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Abstract:
An investigation on the robustness of a torque vectoring control based on an inverse disturbance
observer architecture for a rear wheel driven vehicle with electric single wheel drives is presented
within this contribution. To ensure robust control parameters, specifications for eigenvalues
(Γ-stability) and bounds on weighted sensitivity and complementary sensitivity functions in
frequency domain (B-stability) are formulated and transfered into parameter space. Simulation
results show the effectiveness of the chosen controller design and parameter setup.

1. INTRODUCTION

Maximization of possible driving range is one of the key
issues of electric vehicles. Therefore, large and heavy
batteries need to be attached to the vehicle. Within
the Project FAIR (Fahrwerk/Antrieb-Integration ins Rad,
transl. chassis/drive integration into the wheel), the BMW
Group Research and Technology together with its partners
Schaeffler and the German Aerospace Center (DLR) made
investigation how to perfectly integrate the batteries and
the drive train into a vehicle to ideally utilize given
installation space and the additional degrees of freedom
given by the electric powertrain without using State-
of-the-Art in-wheel motors. The outcome is a vehicle
prototype based on a MINI Countryman with electric
single rear wheel drives as shown in figure 1. The gearbox
is not only used as housing for the gears, but for chassis
functions as wheel guidance and suspension as well. The
system combines the benefits of in-wheel-drives with its
very little installation space requirements as well as the
advantage of small unsprung masses of conventional drive
trains. The inherent ability of free torque distribution (so-
called torque vectoring) allows manipulation of the vehicle
dynamics within wide ranges. The corresponding torque
vectoring control needs to be robust w.r.t. large variations
in longitudinal speed, payload and road adhesion and
w.r.t unstructured uncertainty (unmodelled dynamics).
This can be assured by the controller settings found in
this contribution. The paper is organized as follows. In
section 2, an overview of the control structure and related
transfer functions is given. Section 3 is an explanation
of the used parameter space approach and the problem
specifications. Concrete formulation of the specifications,
transfer into parameter space and the associated stability
regions in parameter space is illustrated in chapter 4.
Finally, the effectiveness and stability of the used controls
is shown in section 5 via simulation results.

2. CONTROL ARCHITECTURE

The used control structure is called ”Inverse Disturbance
Observer (IDOB)”, an overview of the architecture is given
in figure 3. Within this paper, only a brief overview
of the main aspects will be given. For a more specific
description please refer to Bünte et al. (2014). The distur-
bance observer is a specific method to ensure robustness to
both modelling errors and disturbance rejection (Ohnishi
(1987) Umeno and Hori (1991)), and was successfully
implemented in a variety of control applications such as
high speed direct drive positioning (Kempf and Kobayashi
(1999)), friction compensation (Güvenç and Srinivasan
(1994)) and vehicle steering control (Bünte et al. (2002)).
For realization of an effective torque vectoring control, we
adopted the Inverse Disturbance Observer control struc-
ture after Bajcinca and Bünte (2005) due to its effective-
ness and ease of practical application.

Input signal is the angle of the steered front wheels
δ induced by the driver (and the vehicles’ longitudinal
speed, which is treated as slowly changing parameter). The
desired yaw rate is calculated through Gref , the transfer
function of a single track model (cp. Appendix A). The
reference value is computed by two decoupled parts to be
able to independently adjust steady-state and transient
behaviour. The control structure is shown in figure 2 and

Fig. 1. Vehicle Prototype with electric single wheel drives
attached to the rear wheel axle
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Fig. 2. Torque vectoring control structure [Bünte et al.
(2014)]

explained more in detail in Bünte et al. (2014). Here,
for the ease of understanding and readability, the desired
transfer function is aggregated to Gref (cp. figure 3). Since
it is only neccessary to add an additional yaw moment to
receive desired yaw dynamics as the vehicle itself yaws
due to the steering wheel angle, the unmodified yaw rate
(without torque vectoring) is calculated by the (single
track model based) transfer function Gδf→ψ̇STM

(s) =

GMod,δ and subtracted from the desired yaw rate. The
transfer function G∆Mz→ψ̇STM

