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Abstract: Pumps are often operated poorly controlled and manually throttled, which results
in a significantly reduced energy efficiency. We propose an automatic PID controller tuning
approach in combination with a dynamic flow rate estimation algorithm for low speed radial
pumps to replace expensive flow rate measuring equipment. Since our approach is fully
automated, there is minimal additional effort for the customer to implement an automatic
flow rate control.
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1. INTRODUCTION

Pumps contribute significantly to the world wide energy
consumption. In the European Union, for example, pumps
are responsible for about 16% of the electromotoric power
consumption in the service sector (Almeida et al. (2003)).
Despite the significant increase in energy efficiency that
can be obtained with automatic control (Ferreira et al.
(2003)), many pumps are poorly controlled.

Automatic control of pumps is unpopular among prac-
titioners, since it requires sensors, which result in un-
acceptable additional costs. We have recently reviewed
existing flow rate estimation methods and presented a
dynamic flow rate estimation method that uses soft sensors
in Leonow and Mönnigmann (2013). The proposed soft
sensors can easily be integrated into the pumping unit and
a flow rate sensor is therefore obsolete.

A second reason for the lack of popularity of automatic
control solutions in practice is the need for controller
tuning. Even in those cases that do not require any so-
phisticated method, practitioners often attempt to avoid
the controller tuning step and opt for a simple solution
such as overdesigning and manual throttling. Among the
variety of PID tuning rules, the Ziegler-Nichols and the
Chien-Hrones-Reswick empirical rules seem to be most
widely known. Recent analytical tuning approaches handle
deadtime explicitly in first (Cvejn (2011)) or second order
plus deadtime systems (Wang et al. (1999)). A compre-
hensive approach by Hohenbichler (2009) calculates the
stabilizing PID parameter region for arbitrary systems
with deadtime, though without regarding closed loop con-
trol quality. We present an automatic PID tuning method
that is based on the root locus plot and handles deadtime
explicitly for strictly delayed processes of arbitrary degree.
We apply the tuning approach in combination with the
flow rate estimation algorithm presented in Leonow and
Mönnigmann (2013) and show that the tuning method
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can be automated and therefore used by practitioners
with little or no background on controller tuning. Despite
its simplicity of use, the proposed method guarantees a
prespecified closed loop behavior for delayed systems of
arbitrary degree, also those with dominant deadtime.

We briefly summarize flow rate estimation in section 2.1.
Section 3 describes the automatic process identification
method. In section 4 we present the automatic controller
synthesis for a class of process models that typically
occur in flow rate control. The control performance is
evaluated on a real process in section 5, followed by a short
conclusion.

2. FLOW RATE ESTIMATION

Numerous flow rate estimation methods have been devel-
oped. Recent contributions to this topic were made e.g.
by Ahonen et al. (2012). We reviewed this and other
methods in Leonow and Mönnigmann (2013) and proposed
the boundary curve method as a new flow rate estima-
tion algorithm with improved steady state and transient
performance. We briefly summarize this method, since it
provides the motor current sensor model (1) required by
the process identification in section 3.

2.1 Boundary curve method

The boundary curve method is a dynamic flow rate esti-
mation method that is based on the effective value of the
stator current imeas(t), a measurement which is typically
provided by the frequency converter. Essentially, two lim-
iting cases of the pumping system are analyzed: The lower
limit is defined by the pump operating against a closed
discharge valve, which leads to zero flow rate q = 0 and
a low stator current imeas(t). The upper limit is defined
by the maximum flow rate q = qmax that can be achieved
without cavitation and leads to a high stator current. Both
limiting cases are captured by boundary curves, which are
used to estimate steady state parameters. The boundary
curves can be determined automatically by a series of
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measurements carried out by the pump itself (Leonow
and Mönnigmann, 2013). In addition to measuring and
estimating steady state parameters, step responses are
used to determine a dynamic model of the motor current
sensor, i.e., the relation between the rotational speed n(t)
and the measured motor current imeas(t). The effect of
fluid inertia is canceled by setting q = 0. A first order plus
deadtime model

TL
d imeas(t)

dt
+ imeas(t) = K (n, q) · n(t− TD) (1)

is sufficient in our case to model the sensor dynamics.
K (n, q) is a nonlinear function that is estimated from
steady state data. The constant parameters TL and TD

can be identified from step responses (see Leonow and
Mönnigmann (2013) for details).

