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Abstract— We consider a novel method to design a H∞ filter
for a class of nonlinear systems subject to unknown inputs.
First, we rewrite the system dynamics as a descriptor system.
Then, we design a robust H∞ reduced-order filter to estimate
both state variables and unknown inputs at the same time.
Based on a Lyapunov functional, we derive a sufficient condition
for existence of the designed filter which requires solving a
nonlinear matrix inequality. The achieved condition is further
formulated in terms of a linear matrix inequality (LMI) that
is straightforward to solve by popular methods. Finally, the
proposed filter is illustrated with an example.

I. INTRODUCTION

Observer design for nonlinear systems is a popular prob-

lem in control theory that has been studied in many angles.

Moreover, state estimation of nonlinear system in the pres-

ence of unknown inputs is one of the fascinating relevant

topics in the modern control theory. See for instance [1]–[6]

and references therein.

However, to the best of our knowledge, the idea of using

descriptor systems to estimate the state variables together

with unknown inputs is still an open question and it needs

more attention. Briefly, observer design for descriptor sys-

tems has been investigated in different aspects. In this field,

we can refer our readers to [7]–[10] where the authors

consider a variety of nonlinear methods on the descriptor

systems with Lipschitz nonlinearities.

On the other hand, the problem of the state estimation

for descriptor systems in presence of noise has also been

the subject of several studies in the past decades. There are

two popular methods in this field as Kalman filtering and the

H∞ approach. In Kalman filtering, briefly, the system and the

measurement noises are assumed to be Gaussian with known

statistics [11] while for arbitrary type of noise with bounded

energy, H∞ filtering can guarantee a noise attenuation level.

[12]–[14] and references therein are recent researches that

have been done in filtering for descriptor systems.

Inspired by [14], where the authors designed an H∞ filter

for a class of nonlinear singular systems, in this article

we try to rewrite our problem as a descriptor system and

use the features of the descriptor systems to estimate the

state variables of the system together with the unknown

inputs, simultaneously. To achieve this objective, a sufficient
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condition for existence of the designed filter is derived,

which requires solving a nonlinear matrix inequality. In

order to facilitate the filter design, the obtained condition

is formulated in terms of a linear matrix inequality (LMI)

that can be easily solved by well-known algorithms in this

area.

The rest of this paper is organized as follows. In Section 2,

we introduce the class of nonlinear systems with unknown

inputs. In Section 3, we propose a new method to design

a reduced-order filter for the systems under study. To vali-

date the proposed nonlinear filter, an example is shown in

Section 4. Conclusions are presented in Section 5.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following nonlinear system subject to un-

known inputs:

ẋ =Ax+Bu+D f (x)+D1ω +
h

∑
i=1

Fiνi,

y =Cx+D2ω +
h

∑
i=1

Giνi (1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state vector,

known input and output vector, respectively. For i = 1, ...,h
(h ≤ p), νi(t) ∈ R are unknown inputs that can affect both

actuators and sensor. Matrices A, B, C, D, D1, D2, Fi
(for i = 1, ...,h) and Gi (for i = 1, ...,h) are real and with

appropriate dimensions. The function f is nonlinear. ω is

exogenous disturbance which belongs to L2[0,∞). The aim is

to design a nonlinear filter such that it can estimate the state

vector x together with the unknown inputs νi (for i = 1, ...,h)

asymptotically. To specify the class of nonlinear systems

under study, we use the following assumption.

Assumption 1. The function f (x) is nonlinear, and satis-

fies a Lipschitz constraint as follows:

‖ f (α)− f (β )‖ ≤ γ‖α −β‖ (2)

where γ > 0 is the Lipschitz constant and ‖x‖=
√

xT x.

III. MAIN RESULTS

Assume that,

ζ =
[
xT ν1 ν2 ... νh

]T
(3)

then, the augmented system dynamics are,

ηζ̇ =Āζ +Bu+D f̄ (ζ )+ D1ω
y =C̄ζ + D2ω (4)
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where,

η =
[
In×n 0n×h

]
,

Ā =
[
A F1 F2 ... Fh

]
,

C̄ =
[
C G1 G2 ... Gh

]
(5)

and,

f̄ (ζ ) = f (ηζ ); f̄ : Rn+h → Rq (6)

We can make the following assumption which will be used

in the sequel of the paper.