(s) = GMod,M describes the
single track model relation between the additional yaw
moment ∆Mz and the vehicle’s yaw rate. As this transfer
function has a relative degree of one and hence can not
be inverted exactly, an additional fast time constant Treal
needs to be added for realization of the inverse transfer
function G−1

Mod,M . Treal should be chosen very small for
best accuracy. Here, as the sampling rate is 100 Hz, Treal
is chosen to be 0.02. GFzg,δ and GFzg,M are the transfer
functions of the real vehicle from steer angle respectively
additional yaw moment to yaw rate. The resulting relation
between steer angle δ and yaw rate ψ̇ can be calculated as

Gδψ̇ =
GFzg,MG

−1
Mod,MGRef

1−Q(1−GFzg,MG−1
Mod,M )

+
(Q− 1)(GFzg,MG

−1
Mod,MGMod,δ −GFzg,δ)

1−Q(1−GFzg,MG−1
Mod,M )

(1)

There are two possibilities to achieve the desired be-
haviour: Either perfect inversion (which is not possible,
as mentioned before), leading to GFzg,MG

−1
Mod,M = 1, or

Q = 1. either way, the result is:

Gδψ̇ = GRef . (2)

Considering external disturbances d like different friction
coefficients or side wind, the effect on the yaw rate can be
calculated by the sensitivity function

Gdψ̇ =
1−Q

1−Q(1−GFzg,MG−1
Mod,M )

. (3)

The desired value for Q is one again to eliminate the
influence of disturbances on the yaw rate.

For sensor noise rejection (noise signal n), the complemen-
tary sensitivity function can be calculated as:

Gnψ̇ =
QGFzg,MG

−1
Mod,M

1−Q(1−GFzg,MG−1
Mod,M )

(4)

Fig. 3. Control architecture

For repressing influences caused by sensor noise, the de-
sired value for Q is zero. Taking all requirements into
account and assuming relevant sensor noise at high fre-
quencies while main disturbances are as well as the driver
input on lower frequencies, all demands can be fulfilled by
choosing Q as a low pass filter. Within this contribution,
Q is realised as a unity gain PT1 filter:

Q(s) =
1

TQs+ 1
. (5)

Whenever approaching the system limits (actuator satu-
ration and/or friction limits), anti-wind-up measures are
made withQ being lowered to avoid improper wheel torque
demands. Furthermore, an additional slip-controller is im-
plemented for each wheel.

3. SPECIFICATIONS

Within this section, the investigated operating points and
the general approach for evaluation of robust control
parameters is presented.

3.1 Operating Points

As previously discussed, for modeling the vehicle yaw
dynamics, single track model equations are employed. The
dynamic behaviour of the single track model, as well as
for the real vehicle, can vary within a wide range as many
parameters can change during driving. The longitudinal
speed can vary from zero up to the vehicles top speed
which is limited to 42 m/s. The cornering stiffnesses cf
and cr can exhibit large variations as well as the friction
coefficient µ between road and tires can be subject to large
variations. To ensure stable behavior during all driving
situations, several operating points are investigated, which
are marked as cross markers in figure 4. The maximum
value for µ is 1.0, which is valid for all speeds. The lower
friction coefficient is chosen according to Bünte et al.
(2002) to be 0.2 (icy road) for low speed up to 0.7 for high
speed (wet asphalt). At this point, one particular operating
point (high speed on low friction coefficient) is chosen
to demonstrate the approach for determination of stable
parameter sets. The same procedure is done subsequently
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for all six operation points. In section 4.5, the located
stablity domains for each operating point are mapped to
generate a global valid proposition.

Fig. 4. Operating points

3.2 Γ-stability

Hurwitz-Stability is assured if all poles of the system G(s)
lie in the complex left half plane C− (Puente León et al.
(2011)), i.e.

poles {G(s)} ⊂ C−. (6)

Γ-stability is the demand on the poles, not only to be in the
left plane, but furthermore to be located within a certain
area Γ which itself is part of C−, i.e.

poles {G(s)} ⊂ Γ ⊂ C−. (7)

In this way, not only stability of the system is provided,
but also performance specifications can be formulated.
All poles of the system need to be and stay within this
region Γ for all frequencies so that the system is declared
to be stable. Usually, three characteristic boundaries for
formulation of the rim ∂Γ are claimed:

• The first specification is the shifted imaginery axis to
the left to guarantee that the system’s settling time
is limited.
• Two lines of constant damping ensure a specified

minimum damping ratio.
• A circle with radius R, centered at the origin, to limit

the systems’ maximum frequency.