3. PROCESS MODEL FOR CONTROLLER
SYNTHESIS

Section 3.1 describes the type of hydraulic process treated
here. All requirements stated in section 3.1 apply through-
out the paper.

3.1 Process layout and definitions

Consider the layout shown in Fig. 1. The low speed radial
pump is operated with rotational speed n and delivers a
discharge pressure pD = p1 to the downstream process.
The pump inlet pressure is denoted p0. The process is
modeled as circular pipe with average radius R, length
L, inner surface roughness kS and geodetic heights z1, z2
at its inlet and outlet, respectively. The fluid is assumed
to be incompressible with constant density ρ and constant
kinematic viscosity ν. These assumptions are appropriate,
for example, for low speed radial pumps and aqueous
media. Note that the assumptions imply that the fluid
velocity c is independent of x.

, p1,z1 , p2,z2

M

pD=p1

n

motor current

sensor

p0

flow rate

estimation

Fig. 1. Process layout.

The process is assumed to be strictly delayed (compare
Fig. 2). Consequently, the plant transfer function GP (s)
(12) does not have any zeroes and only negative real poles.
The mechanical rotational inertia of the pump is neglected.
Its effect is implicitly contained in the parameters TL and
TD in (1).

3.2 Process modeling

Pipe system: We apply the Bernoulli equation for in-
compressible, instationary pipe flow

p1(t)+
ρ · c1(t)

2

2
+ ρ · g · z1 = p2(t) +

ρ · c2(t)
2

2
+ ...

...ρ · g · z2 +∆pf + ρ

∫ L

0

dc

dt
dx (2)

(Gulich (2007)) to the process described in section 3.1.

Since c is independent of x, ρc21/2 = ρc22/2 and
∫ L

0
dc
dtdx =

L dc
dt . Furthermore, we introduce p∗2 = ρg(z2 − z1) + p2.

Thus (2) implies

ρL
dc(t)

dt
=

ρL

A

dq(t)

dt
= p1(t)− p∗2(t)−∆pf . (3)

The friction losses ∆pf depend on the fluid parameters ρ,
ν, c and on the process parameters R, L and kS . We use
the description due to Darcy (1854) and Weisbach (1845,
pp. 136-143)

∆pf =
L · ρ

4 ·R
· λf ·

q2

A2
. (4)

Moody (1944) showed that the friction factor 0 < λf ≪
1 is approximately constant over a wide flow rate and
parameter range. Combining (3) and (4) yields

dq(t)

dt
= −

λf · q(t)2

4 · R ·A
+

A

ρL
(p1(t)− p∗2(t)) . (5)

Obviously, (5) has the form of a nonlinear first order sys-
tem. The gain of this system depends on the pipe and fluid
parameters, which are determined from measurements in
sections 3.3 and 3.4.

Pumping unit: A low speed centrifugal pump with stable
q-pD-characteristic can be described by

pD(t) = C2 · q(t)
2 + C0 ·

(

n(t)

nnom

)2

+ p0(t) (6)

where nnom is the nominal rotational speed and C0, C2 ∈ R

depend on the pump parameters (see, e.g., Leonow and
Mönnigmann (2013)).

An increase in the flow rate q(t) causes an increase
in the measured motor current imeas(t). The response
characteristic depends on the motor current sensor only.
The motor current sensor model is obtained by using (1)
and substituting n(t) with q(t):

TL
d imeas(t)

dt
+ imeas(t) = K (q) q(t− TD). (7)

The parameters TL and TD in (7) are known from (1). We
note that qest(t) responds to changes of imeas(t) immedi-
ately, i.e., without delay and without lag of any order (see
Leonow and Mönnigmann (2013)).

pipe system

motor current

sensor

flow rate

estimation

flow rate /

motor current

relation

static gain static gain

pump

characteristic

static gain

Fig. 2. Process model structure.
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Combining (5), (6) and (7) yields the process model
sketched in Fig. 2. The response of q(t) to a change in
n(t) can be expressed as first order model according to
(5) and (6). The response of qest(t) to a variation in q(t)
is expressed by (7) as described above. After linearization
the relation between n(t) and qest(t) is described by an
aperiodic second order plus deadtime model (SOPDT).

