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Abstract: The paper describes the single range observability issues related to a kinematics
model of cooperating underwater vehicles. The paper extends previous results building on
an augmented state technique allowing to reformulate the nonlinear observability problem in
terms of a linear time varying one. As a result, all possible (globally) unobservable motions are
characterized in terms of the systems initial conditions and velocity commands. These results are
functional to the design of observers for the navigation of cooperating marine robots having an
underactuated model as the one considered. The fundamental results reported are also illustrated
by numerical simulations providing evidence of different motions generating the same output,
i.e. lacking observability.
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1. INTRODUCTION

Multi robot systems in air, land and marine applications
have received an increasing amount of attention in last
years. Indeed many applications as sampling Antonelli
et al. (2012) (and references therein), surveillance, map-
ping and exploration can benefit in robustness and cover-
age by exploiting cooperating teams of robots rather than
single vehicle systems. In particular, research effort is tar-
geting the issue of designing distributed and cooperative
control schemes minimizing the need of a centralized team
controller. Distributed motion control architectures for
cooperative robots will require, in general, that the team
members share some knowledge about their relative states:
typically the relative positions (and eventually velocities)
need to be known among neighboring vehicles in order to
accomplish cooperative motion. In several applications, as
underwater ones where sensors are mostly based on acous-
tics, team members can measure their relative distances
only Soares et al. (2012). This poses a remarkable problem
of observability (also known as single beacon navigation
in the literature): given a kinematics model of, say, two
vehicles, will their relative position and orientation (pose)
be observable based on relative euclidean distance mea-
surement only? As the euclidean distance is a nonlinear
function of the relative position vector, the observability
problem is nonlinear even for point mass (linear) kine-
matics model as in Arrichiello et al. (2011). Single beacon
navigation problems have been addressed in the area of
wheeled mobile robotics for relative localization (refer to
Martinelli and Siegwart (2005) and Zhou and Roumeliotis
(2008), for example). With reference to marine robotics
applications, the issue of single beacon navigation (and
observability analysis) has been addressed by several au-
thors including Arrichiello et al. (2011), Batista et al.

(2011), Gadre and Stilwell (2004), Olson et al. (2004)
Fallon et al. (2010) and Webster et al. (2010), Webster
et al. (2013). These studies focus on simple (point-mass
like) kinematic models often in 2D only. The observability
issues arising in single beacon navigation are similar to
the observability properties of tracking systems. Although
tracking systems are more often based on bearing only
measurements, the problem of tracking through range-only
measurements has received some attention also in oceanic
engineering applications Song (1999), Maki et al. (2013).

Based on a recent approach to address the global observ-
ability of a system model made of two underactuated
vehicles, this paper extends previous results Parlangeli
et al. (2012) by including the case where both vehicles have
constant, but non null, linear and angular velocities. From
a methodological point of view, the proposed observability
analysis is inspired by the work of Batista et al. (2010) and
Batista et al. (2011) where a similar single range observ-
ability issue has been addressed for a different (point-mass)
kinematics model.

In section 2 the system model is illustrated and the ob-
servability problem is defined. In section 3 the adopted
observability tools and methods are described whereas
the main results of the analysis are reported in section
4. Simulation results providing numerical evidence of un-
observable trajectories are illustrated in section 5 and
conclusions are finally addressed in section 6. An Appendix
section with a few technical results is also included before
the Bibliography.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 5127



2. SYSTEM MODEL

2.1 Notation

Vectors are denoted with lower case boldface fonts and
matrices with capital roman letters. Reference frames are
labeled as < 1 >, < 2 >, etc. Given a vector p ∈ R3 its
representation in frame <1> will be denoted as 1p having
components of (1p)1, (

1p)2, (
1p)3. The norm of vector p

will be equivalently indicated with ‖p‖ or p. The unit
vector of p 6= 0, namely p/‖p‖, will be indicated with p̌.
The set of all unit vectors in R3 will be denoted by S2. The
special orthogonal group of 3D rotation matrices is SO(3)
and the rotation matrix between frames < 2> and < 1>
will be indicated with 1R2 such that 1p = 1R2

2p. The 3D
skew symmetric matrix associated to vector product will
be indicated with S(a), namely for any a = (a1, a2, a3)> ∈
R3

S(a) :=

(
0 −a3 a2
a3 0 −a1
−a2 a1 0

)
∈ R3×3 (1)

such that S(a)b = a × b. A dot on a variable (either a
scalar a vector or a matrix) indicates its time derivative.
The symbol ⊗ will be used for the Kronecker product Laub
(2005) between two matrices, namely given A ∈ Rm×n and
B ∈ Rp×q the matrix A⊗B ∈ Rmp×nq is defined as:

