2. In this example we consider the same circuit
as in the Example 1. Suppose that the uncertain parame-
ters R1 and R6 are varying in the rectangle,

R = {(R1, R6) | 5 ≤ R1 ≤ 15, 2 ≤ R6 ≤ 5 (Ω)}, (38)

with vertices:

A = (5, 2), B = (5, 5),

C = (15, 5), D = (15, 2),

and one is interested to evaluate the extremal values of
the power level P3, in the resistor R3 = 10 (Ω), over the
rectangle R in (38). The power level P3 can be expressed
in the terms of the uncertain parameters as

P3(R1, R6) = R3 I
2
3 (R1, R6), (39)

but since, according to Remark 5, I3(R1, R6) is monotonic
in R1 and R6, Theorem 5 is valid to evaluate the extremal
values of P3 at the vertices. Setting (R1, R6) to the values
corresponding to vertices A,B,C,D, one gets:

P3,min = 49.4 (W ) at vertex B,

P3,max = 150 (W ) at vertex D. (40)

Also, one can plot the function P3(R1, R6) (see Fig. 5)
following Theorem 4 and by conducting 7 experiments.
The rectangle R, defined in (38), is also shown in Fig. 5.
It can be seen that the extremal values of P3 are the same
as those obtained in (40).

Example 3. Consider the unknown hydraulic network
shown in Fig. 6. Assuming that the flows are in the laminar
state, the system can be described, by applying Kirchhoff’s
laws, as a set of linear equations

A(p)x = b(q), (41)

where p denotes the vector of pipe resistances, q is the
vector of inputs such as pump pressures, and x is the vector

Fig. 5. P3(R1, R6) for Example 2

Pump 1

Valve 1

Valve 3

Valve 2

Valve 4

Valve 5

Q8

Pump 2Pipe 2

Pipe 9

Fig. 6. An unknown hydraulic network

of unknown flow rates. A pipe resistance is related to the
properties of the fluid flowing through it and its geometric
dimensions by

R =
8µL

πr4
, (42)

where µ is the dynamic viscosity of the fluid, and L and
r represent the length and radius of the pipe. It can be
observed that each pipe resistance appears with a rank
one dependency in A(p). Suppose that the radii of pipes
numbered 2 and 9 are varying in ranges described by

R = {(r2, r9) | 0.08 ≤ r2 ≤ 0.14, 0.07 ≤ r9 ≤ 0.10 (m)},
(43)

where the vertices are labelled as:

A = (0.08, 0.07), B = (0.08, 0.10),

C = (0.14, 0.10), D = (0.14, 0.07).

It is of interest to evaluate the extremal values of the
flow rate Q8 over the rectangle R in (43). Similar to the
previous example, since the assumptions in Theorem 5
hold, the extremal values of Q8 occur at the vertices of
the rectangle R:

Q8,min = 0.045 (m3/s) at vertex A,

Q8,max = 0.053 (m3/s) at vertex C. (44)

The function Q8(r2, r9) can be found by taking 7 measure-
ments as explained in Theorem 4, and is depicted in Fig.
7. The rectangle R, defined in (43), is also shown.

5. CONCLUSIONS

In this paper we described some important characteris-
tics of parametrized solutions of a system of linear equa-
tions. If the uncertain parameters appear with rank one
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Fig. 7. Q8(r2, r9) for Example 3

dependency in the characteristic matrix of the system,
which is usually the case in practical applications, then
the parametrized solutions will be monotonic in these
parameters. This fact is used to show that the extremal
values of the parametrized solutions over a box in the
parameter space occur at the vertices of the box. This
result is explained through illustrative examples.
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