An aperiodic SOPDT model is uniquely determined by
its response to a unit step. The unit step response can
conveniently be stated in terms of the physical parameters
of the pump and process as follows:

q̂(t) =

{

0, t < TD

fq(KP , TD, TL, TQ, t), t ≥ TD
(8)

with

fq = KP

[

1−
1

TL − TQ

(

TLe
−

t−TD
TL − TQe

−
t−TD
TQ

)]

, (9)

where the deadtime TD and the pumping unit time con-
stant TL are known from (1), i.e., the flow rate estimation
described in section 2.1. Sections 3.3 and 3.4 describe how
to identify the process gain KP and the fluid acceleration
time constant TQ from a step response.

3.3 Identification of KP

The gain KP in (9) can be calculated from

KP =
qest,end − qest,start

nend − nstart
(10)

for qest,start, qest,end, nstart and nend from a step response.
An example for such a step response is shown in Fig. 4.
Since the considered process is nonlinear, KP depends
on the operating point. In order to ensure closed loop
stability, the calculation of KP has to be performed for
all typical operating points and the highest KP must be
selected for controller synthesis. We analyze the behavior
of KP for the particular laboratory test setup at the
beginning of section 5.

3.4 Identification of TQ

We determine the remaining unknown parameter TQ in
(9) by solving the least-squares problem

min
TQ

tend
∑

ti=TD

(qest(ti)− q̂ (ti,KP , TL, TQ, TD))
2

(11)

where TL, TD and KP are fixed and the time series q(ti)
is a measured step response. This problem has a unique
minimum, since (9) is strictly decreasing in TQ ∈ R

+ 6= TL.
The discontinuity in (9) at TQ = TL can be removed in the
sense that the limit from below and above are equal (cf.
Fig. 4). The process model (8) is finally expressed by the
transfer function

GP (s) =
KP · e−TDs

(TLs+ 1) (TQs+ 1)
(12)

with KP , TL, TQ ∈ R
+ and TD ∈ R

+
0 .

4. AUTOMATIC CONTROLLER SYNTHESIS FOR
FLOW RATE CONTROL

We consider two control objectives that are popular and
often used in practice: The aperiodic limit control features

the fastest possible setpoint tracking without overshoot
(cf. section 4.2). The second objective is the ±45 deg
control (cf. section 4.3), which results in a reasonable
compromise between speed and robustness, since it leads
to a damping d = 0.707 in closed loop and thus to a low
overshoot and reduced rise time.

4.1 Characteristic equation

Consider the open-loop transfer function of a PID con-
troller and plant of arbitrary degree and with deadtime

Go(s) =
KCKP

D(s)
e−TDs, (13)

where we assume that the slowest plant time constants
have been compensated with the controller time con-
stants. 1 The denominator D(s) is polynomial of arbitrary
degree z ∈ N. It consists of the plant denominator DP (s)
with coefficients ak, multiplied by the integral part of the
controller:

D(s) = TCs ·DP (s) = TCs ·

z−1
∑

k=0

ak · s
k, a ∈ R

+ (14)

All poles so ∈ R
−
0 of Go(s) are located on the negative real

axis in accordance with the assumptions stated in section
3.1. The closed-loop characteristic equation reads

C(s) = D(s) +KC ·KP · e−TD·s (15)

with complex s = sR + sIj, KC ,KP ∈ R
+ and TD ∈ R

+
0 .

We assume the dominant pair of roots of D(s) remains to
be the dominant pair of roots of C(s) for all stabilizingKC .
Due to the complex exponential function e−TDs in (15),
C(s) has an infinite number of roots in the complex plane
for TD > 0. Arguably, this is the reason why the root locus
method is not popular for deadtime systems. While the
construction of the whole root locus plot is tedious in this
case, we show in sections 4.2 and 4.3 that the calculation
of the aperiodic limit and the ±45 deg criterion is simple.