A⊗B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 (2)

and ⊕ denotes the Kronecker sum Laub (2005) such that
for any two square matrices C ∈ Rn×n and D ∈ Rm×m
the matrix (C ⊕D) ∈ Rmn×mn is defined as

C ⊕D = (Im×m ⊗ C) + (D ⊗ In×n) (3)

where Il×l ∈ Rl×l is the l−dimensional identity matrix
for any nonnegative integer l. The columns of Il×l will
be denoted with e1, e2, . . . , el. We denote with j the
imaginary unit. The set of unobservable vectors is denoted
with Xno.

2.2 Vehicles model

The kinematics model considered is a 3D underactuated
vehicle (as a torpedo shaped submersible, a missile or
airplane) having a linear velocity with an arbitrarily as-
signed norm and direction along a unit vector (usually the
surge direction) that can be rotated with a desired angular
velocity. Mathematically this simple model is captured by
the following equations:

q̇ = u h : ‖h‖ = 1 (4)

ḣ =ω × h (5)

where q is the position (with respect to an earth-fixed
frame) of the origin of a body-fixed frame, h is the unit
vector of its linear velocity having norm |u| and ω is its
angular velocity. Equations (4), (5) define a kinematics
control system with state vector x = (q>,h>)> ∈ R3×S2
and inputs u ∈ R and ω ∈ R3. This nonlinear model
can be viewed as the 3D version of the classical planar
unicycle nonholonomic model in 2D. Notice that while
many torpedo shaped AUVs cannot turn on the spot due

<1>

<2>
<0>

p
p1

p2

h2

h1

Fig. 1. Geometry of the problem.

to the use of control surfaces (only) for the angular velocity
actuation, some AUVs (Caffaz et al. (2010)) are equipped
with side thrusters that allow to actively control pitch
and yaw velocities also at zero surge. Indeed the vehicles
considered in this paper are of the latter kind (Caffaz et al.
(2010)), hence the input angular velocity ω in equation (5)
will be assumed to be independent of the surge speed u.
Moreover, although equation (5) does not pose constraints
on the roll component ω>h the fact that such component
might not be actuated does not limit the generality of
the observability analysis developed in the reminder of the
paper.

With reference to figure 1 consider an earth fixed frame
<0> and two body fixed (moving) frames <1> and <2>
having origin in p1 and p2 respectively. Frames <1> and
< 2 > are assumed to move according to the kinematics
equations:

0ṗi(t) = ui(t)
0hi(t) ,

∥∥0hi(t)∥∥ = 1 (6)

0ḣi(t) = 0ωi/0(t) × 0hi(t) (7)

for i = 1, 2. In accordance to the discussion of the model
in equations (4 - 5), ui and ωi/0 are the linear and
angular velocities respectively of the two systems and hi
are two unit vectors. We assume that u1(t) and u2(t)
cannot be identically zero at the same time. Without loss
of generality, in the following it will be assumed that
ihi is the x−axis unit vector of frame < i >, namely
ihi = ie1 = (1, 0, 0)>. Denoting with

p := p2 − p1 (8)

the relative position of frame < 2 > with respect to
< 1 >, we are interested in analyzing the motion of the
vehicle < 2 > as viewed by the observing vehicle < 1 >:
standard kinematics calculations based on the projection
of equations (6 - 7) on frame <1> lead to the following

1ṗ(t) = u2(t) 1h2(t)− u1(t) 1h1(t)− S(1ω1/0(t))1p(t) (9)

1ḣ1(t) = 0 (10)
1ḣ2(t) = S(1ω2/1(t)) 1h2(t). (11)

For the sake of notation compactness and readability,
in the following the left hand side superscript 1 will be
omitted for vectors expressed in frame < 1 >. Assuming
that the observing vehicle with body fixed frame <1> can
measure its relative distance to the other vehicle (namely
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the norm of p), the above model can be written in state
space form as

ẋ(t) =

[
−S(ω1/0) u2 I3×3

03×3 S(ω2/1)

]
x(t)−

[
h1

03

]
u1 (12)

y(t) =
1

2
x>1 (t) x1(t) (13)

being

x(t) =

[
x1(t)
x2(t)

]
:=

[
p(t)
h2(t)

]
∈ R3 × S2 (14)

the state vector and y(t) the output of the system. Notice
that in general the variables u1, u2, ω1/0 and ω2/1 may
be time time-varying, although, unless otherwise stated, in
the remaining of the paper they will be assumed constant.

