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Abstract: Gaussian process (GP) models are nowadays considered among the standard tools
in modern control system engineering. They are routinely used for model-based control, time-
series prediction, modelling and estimation in engineering applications. While the underlying
theory is completely in line with the principles of Bayesian inference, in practice this property
is lost due to approximation steps in the GP inference. In this paper we propose a novel
inference algorithm for GP models, which relies on adaptive importance sampling strategy to
numerically evaluate the intractable marginalization over the hyperparameters. This is required
in the case of broad-peaked or multi-modal posterior distribution of the hyperparameters where
the point approximations turn out to be insufficient. The benefits of the algorithm are that is
retains the Bayesian nature of the inference, has sufficient convergence properties, relatively low
computational load and does not require heavy prior knowledge due to its adaptive nature. All
the key advantages are demonstrated in practice using numerical examples.

Keywords: Adaptive importance sampling, Gaussian processes, Bayesian inference, numerical
integration methods.

1. INTRODUCTION

Gaussian process (GP) models were received a lot of at-
tention in the control systems community in recent years.
They provide flexible tools for various problems, such as
time series prediction (Deisenroth et al., 2009), dynamic
systems control (Kocijan and Murray-Smith, 2005) or
state-space model identification (Deisenroth et al., 2012).
Due to their properties, the GP models are especially
suitable for modelling when data are unreliable, noisy
or missing, which was demonstrated with numerous suc-
cessful practical applications (Likar and Kocijan, 2007).
However, the fully Bayesian inference in GP models is
computationally demanding and has lead to prevalence of
more or less rough approximation.

Full Bayesian treatment of GP inference requires to per-
form the integration over the posterior distribution of a
moderate number of hyperparameters. Even though most
calculations in GP can be analytically solvable, this par-
ticular integral is not. The common solution is that the
integration over the posterior of the hyperparameters is
approximated using only a single point estimate (ML es-
timate). However, in Bayesian inference, all uncertainty
should be taken into consideration. A possible way to
perform the numerical integration is by using Markov
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chain Monte Carlo (MCMC) methods (Williams and Ras-
mussen, 1996; Neal, 1997) and MCMC using control vari-
ables (Titsias et al., 2009). Computational less demanding
methods such as slice sampling (Murray and Adams, 2010)
and eliptical slice sampling (Murray et al., 2010) were also
investigated. For binary classification where likelihood is
non-Gaussian deterministic methods were proposed (Kuss
and Rasmussen, 2005; Rue et al., 2009).

In this paper, we investigate the use of adaptive impor-
tance sampling (AIS) approach (Oh and Berger, 1992;
Šmidl and Hofman, 2013). It is based on a parametric
form of the proposal density, the parameters of which are
estimated from previously drawn particles. The key feature
of this approach is its ability to update the parameters
recursively for each realization of the particle. The problem
that needs to be addressed in the context of GP are
initialization of the parameter statistics, which is a case
specific problem. Poor choice of the initial statistics may
have significant impact on the inference process.

Performance of the proposed AIS-GP algorithm is demon-
strated on a typical regression problem, with insufficient
training data (Rasmussen and Williams, 2005). In such
cases, the hyperparameter posterior distribution is multi-
modal and point approximation inference algorithms are
bound to end up in a single optimum, resulting in possible
model over-fitting, insufficient uncertainty representation
and poor predictive capabilities. We show, that these issues
can be successfully addressed by the AIS, while due to
the adaptive nature, the algorithm in insensitive to the
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selection of the proposal density of importance sampling
(IS) scheme.

The paper starts with a brief introduction to GP regression
in Section 2, followed by a more detailed discussion on the
problem of marginalization over the hyperparameters in
Section 3. An introduction to the AIS and its inclusion
in and the final AIS-GP algorithm are given in Section
4. The performance of the AIS-GP in comparison to the
more standard methods is made in Section 5.

2. GAUSSIAN PROCESS MODELS

The GP models are probabilistic, non-parametric models
based on the principles of Bayesian probability. They differ
from most of the other black-box identification approaches
in that they search for relationships among the measured
data rather than try to approximate the modelled system
by fitting the parameters of the selected basis functions.
The output of the GP models is a normal distribution,
expressed in terms of the mean and the variance. Their
modelling properties are reviewed in (Rasmussen and
Williams, 2005).