4.2 Aperiodic limit control

The aperiodic limit is defined by the largest value ofKC for
which the dominant pair of roots of C(s) is real. Due to the
factored s in (14) there exists a root s1 = 0 forKC = 0. Let
s2 denote the second rightmost root of C(s) for KC = 0.
The roots s1 and s2 approach each other for increasing
values of KC , collapse, and become a complex conjugate
pair. Let the value at which the two roots collapse be
denoted s∗. We claim s∗ is the maximum of

KC(sR) = −
D(sR)

KP · e−TD·sR
(16)

in the interval [s1, s2], which can be seen as follows.
KC(sR) defined in (16) solves (15) under the assumption
that the solution is real, i.e., s = sR ∈ R. Since the poles s1
and s2 become a complex conjugate pair for larger values
ofKC , the largest value ofKC(sR) defined in (16) that can
be attained under the assumption sR ∈ R

−
0 corresponds to

the double real root s∗.

1 We apply a PI controller to the SOPDT plant (22) in the
application in section 5 but state the more general case here.
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4.3 Control with ±45 deg root location

The 45 deg case can be described with similar geometric
considerations as the aperiodic one. A complex conjugate
pair of roots is located on the ±45 deg locus if and only
if −sR = sI for one of the complex conjugate roots. The
root

s̃ = −σ + σj, σ ∈ R
+
0 (17)

satisfies this criterion. Substituting s̃ into (15) yields

C(s̃) =ℜ(D(s̃)) +KC ·KP · eTD·σ · cos(TD · σ) (18)

+
[

ℑ(D(s̃))−KC ·KP · eTD ·σ · sin(TD · σ)
]

j

Solving C(s̃) = 0 is equivalent to solving both ℜ(C(s̃)) = 0
and ℑ(C(s̃)) = 0.KP can be removed from these equations
by solving both ℜ(C(s̃)) = 0 and ℑ(C(s̃)) = 0 for KP and
setting the resulting expressions equal. After rearranging
and dividing by eTD ·σ this yields

ℜ(D(s̃)) · sin(TD · σ) + ℑ(D(s̃)) · cos(TD · σ) = 0 (19)

The solutions of (19) represent all σ such that s̃ defined in
(17) satisfies the 45 deg criterion. Since σ is equal to the
distance from s̃ to the imaginary axis, we are looking for
the smallest σ∗ ∈ R

+
0 that solves (19). The corresponding

controller gain KC(σ
∗) can be calculated by substituting

σ∗ into either the real or the imaginary part of (18).

Decomposing D(s̃) from (19) into its real and imaginary
part yields

ℜ(D(s̃)) =

⌊z/4⌋
∑

k=1

a(4k)(−4)k · σ(4k) (20)

−

⌈z/2⌉
∑

k=1

a(2k−1)(−1)⌊k/2⌋ · 2(k−1) · σ(2k−1)

and

ℑ(D(s̃)) =

⌊(z+2)/4⌋
∑

k=1

a(4k−2)
(−4)k

2
· σ(4k−2) (21)

+

⌈z/2⌉
∑

k=1

a(2k−1)(−1)⌊(k−1)/2⌋ · 2(k−1) · σ(2k−1),

where ⌈·⌉ and ⌊·⌋ denote the ceiling and floor functions that
round their argument to the next higher or lower integer,
respectively. Both (20) and (21) can easily be generated
automatically. Figure 5 shows an example root locus plot
along with a plot of C∗(s̃) and KC(σ).

5. PERFORMANCE EVALUATION ON A
HYDRAULIC TEST SETUP

The proposed controller synthesis approach is applied to
a hydraulic test setup that features a KSB Etanorm cen-
trifugal pump (G32-125.1) driven by a 0.55 kW induction
motor with frequency converter, which measures the ef-
fective motor current imeas(t). The rotational speed n(t)
can be varied between nmin = 600 min−1 and nmax =
1500 min−1. The pump is connected to a piping system
with a total length of L = 11 m and an average radius of
R = 0.0125 m. A control valve is placed downstream of

the pump to simulate various pipe friction factors and dis-
turbances. The nominal pump operation with a rotational
speed nnom = 1500 min−1 leads to a nominal flow rate
qnom = 4.69 m3/h (against fully opened control valve).
The control algorithms run on a PC with MATLAB that
is connected to the process I/Os via PROFIBUS.

