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Abstract: An accurate, reliable and a cost effective localization is the key feature of self-navigation of 
autonomous mobile robots. The position and orientation, together known as pose, of the mobile robot can 
be determined by using certain localization systems. In this work we use the mobile robot system 
Robotino – a practice-orientated educational and training system offered by Festo Didactic GmbH. For 
the Robotinos, position determination can be provided by laser scanner for Robotino or Robotino® 
Northstar System (Festo Didactic GmbH). These existing systems are quite expensive and localization 
accuracy in certain field dimensions is quite low. In this paper we provide a relatively inexpensive and a 
more accurate localization system, which combines the strengths of odometry and vision-based 
localization. The fusion of odometry and vision-based localization data is accomplished with the use of 
the Extended Kalman Filter (EKF). The resulting localization system delivers better accuracy and more 
frequent pose information of the mobile robots on the test field. 

Keywords: Vision-based localization, Robotino, Mobile robots, (Adaptive) Sensor fusion, Extended 
Kalman Filter 

 

1. INTRODUCTION 

Autonomous navigation and interaction of mobile robots 
demand exact and reliable localization. For the absolute 
localization of outdoor autonomous mobile robots Global 
Positioning System (GPS) is used. Much research has been 
carried out due to the inaccuracy of GPS localization. 
Combining the odometry of the mobile robot, gyroscope and 
GPS signals guaranteed for example self-driving and 
interaction of multiple autonomous mobile robots [1]. For 
indoor usage, mobile robots may utilize landmarks by vision 
based self-localization, which allows the robots to maneuver 
when a GPS signal is unavailable [2]. The same approach can 
be applied by capturing a special marker system positioned 
on the floor, using an on-board camera [3].  
Festo Didactic GmbH offers the Robotino® Northstar System 
for the global localization of mobile robots, especially 
Robotinos. The Robotino® Northstar System consists of an 
infrared projector and its corresponding receiver-sensor. The 
infrared projector projects two infrared light spots onto the 
ceiling, which means that the operating room has to have a 
flat ceiling. This system is able to detect and track mobile 
robots tagged with these receiver-sensors with an error of 
50 mm within a 4 m×4 m operating area [4]. In our project 
we could not use this system because the error is too severe, 
e. g. for a docking maneuver, and a projection area was not 
available on the ceiling in our test hall.  

For our research we used a camera to capture the test field in 
order to localize multiple mobile robots (vision-based 
localization). This allows the determination of the absolute 
positions and orientation of each robot relating to a 
predefined coordinate system (world frame).  
Vision based localization in our system delivers new position 
and orientation information for every 80 ms with a 
positioning inaccuracy of a maximum of 12 mm. In other 
words, we can reach a tracking frequency of 12 Hz by using 
only the vision-based localization. In contrast to this 
relatively low tracking frequency vision-based localization 
provides very accurate position and orientation determination 
compared to the other localization systems. In order to 
achieve a higher tracking frequency at the same level of 
accuracy or better we use local localization techniques for 
each robot, e. g. odometry, to combine it with vision-based 
localization. Due to the nonlinearity of position estimation 
using wheel encoder signals we utilize the Extended Kalman 
Filter (EKF).  
The remainder of this paper is structured as follows. In 
section 2 we provide the kinematics model of Robotino and 
the mathematical model of odometry calculation. Section 3 
gives an overview about the vision-based localization 
technique and the special marker system. In section 4, we 
explain our approach for the sensor fusion method using EKF 
with adaptive correction factors for odometry. We evaluate 
our localization system in section 5, followed by a conclusion 
in the last section.  
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2. KINEMATICS MODEL OF ROBOTINO 