GP models can be easily utilized for regression, where the
task is to infer a mapping from a set of N D-dimensional
input vectors X = [x1,x2, . . . ,xN ]T to a vector of output
data y = [y1, y2, . . . , yN ]. These observed inputs and
outputs compose the training dataset D. The outputs are
often assumed to be noisy realizations of an underlying
function f(xi). GP provides the probability distribution
over estimates of f(X).

f(xt) ∼ GP
(
mθ(x∗), kθ(x∗,x∗

T

)
)
, (1)

where a GP is fully specified by its mean mθ and covari-

ance function kθ(x∗,x∗
T

). The marginalization property
for Gaussian distributions results in the fact that any finite
subset of function values f = (f(x1)f(x2), . . . , f(xn))

′
has

a joint Gaussian distribution, for which

f ∼ N (0,Σ), (2)

where Σij = kθ(xi,xj).

A common aim in regression is to predict the output y∗

in an unobserved test location x∗ given the training data
D and a known covariance function kθ. The posterior
predictive distribution can be obtained fist constructing
the joint posterior distribution p(y∗, f |X,x∗,y) using the
Bayes’ rule. The posterior predictive distribution is ob-
tained by marginalizing over the function f

p(y∗|X,x∗,y) =

∫
p(y∗|f ,x∗)p(f |X,y)df , (3)

where the likelihood p(f |X,y) ∼ N (f , σ2I). Assuming zero
mean GP prior leads to a Gaussian predictive distribution
(Rasmussen and Williams, 2005).

Inference in GP firstly involves finding the form of the
covariance function kθ(xi, xj). The value of covariance
function k(xi,xj) expresses the correlation between the
individual outputs f(xi) and f(xj) with respect to inputs
xi and xj . It should be noted that the covariance function
can be any function that generates a positive semi-definite
covariance matrix. Typically, our prior over the function
value p(f) is too weak to quantify aspects of the covariance

function. We use a hierarchical model using hyperparam-
eters. Assuming stationary data contaminated with white
noise most commonly used covariance function is compo-
sition of the square exponential covariance function and
constant covariance function:

kθ(xi,xj) = v1 exp

[
−1

2

D∑
d=1

ωd(xdp − xdq)2
]

+ δpqv0, (4)

where wd are the automatic relevance determination
(ARD) hyperparameters, v1 and v0 are hyperparameters
of the covariance function, D is the input dimension, and
δpq = 1 if p = q and 0 otherwise. Hyperparameters can
be written as a vector θ = [w1, . . . , ωD, v1, v0]T . The ωd
indicate the importance of individual inputs. If wd is zero
or near zero, it means the inputs in dimension d contain
little information and could possibly be discarded.

Up to this point, fixed values have been assumed for
the hyperparameters that determine the shape of the
covariance function. However, in order to perform a full
Bayesian inference the effect of unknown hyperparameters
θ has to be taken into account. This results in the following
form of the predictive distribution

p(y∗|x∗,y) =

∫∫
p(y∗, f ,θ|y,x∗)dfdθ

=

∫∫
(y∗|f ,x∗) p (y∗, f |θ,x∗) p (θ) dfdθ, (5)

where we avoid notational clutter by omitting the condi-
tioning on the training data X. The computation of such
integrals can be difficult due to the intractable nature
of the non-linear functions. A solution to the problem of
intractable integrals is to adopt either approximations or
numerical integration methods.

3. INFERENCE OVER THE HYPERPARAMETERS

The implementation of Bayesian inference according to
equations (5) involves the evaluation of several integrals.
If these integrations are analytically intractable, solving
them requires some approximation method. In practice,
especially the marginalization over the hyperparameters
θ may be difficult (Rasmussen and Williams, 2005). A
computationally attractive approach is to select only a
point estimate for hyperparameters, which can be obtained
by maximizing the marginal likelihood w.r.t. to the hyper-
parameters (type II maximum likelihood) (Rasmussen and
Williams, 2005).

Recall, that the predictive distribution of y∗ is calculated
by integrating over y and hyperparameters θ out of the
joint distribution, repeated here for convenience

p (y∗|x∗,y) =

∫∫
(y∗|f ,x∗) p (y∗, f |θ,x∗) p (θ) dfdθ

=

∫
p (y∗|x∗,θ) p (θ) dθ, (6)

where only the marginalization over the training outputs
y is tractable. As discussed before, the functional form
of the likelihood term determines whether the integral
over latent variables is analytically tractable. It is usually
tractable in the case of regression when likelihood is Gaus-
sian. However, the integral over θ is usually analytically
intractable. This papers deals with different numerical
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approximations for the integration over the distribution
of the hyperparameters.