Assumption 2 rank
[

η
C̄

]
= n+h.

This assumption is necessary for the pair (η ,C̄) to be

observable [15].

Now, the aim is to design a filter such that it can estimate

ζ asymptotically.

Consider the following reduced-order filter for the aug-

mented system (4),

ż = Nz+Ly+Gu+MD f̄ (ζ̂ )

ζ̂ = Jz+Ey (7)

where vector z ∈ Rq1 and ζ̂ is the estimation of ζ . The

matrices N, L, G, M, J, and E must be determined such that

the error dynamics e= ζ̂ −ζ converge to zero asymptotically.

By defining the error between z and Mηζ ,

ε = z−Mηζ (8)

the error dynamics will be,

ε̇ =Nε +(NMη +LC̄−MĀ)ζ

+(G−MB)u+MD( f̄ (ζ̂ )− f̄ (ζ ))
+(LD2 −MD1)ω (9)

on the other hand,

ζ̂ = Jz+Ey

= Jε + JMηζ +EC̄ζ +ED2ω
= Jε +(JMη +EC̄)ζ +ED2ω (10)

if there exists a matrix M such that,

G = MB, NMη +LC̄−MĀ = 0, JMη +EC̄ = I (11)

or,

G = MB, (12)[
N L
J E

][
Mη
C̄

]
=

[
MĀ

I

]
(13)

then (9) and (10) become,

ε̇ = Nε +MD( f̄ (ζ̂ )− f̄ (ζ ))+(LD2 −MD1)ω
e = Jε +ED2ω (14)

We will now formulate and solve an H∞ filter design problem

with the following conditions:

(1) The filter error (14) with ω = 0 is stable.

(2) Under zero initial condition, the induced L2 norm of

the operator from ω to e is less than μ , i.e. ‖e‖2 < μ‖ω‖2.

A. Stability Analysis

Since e = Jε for ω = 0, obviously the asymptotic stability

of ε is sufficient condition for limt→∞e(t) = 0. The following

theorem gives the conditions for stability of the dynamics of

e(t).

Theorem 1 Under Assumption 1, for ω = 0 and given a
scalar γ > 0, if there exists real matrices N, J, M, and P > 0

with appropriate dimensions such that the inequalities below
are satisfied,

Γ− I < 0,

[
NT P+PN + γ2JT J PMD

DT MT P −Γ

]
< 0 (15)

then the state estimation error (14) produced by filter (7)
tends to zero asymptotically.

Proof. First, consider a Lyapunov functional as:

V = εT Pε (16)

where P is a positive definite matrix. From (14), Assump-

tion 1, and by taking the derivative of V (t) along the

trajectory of (14) for ω = 0, we have

V̇ =ε̇T Pε + εT Pε̇
=[Nε +MDΔ f̄ ]T Pε + εT P[Nε +MDΔ f̄ ]

=εT (NT P+PN)ε
+Δ f̄ T DT MT Pε + εT PMDΔ f̄

+Δ f̄ T ΓΔ f̄ −Δ f̄ T ΓΔ f̄ (17)

for Γ < I,

V̇ ≤εT (NT P+PN)ε
+Δ f̄ T DT MT Pε + εT PMDΔ f̄

+Δ f̄ T Δ f̄ −Δ f̄ T ΓΔ f̄ (18)

since,

Δ f̄ T Δ f̄ =Δ f̄ (ζ )T Δ f̄ (ζ )
=Δ f (η̄ζ )T Δ f (η̄ζ )
=Δ f (x)T Δ f (x)

≤γ2eT e (19)

so,

V̇ ≤
[

ε
Δ f̄

]T [NT P+PN + γ2JT J PMD
DT MT P −Γ

][
ε

Δ f̄

]
(20)

It should be noted that if (15) is satisfied then the state

estimation error (14) tends to zero asymptotically for any

initial value ε(0). �

B. H∞ Design

The following theorem gives the sufficient conditions for

(14) to be stable for ω = 0 and ‖e‖2 < μ‖ω‖2 for ω �= 0.

