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Abstract: In this paper a Control software Architecture for Cooperative multiple unmanned
aerial VehIcle-manipulator Systems (CAVIS) is presented. The core of the architecture is a set
of software components, communicating each other through a set of defined messages. To handle
multiple control objectives simultaneously, a library of elementary behaviors is defined; then,
multiple elementary behaviors are combined, in a given priority order, into tasks (compound
behaviors); to this aim the Null-Space-based Behavioral (NSB) approach has been adopted.
An application example, involving a cooperative transportation of a bar by two aerial vehicle-
manipulator systems, is developed to assess the performance of the proposed architecture.
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1. INTRODUCTION

In the last decades Multi-Robot Systems (MRSs) have
played an important role in many robotics applications.
Several efforts have been spent on the design and the
development of software/hardware platforms that support
MRS in cooperative tasks. The main objective was to build
Control Software Architecture (CSA) that handle the com-
plexity and the heterogeneity of such systems (Gancet
et al., 2005; Ortiz et al., 2011). Consequently, some re-
search works suggested many features that must be consid-
ered at the design phase, such as: Modularity, Integration
and Reusability (Oreback and Christensen, 2003).

Recently, many middleware/framework aimed to support
software development appeared, such as URBI (Baillie,
2004), Miro (Utz et al., 2002), Marie (C. Cote et al.,
2002) and MRDS 1 . Moreover, some of these frameworks
(which are open source for public contributions, having a
distributed architecture and an easy integration environ-
ment) became more popular such as Player/Stage (Brian
P. Gerkey, 2003) and ROS (Quigley Morgan and Gerkey,
2009). In addition, a modular framework, named ORO-
COS, has been proposed in Bruyninckx (2001). It supports
developing applications in C/C++ programming language
under three OS (Linux, Win32 and Mac); it provides real-
time toolkit and several libraries such as Bayesian filtering,

⋆ This work was supported by the European Community 7th Frame-
work Program under grant o.287617 (IP project ARCAS - Aerial
Robotics Cooperative Assembly system)
⋆⋆Authors are in alphabetical order
1 http://www.microsoft.com/robotics/

kinematics and dynamics. Also, the Mobile-R (Nestinger
and Cheng, 2011), which provides known packages such
as ANNs (Artificial Neural Networks) and GAs (Genetic
Algorithms). One of the most recent platforms is ViRAT
(Virtual Reality for Advanced Tele-operation) that com-
bines users skills and robots’ capabilities in the control
loop; it is proposed in Khelifa and H. (2011). The plat-
form is developed under Linux and it supports hetero-
geneous MRS (rovers, humanoid, etc.) and it provides
an easy environment for scenario creations and many li-
braries (developed under C/C++) for cooperation and
coordination. This huge number of middleware/framework
systems (RoSta 2 ) helped to create a great trend of appli-
cations (Dias et al., 2006; Oreback and Christensen, 2003).

Although the large number of CSA for MRS, only few of
them treat the multi-UAV system such as Ortiz et al.
(2011), Shi and Yang (2008) and Gancet et al. (2005).
However, their works may not covers the wide range of
these systems. Moreover, the adaptation of such existing
CSA is very challenging, due to the specification imposed
by each robotic system (i.e., additional software blocks
are, always, needed). To this end, the consideration of the
robotic system specifications during the design of the CSA
becomes an indispensable issue, especially when consider-
ing systems such as Unmanned Aerial Vehicle Manipulator
Systems (UAVMSs) where particular attentions must be
given to issues such as safety and physical cooperation.

In addition to these challenges, tasks management and
missions planning must be considered in the design phase

2 http://wiki.robot-standards.org/
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of the software architecture. Recently, several research
works adopted concepts such as hierarchical decomposition
of missions planning (Keith et al., 2009). The mission
is decomposed into a set of elementary behaviors (i.e.,
generic functionalities in term of software), thus in the case
of complex scenarios, it is very useful to combine many of
them together, e.g., by resorting to the Null-Space based
Behavioral (NSB) concept (Antonelli et al., 2010).