We claim the gain KP can be assumed to be constant in
the test setup. This can be seen as follows. The pressures
p0 and p2 are both approximately equal to atmospheric
pressure in the laboratory setup and the geodetic height
difference z2 − z1 = 0.5 m is small, which in particular
implies p0 ≈ p⋆2. Since the gain KP describes the static
relationship KP = limt→∞ q(t)/n(t) after a step in n(t),
we may set dq/dt = 0 in (3). Using p1 = pD, which holds
according to the assumptions stated in section 3.1, and
substituting (6) for p1 into (3) yields

KP = lim
t→∞

q(t)

n(t)
=

√

4 ·R ·A2 · C0

ρ · L · λf − 4 ·R ·A2 · C2 · n2
nom

.

The r.h.s. is independent of the point of operation. Figure
3 corroborates that a constant gain KP does indeed hold
for a large range of operating points.
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e
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es
t
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3
/h

]

q
est

(n)

tangent

Fig. 3. Static relation between qest and n for a geodetic
height difference z2 − z1 = 0.5 m.

5.1 System identification

Applying the flow rate estimation algorithm results in
TD = 0.75 and TL = 1.8 for the process model (12).
A rotational speed step from nstart = 1000min−1 to
nend = 1100min−1 is performed to determine KP and TQ.
The resulting time series of qest(t) is plotted in the left
diagram in Fig. 4, where the speed step is performed at
t = 200 s. KP can be calculated from the time series of
qest(t) using (10). TQ results from minimizing (11) with
known parameters KP , TL and TD. The right diagram in
Fig. 4 shows the mean squared error, i.e., the cost function
of (11), with its minimum at TQ = 0.55. In summary, the
process model (12) becomes

GP (s) =
0.00449 · e−0.75s

(1.8s+ 1)(0.55s+ 1)
.

5.2 Controller synthesis

We choose a standard PI-controller

GC(s) =
KC · (TC · s+ 1)

TC · s
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Fig. 4. Left diagram: Estimated flow rate qest(t) and
modeled q̂(t); Right diagram: Cost function of (11).
The discontinuity discussed below (11) is marked in
the right diagram.

for performance evaluation. The controller time constant
TC is used to compensate the slowest time constant of the
process, thus TC = TL. The open loop transfer function
then becomes:

Go(s) =
KC · 0.00449 · e−0.75s

0.99s2 + 1.8s
(22)

For the aperiodic limit control the maximum of

KC(sR) = −
0.99 · s2r + 1.8sr
0.00449e−0.75·sR

(23)

has to be determined. This maximum is located between
the poles s1 = 0 and s2 = −1.81, where KC(sR) crosses
zero. The lower left diagram in Fig. 5 shows the plot
of (23), with a unique maximum at s∗R = −0.629 and
controller gain KC(s

∗
R) = 102.9. The root locus plot in

the upper diagram in Fig. 5 shows the branch point of the
two dominant roots located at s∗R for gain KC = 102.9.
Both branches are bend towards the imaginary axis due
to the deadtime.

For the ±45 deg control the first zero crossing of C∗(s̃) (19)
has to be detected. Using (20) and (21), C∗(s̃) becomes:

C∗(σ) = (1.98σ2 − 1.8σ) · cos(TD · σ) + 1.8σ · sin(TD · σ)

The lower right diagram in Fig. 5 shows a plot of C∗(σ)
with a zero crossing at σ∗ = 0.529. The corresponding
KC(σ

∗) is calculated using the imaginary part of (18), thus

KC(σ
∗) =

(1.98(σ∗)2 − 1.8σ∗)

KP · eTD ·σ∗ · sin(TD · σ∗)
= 154.1, (24)

which is plotted along with C∗(σ) in Fig. 5. Note that
Fig. 5 shows KC(σ) · KP instead of KC(σ) for ease of
interpretation, which leads to KC(σ

∗) · KP = 0.692. The
root locus plot in the upper diagram shows the dominant
pair of roots located at ±45 deg for KC = 154.1, thus
s1/s = −0.529± 0.529j.