Figure 5 shows the exemplary shape of Γ as cut set of the
particular boundaries.

Fig. 5. Exemplary Γ-specifications in eigenvalue domain

3.3 B-Stability

For the B-stability criterion, the frequency response mag-
nitude (FRM) of the system is investigated. As before for
Γ-specifications, a desired area is defined and the system is
determinded to be B-stable if its frequency response mag-
nitude (FRM) stays within those limits. Figure 6 shows
two different specifications: The magnitude boundary can
either be chosen as a closed continuous curve, e.g. the FRM
of a transfer function, or as piecewise defined region. The
B-stability criterion for a linear time invariant system G(s)
is defined as

|G(jω)| ⊂ B, ∀ω ∈ [ω−, ω+] (8)

where B is the region within the border ∂B.

Fig. 6. Closed (left) and picewise (right) defined B-
boundaries

4. SPECIFICATIONS IN PARAMETER SPACE

Within this section, reasonable boundaries to obtain ro-
bust parameters for Γ and B stability are chosen. For pa-
rameter space, the two most influential parameters for the
vehicle are investigated: µr, which is the adjusted friction
coefficent of the single track models in the controller, and
TQ, the time constant of the low pass feedback filter Q.

4.1 Gamma Stability

As mentioned before, the vehicle response is dependend
on the actual driving situation. Γ-specifications have been
adopted to this by the specifications:

• The imaginary axis is shifted by -2 to ensure fast
system response analogous to Bünte et al. (2002).

• The damping ratio is chosen according to the actual
operating point. As the minimum requirement for the
control structure is to at least not worsen the damping
ratio of the uncontrolled vehicle, the damping ratio of
the unmodified single track model for the particular
driving situation is chosen.

• For system limitations with respect to the Nyquist
Theorem, the maximum frequency was limited to
50Hz (which correlates 100 π rad/s). Analyses demon-
strated that this boundary is never violated, hence for
better illustration, the radius of the circle is chosen
to be 60 rad/s.

A visualization of the specification for several operating
points is illustrated in figure 7 (left), the colors correspond
to the respective operating points in Figure 4. The related
robust stability region in parameter space for the chosen
exemplary driving situation (high speed, low friction) is
given on the right side. Stable parameter sets are marked
magenta.
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4.2 Disturbance Stability

Decisive disturbances are assumed to be on low frequen-
cies, hence a first-order high pass filter (9) FRM is chosen
as specification for disturbance rejection (see figure 8 left).

∂BS = KBS
TBSs

TBSs+ 1
(9)

Assessment of the needed parameters KBS and TBS is
made in two steps: Firstly, high frequencies are limited to a
maximum amplification of 10%, which leads to KBS = 1.1.
Secondly, the cut-off frequency needs to be determined.
In order to avoid the excitation of the eigen frequency
of the vehicle, the cut-off frequency of the reference high
pass is chosen to be 1 Hz higher than the damped eigen
frequency of the single track model. The corresponding
robust stability region in parameter space is illustrated in
Figure 8 right.

4.3 Stability against measurement noise

The complementary sensitivity function (4) describes the
impact of measurement noise on the resulting yaw rate. It
is assumed that the yaw rate sensor is considerable exact
for low frequences while disturbances and errors occur
for higher frequences. Nevertheless, measurement errors in
lower frequency ranges should not be amplified too much.
Hence, a second-order lowpass filter is chosen as boundary
∂BT,1:

∂BT,1 = KBT
1

(TBT s+ 1)(TBT s+ 1)
(10)

The time constant TBT = 0.21 is chosen according to the
specifications of the yaw rate sensor (postulated accuracy
until 13 Hz), the amplification for pass band is limited to
1% (KBT = 1.01). Figure 9 shows the chosen boundaries

Fig. 7. Specifications of the Γ-domain (left) and the related
mapping in parameter space (right)

Fig. 8. B-specifications for external disturbances (left) and
corresponding stable parameter space regions (right)

for FRM (left) and the found stable domain in parameter
space (right).