To handle these challenges we developed a Control soft-
ware Architecture for cooperative multi unmanned aerial
VehIcle manipulator Systems (CAVIS) to support re-
searches dealing with cooperative UAVMSs. Moreover, to
deal with CSA design complexity we take benefit from the
concept of decomposition of system into components, which
is reported as a very critical issue for modern software
architecture design (Nesnas et al., 2003). The CSA schema
is developed through exploitable generic behaviors that are
instantly referred to the current state of each UAVMS.
The task planning concept is intended to support cooper-
ative UAVMS to address complex scenarios based on the
NSB approach (Antonelli et al., 2010). The software is
composed of several components that, together, support
some important features such as: flexibility, modularity
and reusability. An application example, involving a co-
operative bar transportation scenario by two UAVMS, is
developed to assess the proposed CSA performance.

2. CAVIS: A GENERAL DESCRIPTION

In this Section, the proposed Control software Architec-
ture for Cooperative multi unmanned Aerial VehIcle ma-
nipulator Systems (CAVIS) is presented. Due to the com-
plexity of the control of multi-UAVMSs, the CSA needs to
be developed by taking into account several requirements

(1) support multiple UAVMSs and their corresponding
physical constraints, for example actuator limits;

(2) support vehicles’ heterogeneity in both attached ma-
nipulator and sensor equipments;

(3) be compatible with a cooperative case study;
(4) include a library of suitable functionalities.

2.1 Main components

With a bottom-up perspective, the core concepts needs to
decompose the overall control problem are listed below:

• Elementary behavior: at the kinematic level, it is
the atomic functionality to be controlled;

• Task: is a set of arranged elementary behaviors in
priority order (Compound behavior).

• Action: is a conceptual layer, that includes several
tasks.

• Mission: is a set of ordered actions that are assigned
to given UAVMS.

• Scenario: is the higher-level description of the con-
trol problem, it must include at least one mission.

Figure 1 represents the hierarchy among the above defined
concepts.

The proposed architecture can be seen as a chain of circu-
lating information among different software components.
To this end, the architecture working strategy is defined
by a Finite State Machine (FSM), that responds to well

Fig. 1. Hierarchical decomposition of Scenario.

defined requests referred to each UAVMS state. Figure 2
shows the main software components of the proposed ar-
chitecture:

• Perception: it provides relevant measures of the
UAVMS and the environment (not described in this
paper);

• Planner: its role is to generate the mission plan off-
line for a given scenario (not described in this paper);

• Tasks Manager (TM): it manages the whole mission
and contains two main components:
(1) Coordination and Synchronization (CS): its

main role is the time scheduling of the assigned
actions; more precisely, it synchronizes actions
having time dependency or time delay.

(2) Supervisor (SP): it selects the suitable task to
be executed, based on the actual states of the
robotic system.

• Control Interface (CI): its role is to implement
the kinematic control to achieve the assigned task.
Moreover, it assigns motion for each vehicle of the
team in case of coordinated control, through the
Motion Splitter (MS).

Fig. 2. Main software components of CAVIS architecture.

3. DECOMPOSITION OF THE CONTROL PROBLEM

In this section, the core of the control problem (i.e.,
the elementary behaviors, and their compositions named
tasks), and details of the main components architecture
are given.

3.1 Elementary behaviors

An elementary behavior assigned to a UAVMS can be
analytically described by a task variable, σ∈ IRm, that can
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be written as a function of the UAVMS configuration, ζ =[
pV

TφV
TqT

]
T, given by the vehicle position (pV ∈ IR3)

and orientation (expressed via a triple of Euler angles φV ∈
IR3), and the manipulator joint positions (q∈ IRnM ). The
configuration-dependent task function, σ(ζ), represents
the relationship between the task variable and ζ, while

the Jacobian matrix of the task, Jσ ∈ IRm×(6+nM ), can be
defined via the differential relationship as follow:

σ̇ =
∂σ(ζ)

∂ζ
ζ̇ = Jσ(ζ)ζ̇ . (1)

In order to reach a desired value, σd of the task function,
a reference value ζr of the UAVMS configuration vector
must be computed. To this aim, an inverse kinematics
algorithm can be adopted (Siciliano et al., 2009), i.e.,

ζ̇r = J†
σ(σ̇d +Λσ̃), (2)

where J†
σ = JT

σ

(
JσJ

T
σ

)−1

is a right pseudo-inverse of

Jσ, Λ is a gain matrix and σ̃ = σd − σ is the task error.

Elementary behaviors are defined at four different lev-
els: vehicle, manipulator, end-effector and cooperative
UAVMSs. The first three levels are related to each agent,
while the fourth one involves two or more UAVMSs.