Theorem 2 Consider the system (1) together with the non-
linear filter (7). Under Assumption 1, given admissible
Lipschitz constant γ and disturbance tuning parameter μ ,
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there exist matrices N, L, M, J, E, and P > 0 with appro-
priate dimensions such that the following inequalities have
a feasible solution:

Γ− I < 0, Φ =

⎡
⎣a11 a12 a13

aT
12 −Γ 0

aT
13 0 a33

⎤
⎦< 0 (21)

with,

a11 = NT P+PN +(1+ γ2)JT J,

a12 = PMD,

a13 = P(LD2 −MD1)+(1+ γ2)JT ED2,

a33 = (1+ γ2)DT
2 ET ED2 −μ2I (22)

Then the state estimation error (14) produced by filter (7)
tends to zero asymptotically for ω = 0 and ‖e‖2 < μ‖ω‖2

for ω �= 0.

Proof. From Theorem 1, we know that system (14) is

asymptotically stable if (15) is valid. Now let ω �= 0,

V̇ =ε̇T Pε + εT Pε̇
=[Nε +MDΔ f̄ +(LD2 −MD1)ω]T Pε
+ εT P[Nε +MDΔ f̄ +(LD2 −MD1)ω] (23)

by adding and subtracting the right side of (23) by Δ f̄ T ΓΔ f̄ ,

V̇ =εT (NT P+PN)ε
+ εT PMDΔ f̄ +Δ f̄ T DT MT Pε
+ωT (LD2 −MD1)

T Pε
+ εT P(LD2 −MD1)

T ω
+Δ f̄ T ΓΔ f̄ −Δ f̄ T ΓΔ f̄

≤εT (NT P+PN)ε
+Δ f̄ T DT MT Pε + εT PMDΔ f̄

+ωT (LD2 −MD1)
T Pε

+ εT P(LD2 −MD1)ω
+Δ f̄ T Δ f̄ −Δ f̄ T ΓΔ f̄ (24)

from (19),

V̇ ≤εT (NT P+PN)ε
+Δ f̄ T DT MT Pε + εT PMDΔ f̄

+ωT (LD2 −MD1)
T Pε

+ εT (LD2 −MD1)
T Pω

+ γ2eT e−Δ f̄ T ΓΔ f̄ (25)

Since,

eT e =εT JT Jε +ωT DT
2 ET ED2ω + εT JT ED2ω

ωT DT
2 ET Jε (26)

By letting λ =
[
ε Δ f̄ ω

]
, the following inequality is

obtained through (25) and (26)

V̇ + eT e−μ2ωT ω ≤ λ T Φλ (27)

Clearly, if Φ < 0, then

V̇ ≤ μ2ωT ω − eT e (28)

Integrating of both sides of this inequality from zero to

infinity yields

V (∞)−V (0)≤ μ2‖ω(t)‖2
2 −‖e(t)‖2

2 (29)

for zero initial values, we obtain

V (∞)≤ μ2‖ω(t)‖2
2 −‖e(t)‖2

2 (30)

which leads to

‖e(t)‖2
2 < μ2‖ω(t)‖2

2 (31)

and this completes the proof. �
According to [14], (13) has a solution if only if,

rank

⎡
⎢⎢⎣

Mη
C̄

MĀ
I

⎤
⎥⎥⎦= rank

[
Mη
C̄

]
= n (32)

let R be any arbitrary full row rank matrix such that,

rank
[

R
C̄

]
= rank

[
Mη
C̄

]
= n (33)

then there always exist matrices M and K such that,

Mη = R−KC̄ (34)

or, [
M K

][η
C̄

]
= R (35)

Now from Assumption 2, equation (35) always has a solution

given by, [
M K

]
= R

[
η
C̄

]+
(36)

where [.]+ represents any generalized inverse operator satis-

fying [.][.]+[.] = [.]. Thus,

M = R
[

η
C̄

]+ [
I
0

]
and K = R

[
η
C̄

]+ [
0

I

]
(37)

Also, the general solution for (13) is given by,[
N L
J E

]
=

[
MĀ

I

][
Mη
C̄

]+
+

[
Y1

Y2

]
(I −

[
Mη
C̄

][
Mη
C̄

]+
) (38)

where [Y T
1 Y T

2 ]T is an arbitrary matrix of appropriate dimen-

sion that will be identified later on. In order to facilitate the

filter design, we convert the provided nonlinear inequalities

in (21) to an LMI problem. For this end, let’s define,

α1 =

[
Mη
C̄

]+ [
I
0

]
(39a)