In this work we use the three wheeled, omnidirectional 
mobile robot system Robotino [5], whose wheels are 
mounted symmetrically with 120 degrees from each other. 
Figure 1 shows a schematic diagram of Robotino. The 
kinematic equation of the robot is based on [6]: 
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where ( , )x y   is the velocity relating to the world frame, ϕ  is 
the heading rate and R  is the distance between wheel and 
center of Robotino. The variables 1q , 2q  and 3q are the 
wheel velocities or rolling velocity expressed in body frame. 
The parameter δ  is the wheel orientation with respect to the 
robot direction. In case of Robotino this parameter equates to 
30°. The wheel encoders of Robotino deliver rotation speed 
of the motors ( 1 2 3, ,n n n ) in revolutions per minute (rpm). 
This rotation speed information will be converted into rolling 
speed 1q , 2q  and 3q  using the conversion factor p , which 
allows to calculate the robot translation ( , )x y   and the 
rotation velocity ( ϕ ) using the Equation (1) directly in m/s 
(meters per second) and rad/s (radians per second): 
 
 ( ) ( )1 2 3 1 2 3

T Tq q q n n n p=   , (2) 
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where the parameter wr  is the wheel radius and g  is the gear 
ratio of Robotino [5].  
It should be remarked that the input order of the wheel 
encoder signal has to have the same order as shown in 
Figure 1 (wheel encoder orders differ in the actual version 
2.1.1 of MATLAB/Simulink library for Robotino [7]). 

3. VISION-BASED LOCALIZATION 

Localization using camera or vision systems allows very 
accurate and reliable results. In this work we use an industrial 
camera (IDS-Imaging UI-6250SE-C 1/1.8“ CCD, 2 MP, 
20 fps, GigE Camera [8]) to capture the operational field. The 
operational field in our case is a 4.8 m×3.5 m free space in an 
experimental hall and the camera is placed on the ceiling of 
the hall. Using the images captured by the camera we realize 
the global localization of all mobile robots on the field. To 
differentiate the robots, we identify each mobile robot with a 
special marker. As mentioned before, the vision-based 
localization allows only low frequency tracking. Another 
drawback of this method is the localization failure in certain 
situations, for instance bad illumination, markers on the 
robots cannot be detected and localized properly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1  Marker system for mobile robots 

For proper localization and differentiation of mobile robots 
we use the so called 3-point-Marker. This marker employs 
two black circles and one colored circle with a certain radius 
(see Figure 2). The colored circle is used to determine the 
orientation of robots and to differentiate them. Using a 
monochrome camera, differentiation can be carried out using 
certain geometrical shapes, i. e. a triangle, or any other shape 
instead of a colored circle. The distances between the circles 
are affected by the geometry of the Robotino.  
 
3.2  Localization 

We developed a localization algorithm for each robot marked 
with the marker system. As a result, all three circles of the 
marker are localized and clustered together.  
Using the position information of these circles we can use our 
image processing algorithm for orientation and position 
determination for the Robotino.  

 

Fig. 1. Kinematics model of Robotino in a world coordinate 
system 

 

 
 
 
Fig.2. A marker system for Robotino  
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For the determination of the orientation (see Figure 3) first 
we measure the angles β  (angle between the x-axis of world 
frame and the vector AB  in Figure 3a) and θ  (angle between 
the vectors AB  and AF  in Figure 3a). Using these angles we 
define the current orientationϕ : 
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Since the positions of the black circles of the marker on the 
robot and the robot orientation are known, the center position 
of the Robotino can be determined. Due to the geometric 
form of Robotino, the black circles may not be in the middle 
axis of the robot. The midpoint between the black circles (M) 
is 20 mm behind the robots central position. Hence, after the 
defining position of M, this must be moved forward by 
20 mm using orientation information to get the absolute 
center point of Robotino.  
In order to realize the vision-based localization some 
preparations of the image have to be applied in a short time 
period. As can be seen in Figure 4 the captured image 
contains non-interesting regions for the localization of the 
robots. Therefore it is necessary to eliminate the non-
interesting regions. For this we used a “grid-search-