A library of elementary behaviors has been implemented in
CAVIS, it is worth remarking that this is not an exhaustive
overview, since new elementary behaviors can be defined
by the user based on the mission needs.

• Vehicle Position (VP). It is aimed at controlling the
position of the vehicle σVP = pV .

• Vehicle Yaw (VY). It is aimed at controlling the yaw
angle of the vehicle (σVY = ψV ).

• Vehicle Obstacle Avoidance (VOA). It allows the
vehicle to avoid obstacles in its workspace. Let pob ∈
IR3 denote the position of the obstacle, the task
function can be defined as σVOA = ‖pV − pob‖

2.
• Mechanical Joint Limit (MJL). Its aim is to maintain
a certain distance between the actual joint positions
and the corresponding limits (Siciliano et al., 2009).

• Robot Manipulability (RM). An appropriate manip-
ulability index (see e.g., Siciliano et al. (2009)) can
be chosen as a task function to avoid singularities.

• Robot Nominal Configuration (RNC). In some cases
it is required to keep the robotic arm close to a specific
configuration (e.g., arm folded on itself during take-off
or landing). Its task function is defined as σRNC = q.

• End-Effector Position (EEP). It is aimed at control-
ling the position of the end-effector, whose expression
in terms of ζ can be obtained by the kinematic model
of the UAVMS (Arleo et al., 2013).

• End-Effector Orientation (EEO). It is aimed at con-
trolling the orientation of the end-effector. Again, the
end-effector orientation in terms of ζ is given by the
kinematic model of the UAVMS (Arleo et al., 2013).

• End-Effector Configuration (EEC). It is obtained by
merging the behaviors EEP and EEO: its goal is to
control the end-effector pose.

• Object Configuration (OC). It is aimed at imposing
a desired motion trajectory of an object grasped by
multiple UAVMSs.

• Object Obstacle Avoidance (OOA). In the presence
of an unexpected obstacle during a cooperative task,

the UAVMSs holding the object should avoid the
obstacle, while keeping the grasp geometry. The task
function is similar to σVOA.

3.2 Tasks

In case of the degrees of freedom (DOFs) required for
a given task execution are lower than the DOFs of the
system, the system is kinematically redundant and the
redundant DOFs can be exploited to fulfill secondary tasks
(e.g., by resorting to a task-priority approach, such as the
NSB control (Antonelli et al., 2010)).

The overall system velocity is obtained by properly merg-
ing the velocity vectors computed for each behavior as
if it is acting alone; the velocity contribution of a lower-
priority behavior is projected onto the null space of the
higher-priority behaviors, so as to remove those velocities
components that would conflict with it. The overall system
velocity is computed according to the following

ζ̇r = ζ̇1 +

Nt∑

k=2

N1,k−1ζ̇k, (3)

where the subscript k denotes the task priority, Nt is the
number of behaviors to be fulfilled and

N1,k =
(
I − J†

1,kJ1,k

)
,

is a projector onto the null space of the augmented
Jacobian, J1,k, defined as

J1,k =
[
J1

TJ2
T . . .Jk

T
]
T. (4)

Many elementary behaviors can be combined together into
one task function: therefore they can be arranged in a
certain priority order to attain a complex behaviors. The
combination of many elementary behaviors is called task
(compound behavior), where, one task can include one or
more elementary behaviors. Furthermore two tasks might
differ only for the priority order used to arrange their
elementary behaviors.

Priority order among elementary behaviors in a task de-
pends on the objective of the task or on other practical
consideration such as safety (e.g., obstacle avoidance be-
haviors might have a higher priority). Behaviors having
low-priority can be achieved only if they compatible with
those having higher-priority. Hence, not all elementary
behaviors can be combined with each others, for example
the RM conflicts RNC, given that both of them assign
specific joint positions to the manipulator.

3.3 Actions

An action groups together several tasks that are logically
related to the action itself, where a given task can belong
to different actions. Moreover, they are used to raise the
problem description level. Actions implemented in this
CSA are detailed bellow:

• moveV: its role is to control the motion of the vehicle;
it contains tasks related to vehicle trajectory tracking
(in case we want to control only the vehicle without
manipulator) and the vehicle obstacle avoidance as
well as tasks for manipulator reconfiguration.
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• moveA: it is dedicated to the control of the manipu-
lator, it contains tasks such as end-effector position
and/or orientation, manipulability optimization and
mechanical joint limit.