3.1 Type II Maximum-likelihood approximation

A computationally attractive approach is that instead of
approximating the entire posterior distribution over the
hyperparameters, we only approximate it with one point

estimate of the hyperparameters θ̂. If this estimate maxi-
mizes the likelihood function of the hyperparameters, it is
referred to as evidence maximization or type II maximum
likelihood (ML-II) estimate (Rasmussen and Williams,
2005), which maximizes the likelihood function of the
hyperparameters. However, using this approximation we
are not coherent with Bayesian inference, which opens up
the possibility of over-fitting.

In practice, the following negative log-likelihood function
is minimized:

L(θ) = −1

2
log(| K |)− 1

2
yTK−1y − N

2
log(2π). (7)

Since the covariance matrix K in (7) depends on θ, the
likelihood function is non-linear and multi-modal. In fact
if the posterior distribution of the hyperparameters is
narrow ML-II estimate can lead to equally good results
compared to those of full Bayesian inference. In the case
when the posterior distribution is multi-modal, gradient
based method is guaranteed only to find a local minimum.
Therefore, the hyperparameters should either be optimized
several times with different initializations, or other global
optimization method should be used, in order to find the
global maximum (Petelin et al., 2011).

3.2 Monte-Carlo approximation of the posterior predictive
distribution

The intractable integral over the posterior distribution of
the hyperparameters can be approximated with several
methods, e.g. grid integration (Šimandl et al., 2006), Gaus-
sian approximations and linearization (Rue et al., 2009),
sigma-point approximation (Särkkä, 2011) and Monte-
Carlo based approximations (Doucet et al., 2001). The
computational efficiency and convergence properties of
Monte-Carlo methods based on IS depends on the choice
of the proposal density. We first start with a brief intro-
duction to the IS algorithm, followed by the AIS approach.

Importance sampling Assuming one can efficiently sam-
ple from the distribution p(θ|y), the integration over pos-
terior distribution p(θ|y) can be approximated by

p (y∗|x∗,y) ≈ 1

N

N∑
i=1

p
(
y∗|θ(i),x∗,y

)
. (8)

Therefore, (6) is evaluated by drawing samples from the
proposal distribution q (θ) such that

p (θ) =
p(θ)

q(θ)
q(θ)∝̇

n∑
i=1

p(θ(i))

q(θ(i))
δ
(
θ − θ(i)

)
(9)

=
n∑
i=1

w̃(i)δ
(
θ − θ(i)

)
(10)

where w(i) = p(θ(i))

q(θ(i))
is the non-normalized weight, and

w̃(i) = w(i)/
∑n
i=1 w

(i) is the normalized weight. The main

advantage of this approach is that under mild conditions it
converges to the unknown function p(θ) with probability
one.

The approximation of the predictive distribution (6) is

p (y∗|x∗,y) ≈
n∑
i=1

w̃(i)p
(
y∗|x,θ(i)

)
δ
(
θ − θ(i)

)
, (11)

which is a Gaussian mixture. For easier use, we project
(11) to a single Gaussian using moment matching.

p (y∗|x∗,y) ≈ N (ŷ∗,P), (12)

ŷ∗ =
n∑
i=1

w̃(i)ŷi
∗, (13)

P =
n∑
j=1

w̃(i)(Pi + ŷi
∗ŷi
∗T )− ŷ∗ŷ∗T , (14)

where ŷi and Pi are the mean value and covariance matrix
of the i-th mixture component. This projection ensures
that the prediction output follows the GP framework and
the GP-AIS can thus be used in recursive algorithms, e.g.
modelling of dynamical systems.

Laplace approximation The initial approximation for the
proposal distribution is the Laplace approximation, where
the mean value is the ML estimate of the parameters
and covariance is the inverse of the Hessian matrix. This
approximation will be good if the posterior for θ is fairly
well peaked.

p(θ|X,y) ≈N
(
θML,H

−1
ML

)
, (15)

where

HML =

[
−d

2L (θ)

dθ2 |θML

]
(16)

is the Hessian matrix evaluated at θML and L (θ) is the
log-likelihood function. This may be a reasonable approx-
imation in the case of uni-modal posterior distributions.