algorithm” so that we get only regions the robots are located 
at (see Figure 5). The search of the approximate position of 
the robots is not necessarily precise, so that somewhat non-
interesting regions are still seen on the reduced image. 
The image processing program for the vision-based 
localization was realized using MVTec’s machine vision 
software HALCON version 11.0.2 [9]. In our case the 
localization of three robots in the test field takes about 80 ms, 
which is not fast enough to guarantee proper control of three 
Robotinos. Image distortion caused by the short focal length 
of the lens (focal length = 5 mm) and imaging noise can 
increase the inaccuracy of the localization algorithm up to 
12 mm. In addition, if the image processing algorithm fails to 
detect the corresponding marker circles, the pose 
determination of the concerning Robotino will not occur. It 
makes the single use of vision-based localization unreliable. 
To ensure better reliability and accuracy, we use EKF for 
sensor fusion, which is described in the next section.  
HALCON allows to export the image processing program 
code as C++ code in order to establish a C++ application. In 
our case we realized an image processing application for the 
vision-based localization with an inter-process TCP/IP 
Socket, which allowed sending the determined pose 
information to MATLAB/Simulink, where the sensor fusion 
was realized.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Determination of orientation using circle positions; 
(a) Illustration of angles; (b) Illustration of the vectors on real 
Robotino image 

 
(a) 

        
(b) 

 

Fig. 4. Raw image from camera: Robotinos; Docking-Station  

 

Fig. 5. Reduced image used for precise localization  
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4. SENSOR FUSION USING EXTENDED KALMAN 
FILTER 

Kalman filter is one of the most widely used algorithms for 
sensor fusion. In this paper, we employ the well-known 
Extended-Kalman-Filter (EKF) [10] for the state estimation 
of the nonlinear model (1) for odometry. Pose changes of the 
mobile robot can be determined using wheel encoder signals 
at a very high frequency. However, this allows only relative 
localization and delivers very inaccurate pose information 
during a long time maneuver. Using odometry in short time 
intervals though, it provides very reasonable pose 
information. In contrast, vision-based localization delivers 
much more accurate pose information at a low frequency.  
We have implemented an EKF, which utilizes the odometry 
localization as its state prediction method. It is reasonable to 
use the pose information from the vision-based localization 
for the measurement update (a posteriori update) of EKF. The 
measurement update is only executed, when new position and 
orientation information is provided from the vision-based 
localization.  
In order to use the odometry in the prediction phase of the 
EKF, we utilize the Equation (1) as state update calculation 
and set the wheel encoder signal as part of the input of the 
EKF.  
Extended Kalman Filter has the following system and 
measurement equations [10]: 
 
 ( )1, ,k k k kx f x u w−= , (5) 

 ( , )k k ky g x v= , (6) 

where kx  is the state vector of the system and ku  is the input 
vector of the filter, kw  and kv  are Gaussian noises, 

( )1, ,k k kf x u w−  is the nonlinear function representing the 
model of the system and ( , )k kg x v  is the output function. The 
linearization of the nonlinear state and measurement 
equations is made by using [11]: 
 

( ) ( )1 1 1 1 1 1 1 1ˆ ˆ, , ( )k k k k k k k k k kx f x u w A x x F w w+ +
− − − − − − − −= + − + − ,(7) 

 ( )ˆ ˆ( , )k k k k k k k ky g x v C x x G v− −= + − + , (8) 

where 1ˆkx+
−  is the previous a priori state, ˆkx−  is the current a 

posteriori state, A , F , C  and G  are the linearized system-
matrices or Jacobi matrices (see Appendix A). These matrices 
are defined by: 
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As an input of EKF ku  we use three wheel encoder signals 
and pose information from vision-based localization. For 
further information about the EKF we recommend 
corresponding literature and [10].  
At first, we have implemented a 6-state EKF with the 
following states 
 
 ( ) 6, , , , ,kx dx dy d x yϕ ϕ= ∈ , (10) 

where , ,dx dy dϕ  are the predicted speed of Robotino and 
, ,x y ϕ  are the predicted pose information. In this case we 

calculate the Jacobi matrix A  as follows: 
 

 

1,6

2,6

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

A
A

A
t

t
t

 
 
 
 

=  
∆ 

 ∆
  ∆ 

, (11) 

with the sampling time t∆  of EKF, 
 

( ) ( ) ( )1,6 6 1 6 2 6 3
2 2 2sin +  + sin  + cos
3 3 3

A x q x q x qδ δ= − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅  
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2 2 2cos + cos -  + sin
3 3 3

A x q x q x qδ δ= ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅   . 

The output matrix C  selects the pose information from the 
states of EKF and has a dimension of 3 6×

 : 

 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

C
 
 =  
 
 

. (12) 

During the evaluation of this implemented 6-state EKF, we 
have recognized a drawback in position accuracy, which is 
described in the evaluation section later in this paper. In order 
to compensate the drawback of 6-state EKF, we implemented 
9-state EKF for the identification of three additional 
correction factors 1rwk , 2rwk  and 3rwk . The state vector of this 
9-state EKF is given by: 
 
 ( ) 9

1 2 3, , , , , , , ,k rw rw rwx dx dy d x y k k kϕ ϕ= ∈ . (13) 

The correction factors are deployed to compensate faulty 
estimated wheel rolling speeds caused by uneven floor and 
the mounting position of the front wheels in a body frame. 
This allows better speed prediction of the Robotino between 
the update periods. Hence, the odometry equation (1) is 
manipulated with the correction factors and was set in EKF 
as follows: 
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Table 1.  Pseudo code for EKF [11] 
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The Equation (14) provides in 9-state EKF the state update 
calculation and the correction factors, which compensate the 
faulty rolling speed estimation by acting for example as a 
variable wheel radius (see Equation (2) and (3)) caused by an 
uneven floor. The correction factors are adaptive and have 
the same effect as the Kalman gain and it is to be expected 
that these factors correlate to a certain value. 
A faulty estimation of the rolling speed of the wheels can be 
caused by the slip, nubby floor in the experimental hall and 
special form of omni-wheels [12] and its mounting positions 
on the Robotino body frame [5]. The error propagation of 
odometry and longtime gap between update phases caused 
the increasing inaccuracy of pose estimation in the 6-state 
EKF. The correction factors in 9-state EKF however allowed 
compensating the faulty pose estimation of odometry. 
Consequently we are able to make long period update cycles 
in order to get more reliable pose information from vision-
based localization. Due to possible extremely faulty pose 
information (very big value difference to last position) from 
vision-based localization, we limit the value range of the 
correction factors from 0.7 to 1.3. Otherwise, the extreme 
value changes may lead to uncertain Kalman gain and 

correction factors ( )1 2 3, ,rw rw rwk k k , which make the EKF 
prediction false. 
The system noise covariance matrix Q  is determined 
empirically, and during experimental tests we have defined 
the noise of wheel encoders with 10 rpm: 
 
 2

310Q I= ⋅ . (15) 

Measurement noise covariance matrix R  is described by the 
inaccuracy of vision-based localization. Inaccuracy of 
position determination, in our case, equates to 12 mm and 
orientation inaccuracy to 0.029 rad or 1.7°: 
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The sampling time of EKF defines the speed of the 
localization system. In our case we chose the sampling time 
with 40 ms. This sampling time equals to the sampling time 
of the control system for mobile robots in 
MATLAB/Simulink. Otherwise, faster sampling causes a 
lack in wheel encoder signal information, which makes the 
calculations of odometry incorrect and the use of EKF 
ineffective. The implemented EKF is shown in Table 1. 

5. EVALUATION 

For the evaluation of tracking we compare different 
trajectories of the robot(s) by driving them using pure 
odometry, vision and two different EKF pose information.  
As we know, localization by using odometry cannot deliver 
very good results. Therefore, we do not evaluate the 
odometry localization in this case. For the evaluation of a 
vision-based localization method, we utilized simple 
measurements on the ground and compared it with the pose 
information from the vision. As a result we define the 
standard deviation of position determination using vision-
based localization in x and y with 12 mm and the standard 
deviation of orientation determination is set to 1.7°.The 
reason of these inaccuracies are to be explained by the image 
distortion caused by short focal length of the used camera 
system. This inaccuracy information, as mentioned in the last 
section, is used to describe the noise covariance matrix. In 
certain situations, vision-based localization fails for the fast 
moving robots because of blurred marker points. After setting 
and using the EKF, localization failures at visual level can be 
compensated for, making the localization system more 
reliable.  
We have implemented two different demonstrations using 
Robotinos. The first demonstration (Figure 6) is a docking 
maneuver of a single Robotino into its docking-station. 
Robotino is driven by using pose information from: 
 

- Odometry localization, 
- Pure vision-based localization, 
- 6-state EKF localization and 
- 9-state EKF localization. 