Fig. 9. B-specifications for sensor noise (left) and corre-
sponding stable parameter space regions (right)

4.4 Stability against unstructured uncertainties

Until here, assumptions where made that parameters of
the vehicle where correctly modelled. For the real vehicle,
there will always be deviations between modelled behavior
and real vehicle behavior due to modell imprecisions or
changing parameters. A main advantage of the B-space
approach is that it is possible to determine the effects on
stability of such unstructured uncertainties. It is assumed
that the model is quite accurate for low frequencies and
becomes more and more imprecise the higher the frequency
is. Therefore, 10 % magnitude uncertainty was selected for
low frequencies and 500 % uncertainty for high frequencies,
with a transition frequency of 6 Hz between low gain
and high gain. The corresponding curve of the boundary
condition is shown in figure 10 (left), related stability
regions in parameter space are illustrated (right).

Fig. 10. B-specifications for unstructured uncertainties
(left) and corresponding stable parameter space re-
gions (right)

4.5 Stability regions

The final step for evaluation of stable controller parame-
ters TQ and µr for this exemplary point of operation is to
synthesise the particular stable regions to find the final pa-
rameter set which is stable and fulfills all requirements as
it is done in figure 11 (left). Merging all specifications and
the resulting stable regions in parameter space (Γ-stability:
solid lines; Disturbance stability: dashed lines; Measure
noise stability: dash-dotted lines; Stability against un-
structured uncertainties: dotted lines), the magenta area is
found as solution to fulfill all requirements. The summary
for all points of operation is shown on the right side
(colors corresponding to the operation points as defined
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in figure 4). According to the identified stability regions,
the following assessments can be made:

• It is possible to find a global valid value for the time
constant TQ of the first order feedback lowpass filter
Q which ensures all specifications stay within desired
limits. For further investigation, TQ is chosen to be
0.2 from here on. This result corresponds perfectly to
the results found during real vehicle test driving on
low friction coefficent, cp. Bünte et al. (2014).

• It is not possible to find a global value for µr which
guarantees fulfillment of the requirements.

• The friction coefficent must not be overrated, but
it can be underestimated (by 10%, if TQ = 0.2 is
chosen).

For further investigation, it is assumed that friction esti-
mation, suitable to above mentioned boundaries, is avail-
able from here on.

Fig. 11. Synthesis of all requirements for v=150km/h,
µ=0.7 (left) and all operating points (right)

5. SIMULATION RESULTS

Based on the findings above, the time constant TQ is
chosen to be 0.2, the friction value is supposed to be known
for each operating point. To show the effectiveness and
robustness of the control architecture against variation of
other parameters than µ and v, simulations with different
setups for several driving maneuvers are made. As before,
the operating points shown in figure 4 are investigated.
The simulation environment is a matlab/simulink based
validated full vehicle model with 5 bodies and 16 degrees
of freedom. The tire forces are calculated via Pacejca’s
well-known magic formula (Pacejka (2005)). For this con-
tribution, a straight line maneuver with steady-state side
wind at a certain part of the track as external disturbance
is chosen, exemplarily shown here for the operating point
of high speed on the lower friction coefficient (µ=0.7). To
demonstrate the robustness against model uncertainties,
four different load setups are chosen, while the controller
settings remain unchanged:

w1 : weight distribution as defined for controller design,
with two passengers (68kg each) in the front and 7 kg
luggage per person in the trunk.

w2 : light scenario; only the vehicle and one driver with
68 kg payload, no luggage.

w3 : heavy weight scenario; maximum rear axle load,
front axle load as much as possible to reach the
permitted overall weight limits. This results in 115kg
extra axle load on the front and 330kg on the rear
axle.

Fig. 12. Simulation Results: Yaw rate without (NC) and
with yaw control (YC) for different axle load distri-
butions

Fig. 13. Simulation Results: Wheel torques without (NC)
and with yaw control (YC) for different axle load
distributions

w4 : tail-heavy scenario; rear axle load at maximum,
front axle load at minimum with only the driver, no
other front-seat passenger and no luggage in the front.