Problem statement
With reference to the nonlinear state space model given by
equations (12 - 13) determine all the unobservable states
of the system subject to constant and known inputs u1,
u2, ω1/0 and ω2/1 with u1 6= 0 and u2 6= 0.

Remark
The stated observability problem is not trivial in the light
of the nonlinear nature of the model. The assumption of
constant inputs is reasonable as this covers a wide range
of typical maneuvers while simplifying the analysis. As
for the assumption that the inputs are known, the linear
and angular velocities u1 and ω1/0 can be considered to
be known by vehicle 1 without major problems whereas,
eventually, the terms u2 and ω2/1 might not always be
simply accessible. Nevertheless, there are many scenarios
where such assumption is not problematic. These include:

• Cooperative navigation: in a cooperative navigation
scenario it can be assumed that the vehicles com-
municate to each other, that they have knowledge of
their own attitudes and velocities thanks to on-board
sensors and navigation filters, but they do not have
a reliable (or any at all) self-position estimate (as in
many underwater applications). In this case the two
vehicles can transmit their velocity information. If,
by example, vehicle 2 transmits its u2 and 0ω2/0 to

vehicle 1 (that knows its own u1, 1ω1/0 and 1R0), the

velocity ω2/1 can be computed as ω2/1 = 1R0
0ω2/0−

ω1/0 and all the needed inputs would be known.
• Cooperative mission: in a cooperative mission sce-

nario, it can be assumed that the vehicles belong to a
common mission and that, although, eventually, they
do not transmit information to each other, they know
a priori the velocities of the other vehicles as these are
defined in the known mission plan.
• Straight line motion of <2>: if the vehicle 2 is known

to move only along straight lines (i.e. 0ω2/0 = 0),

the term ω2/1 would results in ω2/1 = 1R0
0ω2/0 −

ω1/0 = −ω1/0 that is known by 1. The term u2
can be either communicated to vehicle 1 (cooperative
case) or measured by 1 with on-board sensors (non-
cooperative case).

Besides the above considerations, it should also be noticed
that the stated observability problem has a theoretical
interest of its own as it allows to determine an important
structural property of the system at hand.

3. GLOBAL OBSERVABILITY ANALYSIS

Following the technique illustrated by Batista et al. (2011)
for a point mass kinematics model, with reference to
equation (12) we define an additional state

x3 = y (15)

having dynamics given by

ẋ3 = x>1 ẋ1. (16)

By replacing ẋ1 as given by equation (12) in equation (16),
the resulting augmented state equation for (x>1 ,x

>
2 , x3)>

will contain combinations of mixed terms

(x1)i (x2)j and (x2)i (x2)j ∀ i, j ∈ {1, 2, 3}. (17)

Define the new state variables:

x` = x>1 (t)
(
eje
>
i

)
x2(t) ` = 3i+ j (18)

xκ = x>2 (t)
(
eje
>
i

)
x2(t) κ = 8 + 3i+ j (19)

i, j = 1, .., 3 (20)

namely the components of (x1⊗x2), (x2⊗x2) and denote
the augmented state as

x(t) =
[
x>1 (t) x>2 (t) x3(t) x4(t) . . . x21(t)

]> ∈ R25.
(21)

Taking the time derivative of x in equation (21) lengthy,
but straightforward calculations lead to the following
result for the dynamics of x:{

ẋ(t) = Ax(t) +B u1(t)
y(t) = C x(t)

(22)

where

A ==


−S1 u2 I3 03×1 03×9 03×9

03×3 S2 03×1 03×9 03×9

−e>1 u1 01×3 0 u2 [e
>
1 e>2 e>3 ] 01×9

09×3 −u1 e1 ⊗ I3×3 09×1 S3 u2 I9×9

09×3 09×3 09×1 09×9 S4


(23)

being S1 = S(ω1/0), S2 = S(ω2/1), S3 = S(ω2/1) ⊕
S>(ω1/0) and S(ω2/1) ⊕ S(ω2/1) while the matrices B ∈
R25 and C ∈ R1×25 are given by

B =

[
− e1

022×1

]
, C = [01×3 01×3 1 01×9 01×9]. (24)

In the above derivation, without loss of generality, it has
been assumed that 1h1 = e1 = (1, 0, 0)>.