EKF Algorithm 
 {Initialization} 

0 {0}x =  

0 {0}P+ =  
{}, {}Q R=  

loop 
{prediction update - a priori update} 
linearization(A,F) 

1ˆ ( , , )k k k kx f x u w− +
−=   

1 1 1 1 1 1
T T

k k k k k k kP A P A F Q F− +
− − − − − −= +   

{measurement update – a posteriori update} 
  if new pose information from vision-based localization 
    linearization( ,C G ) 
    / ( )T T T

k k k k k k kK P C C P C G RG− −= +  
    ˆ ˆ ˆ( ( ,0))k k k kx x K y g x+ − −= + −  
    ( )k kP I KC P+ −= −  
  else – no measurement (a posteriori= a priori) 
    k kP P+ −=  
    k kx x+ −=  
  end if 
  {calculate the output} 
  k k k ky C x v= +  
 end loop 
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Fig. 7. Synchronous drive of the Robotinos; Robotino trajectories driven by: (a) odometry localization; (b) vision 
localization; (c) 6-state EKF; (d) 9-state EKF localization 

 
(a) 

 
(b) 

 
(d) 

 
(c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Docking drive of Robotino; (a) Different driving trajectories caused by different localization methods; (b) Signal 
pattern of correction factors of 9-state EKF 
 

 
(a) 

 
(b) 
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As seen in Figure 6a Robotino driven by odometry pose 
information (green line) fails to hit its mark with a 200 mm 
deviation. Using pure vision-based localization (red line), we 
got very reasonable results and it was possible to dock the 
Robotino into the docking station. However, we have noticed 
bucking movements of Robotino due to the low tracking 
frequency of vision-based localization. Trajectories caused by 
using two different EKF pose information are also visualized 
in Figure 6a. 
Robotino driven by 6-state EKF pose information (magenta 
line) missed its mark by 20 – 30 mm while using 9-state EKF 
pose information allowed perfect docking of Robotino. These 
results show the advantages of correction factors in 9-state 
EKF (blue line). Figure 6b shows the signal pattern of the 
correction factors in 9-state EKF. During the extensive tests 
we have seen that the rolling speed correction factors of the 
two front wheels (wheel #1 and #2) correlated into 0.95 and 
the correction factor of the back wheel (wheel #3) remains at 
the value of 1. These values result from the special form of 
the omni-wheel and their orientation in Robotino frame. In 
order to achieve good results using 9-state EKF, it is 
reasonable to define the correlating values of each correction 
factor detected during test drives and set these as the initial 
state values in 9-state EKF.  
In a second demonstration, three Robotinos drive a given 
rectangle in formation (synchronously). Figure 7a shows the 
trajectory of the Robotinos driven by using odometry 
localization. As can be seen, error propagation is the main 
problem when using odometry for localization. Controlling 
the Robotinos using the vision-based localization method 
(Figure 7b.) allows for very good compliance of formation, 
which results in the Robotinos driving a nearly perfect 
rectangle track. However, the bucking movements of 
Robotinos were still observed. The same accuracy results 
could not be repeated by using 6-state EKF (Figure 7c). In 
this case Robotinos cannot follow the expected trajectories 
and have the same behavior as the driving by odometry 
localization. Because of the missing correction factors, error 
propagation from the odometry could not be corrected 
properly in 6-state EKF. Robotino trajectories driven by 9-
State EKF are shown in Figure 7d. The first round had some 
deviations from the expected rectangle track. This can be 
explained with the learning phase of the EKF or the lack of 
compensation for correction factors of 9-state EKF. 
Additional rounds allowed Robotinos to follow the 
predetermined tracks with more accuracy. Upon further 
evaluations, we considered implementing more complex 
maneuvers for Robotinos. For measuring the ground truth, we 
need to use an independent localization system with 
corresponding accuracy to draw some comparable 
conclusions. 