3.3 Adaptive importance sampling

The rate of convergence for IS heavily depends on the
chosen proposal, which is difficult to choose for a general
problem. An elegant solution is to choose the proposal
function from a parametric family, q (θ|µ,P), and itera-
tively estimate the vector of parameters from the sampled
particles (Oh and Berger, 1992). The idea of the AIS is
to draw batches of samples of size nk from the parametric
proposal and after each batch compute the sufficient statis-
tics of the proposal distribution parameters. The statistics
are used to update the estimates which are used for gen-
eration of the next batch. The key attribute of the AIS is
the possibility to shorten the batch to nk = 1 and run the
algorithm in completely recursive manner. Therefore, we
can use the exponential forgetting of the previous data to
preserve recursiveness by introducing additional parame-
ter 0 < λ ≤ 1. This way, the influence of the poor initial
conditions can be suppressed by exponential weighting of
the older contributions. The update of statistics in AIS is:

νk+1 = λνk + w(i), (17)

mk+1 = λmk + w(i)θ(i), (18)

Sk+1 = λSk + w(i)θ(i)θ(i)T , (19)
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with estimated values of the parameters µk+1 = mk+1ν
−1
k+1

and Pk+1 = Sk+1ν
−1
k+1 − µk+1µ

T
k+1. The full algorithm

is adapted from (Oh and Berger, 1992) and is given in
Algorithm 1.

Algorithm 1: AIS with forgetting

(1) Set batch counter k = 0 and initial statistics ω0, µ0,
P0 and forgetting λ

(2) Draw nk samples θ(i) from the proposal q (θ|µk,Pk)
and compute their weights

w(i) =
p(θ(i))

q (θ|µk,Pk)
, i = 1 . . . n (20)

(3) Evaluate statistics µk+1 and Pk+1 using (18), (19)
and (17).

Example 1: Consider a non-Gaussian bi-modal likelihood
function as shown in Figure 1 to be the target density.
The AIS algorithm uses a Gaussian proposal distribution,
initialized at x0 = [−3 1]T and Σ0 = diag(0.3 0.3). The
updated proposals according to Algorithm 1 are shown
in Figure 1. It can be seen that even in the relatively
demanding case, the proposal converges to a distribution
that adequately covers both peaks of the target density,
which ensures optimal utilization of the samples.

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0
x1

−3

−2

−1

0

1

2

x
2

0

2500

5000

Fig. 1. Adaptation of the proposal distribution.

3.4 GP regression with AIS

The AIS scheme is implemented in GP inference and
we will refer to the resulting algorithm as AIS-GP. The
proposed implementation is designed with the aim to have
minimum parameterization. Therefore, we include the op-
timum step, where the initial guess for the hyperparameter
posterior distribution is obtained by Laplace approxima-
tion.

In the AIS-GP implementation, the proposal statistics
were updated with every sample (effectively batch size
nk = 1). It would make sense to use nk > 1 is the
algorithm is parallelized as for each sample, GP inference
is independent from other samples.

4. EXPERIMENTS AND VALIDATION

The inference with AIS-GP algorithm is evaluated and
compared to other methods (Maximum likelihood, Grid,
IS) on an example with two local optima. Example consists

Algorithm 2: GP-AIS

(1) Initialize Set initial hyperparameter estimate θ0,
initial covariance Σθ, number of particles used for
AIS, N

(2) (Optional) Find optimal hyperparameter values us-
ing ML-II optimization and construct the Laplace
approximation and set θ0 = θML and Σθ = H

(3) for i = 1 : N

Sample from the distribution θ(i) ∼ N (θ(i),Σi) and
compute

w(i) =
p(θ(i))

q(θ(i))
,

p(y∗i |x∗,θ(i)) = GP
(
mθ(i)(x∗), kθ(i)(x∗,x∗

T

)
)

where p(θ(i)) is the likelihood of the sample

p(y|X,θ(i)).
end for

(4) Normalize importance weights and project the pre-
dictions to a single Gaussian using moment match-
ing (14)

of 20 data points for training and 80 data points for
validation. The data points represent a typical regression
problem and are by a GP with (4) where [v1, ω1, v0] =
[1, 1, 0.1]. Additionally, the data points are contaminated
by white noise. 90% of the data points by white noise
with standard deviation 0.1 and the rest of the data points
with standard deviation 1. Both, training data points and
validation data points are depicted in Figures 2(b,c) and
3c, denoted as “+′′ and “·′′ respectively.

The data is modelled by using a covariance function (4).
As the input data is one dimensional, there are three
hyperparameters of the covariance function. With the
aim to make the inference steps easier to visualize, the
hyperparameter v1 is fixed to v1 = log(1) = 0. Despite
only two variable hyperparameters there still exist two
local optima. The contour of the GP model’s marginal
likelihood for hyperparameter values w1 ∈ [−2.5, 1.5] and
w1 ∈ [−3.5, 0.5] is depicted in Figure 2a. The optimum L1

f

corresponds to a relatively complicated model with low
noise, whereas the optimum L2

f corresponds to a much
simpler model with more noise.