α2 =

[
Mη
C̄

]+ [
0

I

]
(39b)

β1 =(I −
[

Mη
C̄

][
Mη
C̄

]+
)

[
I
0

]
(39c)

β2 =(I −
[

Mη
C̄

][
Mη
C̄

]+
)

[
0

I

]
(39d)
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so,

N = MĀα1 +Y1β1 (40a)

L = MĀα2 +Y1β2 (40b)

G = MB (40c)

J = α1 +Y2β1 (40d)

E = α2 +Y2β2 (40e)

Theorem 3 Consider the system (1) together with the non-
linear filter (7). Under Assumption 1 and Assumption 2 and
for a disturbance tuning parameter μ , assume that there
exists real matrices Ȳ1, Y2, and P > 0 with appropriate
dimensions, such that the following LMIs have a feasible
solution:

Γ− I < 0,

⎡
⎢⎢⎣

a11 a12 a13 a14

aT
12 −Γ 0 0

aT
13 0 a33 a34

aT
14 0 aT

34 a44

⎤
⎥⎥⎦< 0 (41)

where,

a11 = αT
1 ĀT MT P+β T

1 Ȳ T
1 +PMĀα1 + Ȳ1β1,

a12 = PMD,

a13 = PMĀα2D2 + Ȳ1β2D2 −PMD1,

a14 = αT
1 +β T

1 Y T
2 ,

a33 =−μ2I

a34 = DT
2 αT

2 +DT
2 β TY T

2

a44 =− 1

1+ γ2
I (42)

and Y1 = P−1Ȳ1. Then the state estimation error (14) pro-
duced by filter (7) tends to zero asymptotically for ω = 0

and ‖e‖2 < μ‖ω‖2 for ω �= 0.

Proof. From Theorem 1, we know that system (14) is

asymptotically stable if (15) is valid. Now let ω �= 0. If we

substitute (40) into (15), we will obtain a new matrix new

submatrices M, Y1, Y2, and P. In other words, the problem

of finding N, L, M, J, E, and P > 0 in Theorem 2 is now

equivalent to the problem of solving (37) for M, (21) for

Y1, Y2, and P. Since there is a multiplication between two

unknown matrices Y1 and P, it is not yet an LMI in the

variable Y1 and P. Define a new variable as,

Ȳ1 = PY1 (43)

Now, using Schur complement, (21) is rewritten as (41).

Thus we can use the proof of Theorem 2 to show that state

estimation error (14) tends to zero asymptotically and ‖e‖2 <
μ‖ω‖2. �

Based on Theorem 3, the reduced-order estimator algo-

rithm for state estimation and unknown inputs reconstruc-

tion in the class of nonlinear systems under study can be

summarized in the following steps,

1) Find a Lipschitz constant γ0 satisfying Assumption 1

2) Fix the order q1 of the filter and choose a full row

rank matrix R such that (33) is satisfied, then compute

matrix M by (37)

3) Compute α1, α2, β1 and β2 by (39)

4) Solve the LMIs defined by (41) for Ȳ1, Y2, and P
5) Compute Y1 = P−1Ȳ1

6) Using Y1 and Y2, compute the filter gains as (40)

IV. NUMERICAL EXAMPLE

In this section, we show that the proposed filter is effective

on a simulation example. Consider system (1) with parame-

ters,

A =

⎡
⎣−2 1 0

0 −3 −1

0 1 −2

⎤
⎦ , B =

⎡
⎣1

0

0

⎤
⎦ ,

D =

⎡
⎣0

1

0

⎤
⎦ , D1 =

⎡
⎣1

1

1

⎤
⎦ ,

F1 =

⎡
⎣1

0

1

⎤
⎦

T

, F2 =

⎡
⎣1

1

0

⎤
⎦

T

,

C =

[
1 0 0

0 1 0

]
, D2 =

[
1

1

]
,

G1 =

[
1

0

]
, G2 =

[
0

1

]
(44)

and a nonlinear function,

f (x) = 0.4sin(x1)+0.45cos(x3) (45)