• graspO: its role is to deliver the motion to the whole
system to hold a precise end-effector configuration
during the grasping/releasing objects. Basically it
includes the moveA action with an additional flag
(open/close) to the gripper.

• moveO: it controls the motion of the object, in case
of cooperation, the object desired motion is converted
in desired motion of the end-effectors of the involved
UAVMSs, therefore this action can be converted to a
moveA action for each UAVMS.

• moveC: this action is aimed at controlling the motion
of embedded sensors such as camera. In case the
sensor is mounted on the end-effector, this action
becomes equivalent to moveA, while it becomes equiv-
alent to moveV if the sensor is mounted on the vehicle.

In addition, two more actions are implemented to turn
on/off the UAVMS and involve specific system motion such
as initialization, their names are onV and offV.

From the software point of view, actions are implemented
through functions that outputs the desired velocities for
the whole system. While its input is composed by the
Desired physical State (DS) and the Current physical State
(CS) and the task ID.

3.4 Mission

It is a set of actions that are executed one by one and
assigned for a known UAVMS. For example, a mission
that involves one UAVMS to transport an object from
one location to another, could be composed by four or-
dered actions: moveV (get close to the object to be trans-
ported), moveA (reach adequate pre-grasping configura-
tion), graspO (grasping), moveO (object’s transportation).

During the mission execution, actions are sorted by their
achievement order and eventually are linked to each other
by time constraints, e.g., move the vehicle close to the
object (action 1) before grasping (action 2). In case of
cooperation, actions belonging to different missions, also,
can be linked to each other by time constraint. Each action
is defined into a mission by its interval of time in which it
is executed. This interval is defined by [tI , tF ], with respect
to the instant when the mission is begin. Figure 3 shows
two missions assigned for two UAVMSs, where, the action
3 of the second UAVMS has time dependency to the second
action of the first UAVMS.

Fig. 3. Missions of two UAVMSs with different actions.

4. TASK MANAGER

The Task Manager (TM) is in charge of the execution
process of the generated action plan. During the execu-
tion, the original plan can be subjected to some changes
depending on the current status of the whole system. The
main components of the TM are given below:

• Supervisor (SP): According to the mission needs
the SP can switch between running tasks, based on a
set of defined metrics.
(i) the action tolerance, the action is considered
achieved when the value of the error e, is less than
a defined threshold, e is given by the difference
between the desired final value of the task function
and the actual one;

(ii) the safety distance from obstacles, d;
(iii) the distance from mechanical joint limits of the
manipulator: q ∈]q, q[ ;

(iv) the time tolerance ∆t to the action final time tF.
• Coordination and Synchronization (CS): the
role of this component is to perform time scheduling
of the action plan; it is involved when cooperative
UAVMSs require to synchronize their actions. This is
achieved by managing the tI of the actions that have
time dependency to the running ones.

Figure 4 shows a flowchart of the Supervisor, where, a logi-
cal hierarchy among task tolerance, safety and mechanical
joint limits guides the specific task to be activated at the
next sampling time based on a corresponding flag that is
suitably set. The tolerance to the time delay may drive
the overall mission to failure, when, the action time is
attaining the allowed delay ∆t.

Fig. 4. Flowchart of the Supervisor in charge of switching
among tasks. The ≈ symbol is used to simplify the
notation, it embeds the presence of proper thresholds.

5. WORKING PROCESS: A GENERAL OVERVIEW

Communication among different components is guaran-
teed by a set of messages that transfer requests and/or
knowledge from one component to another. This knowl-
edge also includes notifications about tasks achievement.
For instance, the TM provides an actions list to the Con-
trol Interfaces (CIs) located on each UAVMS, where each
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action contains a set of tasks. Each action is described by:
name, task identity (referes to the selected task by the
SP), initial time, final time, DS and CS. The flexibility of
the action planning (i.e, actions are composed by several
tasks) is used by the SP to select the proper task that
each UAVMS must perform, according to the actual status
of the robotic system, the mission and the environment.
Continuity of the control law must be preserved during the
switching phases. Actions running on different UAVMSs
are synchronized, based on the updated information com-
ing from the Perception to make the tasks plan feasible.