By running multiple optimization procedures with random
initial values we determined that 64.2% optimizations
finish in optima L1

f , where L(θ) = 23.8545 and 35.5%

in optima L2
f , where L(θ) = 23.3807. A small portion

of optimization procedures finish in 3 other local optima
with much lower log marginal likelihood and their effect is
negligible. However, as both local optima have very similar
log marginal likelihood values it is not possible for the
model to confidently reject either of the two possibilities.

The algorithms are validated and compared in terms of
their predictive capability by computing the Standardized
Mean Squared Error (SMSE). Additionally, the quality
of the prediction variance of all the approaches is com-
pared with the Mean Standardized Log Loss (MSLL)
(Rasmussen and Williams, 2005). The MSLL is obtained
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by averaging log predictive density over the validation set
and subtracting the same score for a trivial model.While
SMSE calculates only the error of the prediction mean
value, the MSLL also accounts for the likelihood of the
prediction.

The AIS-GP algorithm is compared to Type II Maximum-
likelihood approximation, standard importance sampling
(IS) and uniform point-mass approximation. The proposal
density in IS algorithm is set to Laplace approximation in
either of the two optima. The point-mass approximation
serves as a reference and the grid is uniformly spaced over
the sufficient partition of the support. All the numerical
approximation methods use the same amount of samples.
The inference in all algorithms was carried out using
10.000 samples.

The results of the IS sampling scheme with proposals from
both optima and GP inference are depicted in Figure 2a.
It can be seen that in both cases the other optima is
not covered good enough and consequently the obtained
model is still over-fitted to optima used for calculating
the proposal. The results obtained by the AIS-GP are
depicted in Figure 3. It can be seen from Figure 3b that the
samples from adaptive proposal also covers the region of
optima L2

f , even though the initial proposal is positioned

in optima L1
f . The evolution of the proposal can be seen in

Figure 3a. However, same result is also achieved when the
initial estimate is a Laplace transfomration at the second
optimum.

Error measures of all conducted methods are given in
Table 1. It can be seen that comparing sampling meth-
ods the AIS results the lowest error measure values. The

Table 1. SMSE and MSLL error measure values for
different algorithms.

Method SMSE MSLL

ML1 0.677435 1.164701
ML2 0.337965 −0.548378
MLavg 0.554891 0.553064

IS1 0.659408 −0.073132
IS2 0.506627 −0.419936

AIS 0.321127 −0.556568

Point-mass 0.504723 −0.373281

results show the advantage of the approximate integration
methods, as the achieved errors are lower than in ML
approximation. Furthermore, among the numerical ap-
proximation methods, using the same amount of samples,
the AIS sampling strategy systematically outperforms the
IS and the point-mass algorithms. The advantage over
the point-mass integration arises from the fact, that many
samples in point-mass integration lie in the regions with
extremely low likelihood values and contribute very little
to the result.

5. CONCLUSION

The aim of this paper is to discuss the inference in
GP models at one particular level, namely the inference
over the vector of hyperparameters. An established ap-
proach for this step is to search for a point estimate
(e.g. Maximum-Likelihood) and use it to approximate the
hyperparameter posterior. The use of this approach is

well justified in the case where enough training data is
available and the actual posterior is well-peaked. However,
it is often overlooked, that in general, this approximation
results in a non-Bayesian inference procedure, which can
lead to undesired effects, such as over-fitting. This can be
mitigated by application of the Laplace approximation at
the point of estimate.

In this paper we propose to use the adaptive importance
sampling (AIS) approach to extend the Laplace approx-
imation to the full Bayesian inference. We have demon-
strated that the AIS is able overcome local extremes and
cover larger areas of the parameter space. The simulated
results confirmed that the achieved prediction errors with
the fixed amount of computations, are indeed lower with
the AIS-GP algorithm than with comparable methods.
The effect of numerical approximations are expected to
bring an even greater advantage in problems with higher
dimensions.

The paper only discussed GP-AIS in the context of re-
gression problems, but the ideas can be extended to GP
modeling of dynamical systems. Implementation of GP-
AIS to inference to GP model of state-space systems is
one of the possible topics for future work, as the lack
of sufficient training data and overfitting can be a major
issue.
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