Since there are two different unknown inputs, by choosing

augmented states as,

ζ =
[
x1 x2 x3 ν1 ν2

]T
(46)

we follow our proposed algorithm to estimate both the real

states and unknown inputs at the same time. According to

Assumption 2, the augmented system is observable. For the

arbitrary matrix R (full row rank) as,

R =

⎡
⎣ 1 3 2 0 −1

−1 2 0 1 −2

−3 2 3 0 4

⎤
⎦ , (47)

from (37), M is computed as follows:

M =

⎡
⎣ 1 4 2

−2 4 0

−3 −2 3

⎤
⎦ (48)

Now, using the Matlab LMI toolbox, for γ0 = 0.45 and μ =
2.5, we can solve the LMI defined in Theorem 3 with respect

to P, Y1 and Y2. One feasible solution is found as,

P =

[
0.114 −0.054 0.07
−0.054 0.194 0.065
0.070 0.065 0.361

]
,

Y1 =

[
2937.4 3 −1036.2 −380.2 −3327.2
1133.8 −347.1 −416.4 −63.9 −1129.7
−960.6 −106.6 411.8 −6.3 510.6

]
,

Y2 =

⎡
⎢⎢⎣

97.9 9 220.4 −159.8 −236.5
9 −40.8 153.5 −17.9 65.8

220.4 153.5 −65.3 −35.1 −127.8
−159.8 −17.9 −35.1 67.5 276.7
−236.5 65.7 −127.8 276.7 0.5

⎤
⎥⎥⎦ ,
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Therefore, according to (40), the H∞ observer dynamics are

as follows:

ż(t) =

⎡
⎣ −4 0.5 0

−1.3 −2.9 −0.47

1.1 0.63 −2.05

⎤
⎦z(t)+

⎡
⎣ 3 5

−2 2

0 −5

⎤
⎦y(t)

+

⎡
⎣ 1

−2

−3

⎤
⎦u(t)+

⎡
⎣ 4

4

−2

⎤
⎦(0.4sin(x̂1(t))+0.45cos(x̂3(t)))

ζ̂ (t) =

⎡
⎢⎢⎢⎢⎣

0.176 −0.235 −0.118

0.088 0.132 −0.059

0.235 −0.147 0.176

−0.176 0.235 0.118

−0.088 −0.132 0.059

⎤
⎥⎥⎥⎥⎦z(t)+

⎡
⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 0

0 1

⎤
⎥⎥⎥⎥⎦y(t)

(49)

In order to simulate the designed filter, the following as-

sumptions are made:

x(0) =
[
3 2 −2

]T
,

z(0) =
[
0 0 0

]T
,

u(t) = 0.1 (50)

Also we assume that the exogenous disturbance ω(t) is a

random signal with amplitude 0.5, frequency 0.01 Hertz, and

bias 0.1 as depicted in Fig. 1.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (sec)

ω
(t
)

Fig. 1. Exogenous Disturbance ω(t)

After simulating the designed filter described as (49),

results are presented in Fig. 2, Fig. 3 and Fig. 4. The Fig. 2

shows the real and estimated state variables for initial condi-

tions given by (50) simultaneously. The estimated unknown

inputs are shown in Fig. 3 and Fig. 4, respectively. Based on

Fig. 2, Fig. 3 and Fig. 4, one can see that the filter performs

as expected.

V. CONCLUSIONS

In this paper, we have presented a new and efficient

approach to design a H∞ filter for a class of nonlinear

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

x
1

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

x
2

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

t (sec)

x
3

Fig. 2. Real (solid) and Estimated (dashed) State Variables

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

6

7

8

t (sec)

ν
1

Fig. 3. Real (solid) and Estimated (dashed) Unknown Input ν1

system with unknown inputs. The designed filter is able to

estimate both states and unknown inputs, simultaneously. In

the proposed method, first we rewrite the system dynamics

as a descriptor system and design an H∞ reduced-order filter

for the new system dynamics. Then, we derive a sufficient

condition for existence of the designed filter which requires

solving a nonlinear matrix inequality. In order to facilitate the

proposed filter design, the obtained condition is formulated in

terms of LMIs that can be solved by well-known algorithms

easily. Finally, the proposed filter is validated by an example

and simulation results are shown.
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