The vehicle is driving straight with steady-state longitu-
dinal velocity. At t=1.9s, the vehicle reaches a field with
steady-state side wind. In Rompe and Heißing (1984) it
is suggested that the side wind velocity should not be
more than 60% of the vehicle speed. Hence, 50% (21
m/s) was chosen here. Throttle and steering wheel angle
are kept constant during the entire maneuver. As the
average reaction time of the driver is one second, it is
important that the lateral deviation, as well as the yaw
rate is compensated very fast before the driver is able to
react. The simulation results for the yaw rate is given in
figure 12. All uncontrolled vehicles (NC) show large lateral
deviations and high yaw rates. Considerable distinctions
between the different setups can be found: w2 and w3
manage to lower or at least stabilize the yaw rate (even on
a high and potentially dangerous level), while w1 and w4
drift away. The controlled vehicles (YC) show consistent
stable behaviour: The yaw rate is stabilized, the settling
time is less than one second, hence, within the reaction
time of the driver. Corresponding wheel torques are given
in figure 13. As the side winds’ direction is from right
to left, wheel torque is shifted to the left to compensate
the unwanted yawing. The torque values of w3 and w4
are more or less on the same level, while the tail-heavy
car needs to shift more wheel torque to stabilize the car.
Nevertheless, all wheel torques are within the power range
of the wheel drives and the influence of the disturbance
is eliminated. Simulation results for the other operating
points show analoguous behaviour.
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6. CONCLUSION

Within this contribution, the robust design of a model-
based inverse disturbance observer control structure for
wheel torque allocation of an electric vehicle with sin-
gle wheel drives attached to the rear wheels was intro-
duced. Eigenvalue specifications (Γ-stability) and bounds
on sensitivity and complementary sensitivity functions (B-
stability) in the FRM were formulated for evaluation of
stable controller parameters. It was possible to find a
global valid parameter TQ which fulfills all requirements.
This was not possible for the friction coefficient used in the
controller; nevertheless, the required accuracy of friction
estimation was evaluated. The effectiveness and robustness
of the yaw controller with respect to other parameter
variations for several operating points on the µ-v-plane
was investigated and shown in simulation results for an
exemplary operating point. The findings within this paper
correspond perfectly to the experiences during real vehicle
tests, for steady state as well as for evasive maneuvers (cp.
Bünte et al. (2014)).
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L. (2002). Robust vehicle steering control design based
on the disturbance observer. Annual reviews in control,
26(1), 139–149.
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Appendix A. SINGLE TRACK MODEL

The well-known single track model (Riekert and Schunck
(1940)) is used for modelling the vehicle yaw dynamics.

Its major variables and geometric parameters are:
Ff/Fr : lateral wheel force at front (rear) wheel

r : yaw rate
β : chassis side slip angle at center of gravity (CG)
v : magnitude of velocity vector at CG (v > 0,
v̇ = 0)

lf/lr : distance between front/rear axle and CG
δ : steer angle of the front wheels
m : total weight of the vehicle
J : moment of inertia

Assuming small steer angles δ and small values for the
side slip angle β, the linearized equations of motion are
(Ackermann et al. (1993), Ackermann et al. (2002))

[
mv(β̇ + r)

mlf lr ṙ

]
=

[
Ff + Fr

Fllf − Frlr

]
(A.1)

The tire force characteristics are linearized as

Ff (αf ) = µcfαf , Fr(αr) = µcrαr (A.2)

with the tire cornering stiffnesses cf , cr, the road adhesion
factor µ and the tire side slip angles

αf = δ − (β +
lf
v
r) (A.3)

αr = −(β − lr
v
r) (A.4)

The transfer function from the front steer angle δ to the
yaw rate r can be computed from (A.1)-(A.4):

G(s) =
r(s)

δ(s)
=

b0 + b1s

a0 + a1s+ a2s2
(A.5)

with

b0 : cfcr(lf + lr)v
b1 : cf lfmv

2

a0 : cfcr(lf + lr)
2 + (crlr − cf lf )mv2

a1 : (cf (J + l2fm) + cr(J + l2rm))v

a2 : Jmv2

The nominal values for the linearized single track model
assumed in this contribution are lf = 1.55 m, lr = 1.05
m, m = 1843 kg, J = 2626 kgm2, cf = 98000 N/rad and
cr = 150000 N/rad.
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