5.3 Performance evaluation

We compare four PI controller parameter settings. Settings
1 and 2 result from the root locus based, aperiodic and
±45 deg, respectively, root location tuning proposed in this
paper. Settings 3 and 4 are based on the rules due to Chien,
Hrones and Reswick (CHR) for aperiodic setpoint tracking
and Ziegler and Nichols’s (ZN), respectively. The time
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Fig. 6. Performance evaluation of four different PI con-
troller tuning variants.

series in Fig. 6 start with a setpoint at qest(t) = 2m3/h.
At t = 50s the setpoint is increased to qest(t) = 3m3/h. At
t = 80s the control valve in the process is partially closed
to simulate a disturbance. The results show that the root
locus based tuning (settings 1 and 2) provide the desired
smooth and robust control, with lower rise time for setting
2. The CHR tuning yields an even lower rise time with a
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small overshoot visible on the rotational speed. The ZN
tuning leads to aggressive control action, which amplifies
the measurement noise, particularly after the disturbance
at t = 80s. Obviously, the ZN tuning results in the lowest
robustness and a minor increase in the process gain will
lead to an unstable closed loop control. We define two error
measures to assess the control quality quantitatively:

MREE =
1

τ

τ
∑

k=1

|qest(k)− qmeas(k)|

qnom
; MSCE =

1

τ

τ
∑

k=1

ε(k)2,

where τ is the number of measured samples and ε is
the control error. The mean squared control error MSCE
and the measured energy consumption of the pump are
listed in the following table, where we normalize w.r.t.
the respective maximum. As expected from Fig. 6 the ZN

Controller setting MSCE Energy consumption

Aperiodic root locus 79.84% 94.63%

±45 deg root locus 67.74% 94.78%

CHR 100% 95.95%

ZN 59.9% 100%

tuning shows the lowest MSCE together with the highest
energy consumption due to the continued acceleration
and deceleration of the pump. Out of settings 1 to 3
the ±45 deg setting shows the lowest MSCE while all
three settings have similar energy consumptions that are
reduced by approx. 5% w.r.t. the ZN tuning. In order to
evaluate the control quality with respect to the estimation
quality we compare qmeas(t) and qest(t) by using the mean,
relative estimation error MREE. The results are shown in
Fig. 7 for all four controller tunings.
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Fig. 7. MREE for all four controller tunings.

The results in Fig. 7 show a reasonable estimation quality
that corresponds very well to the measured flow rate, both
in steady-state and transient operating conditions.

6. CONCLUSION

We proposed an automatic PID controller tuning approach
for flow rate control in low speed radial pumps. The tuning
approach and controller do not require an external flow
rate sensor. It was the main goal to reduce the imple-
mentation effort for the customer to a minimum, which is

crucial if the acceptance level of automatic control is to be
raised. Although the proposed tuning method requires a
process model, the implementation effort is as small as for
empirical tuning rules, since the process identification and
the controller tuning are fully automated. Unlike empirical
tuning rules, our tuning method guarantees a predefined
closed loop behavior for delayed systems of arbitrary
degree, even for systems with dominant deadtime. The
proposed approach proved very useful on a real pumping
system.

REFERENCES

T. Ahonen, J. Tamminen, J. Ahola, and J. Kestila.
Frequency-converter-based hybrid estimation method
for the centrifugal pump operational state. IEEE Trans-
actions on Industrial Electronics 59, no. 12 (2012): 4803-
4809.

A.T. de Almeida, P. Fonseca, H. Falkner, and P. Bertoldi.
Market transformation of energy-efficient motor tech-
nologies in the EU. Energy Policy 31, no. 6 (2003):
563-575.

C. F. Colebrook. Turbulent flow in pipes, with particular
reference to the transition region between the smooth
and the rough pipes. J. Inst. Civ. Eng. London, volume
11: 133-156.

J. Cvejn. PI/PID Controller Design for FOPDT Plants
Based on the Modulus Optimum Criterion. 12th Inter-
national Carpathian Control Conference (ICCC) (2011):
60-65.

H. Darcy. Experimental research on the flow of water
in pipes (in French). Comptes rendus des seances de
l’Academie des Sciences, volume 38: 1109-1121.

F. J. T. E. Ferreira, J. A. C. Fong, and A. T. de Almeida.
Ecoanalysis of variable speed drives for flow regulation
in pumping systems. IEEE Transactions on Industrial
Electronics 58, no. 6 (2011): 2117-2125.

J. F. Gulich. Centrifugal pumps, Springer, 2007.
N. Hohenbichler. All stabilizing PID controllers for time
delay systems. Automatica 45, no. 11 (2009): 2678-2684.
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