Information flow out from the TM are composed by a
set of ordered actions allocated to certain UAVMSs. Each
action includes many information related to its start and
ending time, tasks that it construct, etc.. Beside the
action list, the CI receives the current system’s state,
which is necessary for low-level control and the MS, in
the case of physical cooperation. To this end, the CI
generates commands to actuators of the corresponding
vehicle as well as the attached manipulator. Regarding
CI components, they not only encapsulate the control
functionalities required by the active action, but also are
intended to generate the corresponding UAVMSs state.

6. EXAMPLE OF APPLICATION

The proposed architecture has been tested in simulation
by involving two quadrotors equipped with a 5 DOFs
robotic arm, with 5 revolute joints (figure 2). The sim-
ulation model of the UAVMS has been developed un-
der Matlab/SimMechanics c©. The objective is to perform
a complex cooperative scenario where the UAVMSs ap-
proach an object (bar), grasp and move it along a desired
trajectory. The assigned missions for each UAVMS can be
described via a set of actions, including different tasks to
be selected by the SP (figure 5):

• onV: bring-up the UAVMS.
• moveV: UAVMS take off; it includes the task VP.
• moveV: moves the vehicle toward the object and, at
the same time, set the arm to a particular configura-
tion; it includes the task VP+RNC,

• moveA: moves the arm to reach the best configuration
for grasping and the end-effector in the grasp position;
it includes the task EEC+RM,

• graspO: performs the grasp;
• moveO: moves the object along an assigned de-
sired trajectory; it involves two behaviors: OC and
OOA+OC (where OOA has the higher priority),

• graspO: releases the object,
• moveV: moves the UAVMS toward the base station;
it includes the task VP+RNC,

• moveV: UAVMS landing; it includes VP.
• offV: shutdown the UAVMS.

The desired trajectory is considered as a straight line.
During the transportation phase the system motion is
challenged by an unexpected obstacle: when the distance
between the obstacle and the object is below a certain
safety value, the SP switches from OC to OOA+OC ; then,
switch back to OC when the obstacle is overcame.

Figure 6 shows some snapshots of the mission. In detail,
figure 6(a) represents the initial configuration with the two

Fig. 5. FSM of the supervisor.

UAVMSs on the ground, figure 6(b) shows the UAVMSs
in hovering, after the takeoff phase, figure 6(c) shows the
approach to the object (the zoom on the bottom left corner
shows a detail of the end-effectors and the object), figure
6(d) shows the pre-grasp arm reconfiguration, figure 6(e)
shows the object motion along the planned trajectory and
figure 6(f) shows the object obstacle avoidance.

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Snapshots of the mission of bar transporting.

Figures 7–9 show the task errors for the scenario. For the
sake of brevity we report errors only of one UAVMS, since
similar results have been obtained for the second UAVMS.
Figure 7 shows the task errors during the action moveV:
in detail, figure 7(a) reports the error norm of the vehicle
position (primary behavior), while figure 7(b) shows the
norm of the joint position error with respect to the desired
configuration (secondary behavior). Figure 8 shows the
performance obtained during the action moveA: in figure
8(a) the norm of position and orientation errors of the end-
effector are reported (i.e., the error of the behavior EEC),
while figure 8(b) reports the manipulability index of the
robotic arm, w(q), (Siciliano et al., 2009)

w(q) =

√
det(Ja(q)J

T
a (q)),

where Ja is the Jacobian matrix of the arm, normalized
to its maximum allowed value, wmax. Finally, figure 9
shows the performance obtained during the object motion
(moveO action). In detail the actual path followed by
the object is reported in figure 9(a): it can be noticed
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that, during the obstacle avoidance phase, the object does
not track the planned path, which is engaged again after
overcoming the obstacle; figure 9(b) shows the distance
between the object and the obstacle, it is noted that the
safety distance of 1.5 m is always guaranteed.
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Fig. 7. Task errors during the action moveV.
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Fig. 8. Performance during the action moveA.
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Fig. 9. Object transportation performance.

7. CONCLUSION

In this paper, a new control software architecture is
developed, aimed at driving missions to be performed
by cooperative Unmanned Aerial Vehicles Manipulator
Systems (UAVMSs). The main objective of the software is
to support a large range of possible cooperative scenarios
and missions. The architecture is designed around a set of
software components that handle the current states of the
involved UAVMSs and provide basic functionalities. The
architecture is based on the decomposition of the overall
control problem in simpler atomic control problems. Next
steps will integrate the developed software within ROS
environment in order to port it to users hand.
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