6. CONCLUSIONS 

In this paper we presented a reliable and accurate localization 
method for the indoor mobile robots. We have shown that a 
well-combined use of odometry and vision-based localization 
methods provide very reasonable results. For this 
combination (sensor fusion) we employed the Extended 
Kalman Filter, which allows direct use of the nonlinear 
translation equations of odometry. Vision-based localization 

using a single camera system provided global pose 
information of all marked mobile robots, in this case 
Robotinos.  
The localization approach presented here delivers position 
and orientation information of each robot at a 25 Hz tracking 
frequency with a maximum inaccuracy of 12 mm (position) 
and 1.7° (orientation) in a 4.8 m × 3.5 m field dimension. 
Using additional sensors, for example a gyroscope, the 
localization accuracy can be improved. In future work, we 
will also investigate possibilities to employ onboard cameras 
of Robotinos for so called “vision odometry”, for example to 
properly maneuver the Robotino into a docking station 
beyond a capture field of the global vision-based localization. 
We will also investigate the possibilities to use our 
localization system for a precision positioning of objects or 
mobile robots to certain points.  
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Appendix A. Linearized System matrices of 9-State EKF 

1,6 1,7 1,8 1,9

2,6 2,7 2,8 2,9

3,7 3,8 3,9

4,1

5,2

6,3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

A A A A
A A A A

A A A
A

A A
A

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

( ) ( ) ( )1,6 6 1 7 6 2 8 6 3 9
2 2 2- sin +  + sin -  + cos
3 3 3

A x q x x q x x q xδ δ= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    

( )1,7 6 1
2 cos +
3

A x qδ= ⋅ ⋅  ; ( )1,8 6 2
2 cos -
3

A x qδ= − ⋅ ⋅  ; ( )1,9 6 3
2 sin
3

A x q= ⋅ ⋅  ; 

( ) ( ) ( )2,6 6 1 7 6 2 8 6 3 9
2 2 2cos +  - cos -  + sin
3 3 3

A x q x x q x x q xδ δ= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   ; 

( )2,7 6 1
2 sin +
3

A x qδ= ⋅ ⋅  ; ( )2,8 6 2
2 sin -
3

A x qδ= − ⋅ ⋅  ; ( )2,9 6 3
2 cos
3

A x q= − ⋅ ⋅  ; 

3,7 1
1

3
A q

R
= ⋅

⋅
 ; 3,8 2

1
3

A q
R

= ⋅
⋅

 ; 3,9 3
1

3
A q

R
= ⋅

⋅
 ; 4,1A t= ∆ ; 5,2A t= ∆ ; 6,3A t= ∆  ; 

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

F F F
F F F F

F F F

 
 

=  
 
 

 

( )1,1 6 7
2 cos
3

F x p xδ= ⋅ + ⋅ ⋅ ; ( )1,2 6 8
2 cos
3

F x p xδ= − ⋅ − ⋅ ⋅ ; ( )1,3 6 9
2 sin
3

F x p x= ⋅ ⋅ ⋅ ; 

( )2,1 6 7
2 sin
3

F x p xδ= ⋅ + ⋅ ⋅ ; ( )2,2 6 8
2 sin -
3

F x p xδ= − ⋅ ⋅ ⋅ ;  ( )3,3 6 9
2 cos
3

F x p x= − ⋅ ⋅ ⋅ ; 

3,1 7
1

3
F p x

R
= ⋅ ⋅

⋅
; 3,2 8

1
3

F p x
R

= ⋅ ⋅
⋅

; 3,3 9
1

3
F p x

R
= ⋅ ⋅

⋅
; 

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

C
 
 =  
 
 

; 0G =  
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