Equation (22) defines an algebraically augmented state
systems with respect to the original system in equations
(12) - (13). If the inputs u1, u2, ω2/1 and ω1/0 are constant
the augmented state system in equation (22) is reduced to
a linear time invariant (LTI) system and its observability
set can be identified by standard LTI system tools.

By construction, all trajectories of system (12) - (13) are
also trajectories of (22). The converse is not true, as a
consequence of a much larger state space which allows
a larger set of initial conditions. On the other hand, if
the initial conditions are constrained to belong to the
admissible initial conditions for the system (12) - (13),
it is matter of simple computation to prove that the two
systems have the same evolution.
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Denote with V the set of initial conditions for (22) corre-
sponding to admissible initial conditions for system (12),
namely those vectors x = [ x>1 x>2 x3 x>4 x>5 ]>, x1,x2 ∈ R3

and x4,x5 ∈ R9 such that x>2 x2 = 1, x4 = x1 ⊗ x2,
x5 = x2 ⊗ x2 and finally x3 = x>1 x1.

Remark Notice that the dimension of the state space of
system (22) is R25, though one could wonder to deal with
a state space R3 × S2 × R19. This ambiguity comes from
the fact that x2(t) is a unitary vector. We capture this
feature by imposing the initial condition x2(0) : ‖x2(0)‖ =
1 when we build the set V of the admissible initial
conditions in conjunction with the fact that equations
(22) are an isometry for x2(t). Actually this point is
crucial: the standard linear systems theory observability
methods would not apply to system (22) as defined on
R3 × S2 × R19, but indeed they can be applied to the
same system as defined on R25. The whole point of the
proposed approach is thus to identify the non observable
states of system (22) on R25 using standard linear systems
theory methods and then verify which of these states are
also admissible as solutions of the original system, i.e. such
that x2(0) : ‖x2(0)‖ = 1.

3.1 Determination of the indistinguishable states

From a practical point of view, the construction of the set
of indistinguishable vectors from a given x0 is performed
according to the following steps:

S-1) Compute the initial condition x̄ belonging to the
augmented state space which corresponds to x0.

S-2) Compute the set of all the indistinguishable states for
the augmented system Ix̄ = x̄ + ker(O), where O is
the observability matrix of the linear system defined
over the augmented state space.

S-3) Compute the intersection Ix̄∩V. There is a one-to-one
correspondence between one element of this set and
the distinct states of system (12) - (13) that produce
the same output of the given state x0. (Trivially, x̄ is
observable if Ix̄ ∩ V is singleton).

In the following we apply the above procedure to perform a
thorough observability analysis for a general configuration
of constant inputs with nonzero linear velocity hence
extending the preliminary results in Parlangeli et al.
(2012) where one of the two vehicles had always zero
linear speed. Notice that the described procedure allows
to reformulate the initial nonlinear observability problem
as an equivalent one involving a linear system with initial
conditions constrained to a nonlinear manifold. This latter
problem can be tackled with standard linear systems tools
in the presence of some algebraic constraints.

With reference to step S-1 described above, consider two
indistinguishable states x and x̄ in V: their difference
belongs to the unobservable subspace, namely x, x̄ ∈ V,
µ = x − x̄ ∈ Xno. Notice that given the structure of
V in general µ /∈ V. Considering that x̄ = x + µ, we
embed vector µ into the structure of an admissible initial
condition x̄(0) ∈ V

x̄(0) =


x1(0) + νa
x2(0) + νb
x3(0)

(x1(0) + νa)⊗ (x2(0) + νb)
(x2(0) + νb)⊗ (x2(0) + νb)

 , (25)

with νa,νb ∈ R3. Finally, we impose the remaining
conditions for a vector to belong to V:

1

2
(x1(0) + νa)> (x1(0) + νa) =

1

2
x1(0)> x1(0)

(x2(0) + νb)
> (x2(0) + νb) = 1

(26)

which can be reduced to

ν>a (2 x1(0) + νa) = 0 (27)

ν>b (2 x2(0) + νb) = 0 .

It is worth noticing that an unobservable vector µ giving
rise to a feasible trajectory starting from a x̄(0) might
depend on the initial condition x(0). Indeed the rela-
tion between of the unobservable µ vectors satisfying
the parametrization (25) and the uncertainty parameters
νa,νb is

µ =


νa
νb
0

x1(0)⊗ νb + νa ⊗ x2(0) + νa ⊗ νb
x2(0)⊗ νb + νb ⊗ x2(0) + νb ⊗ νb

 . (28)

Notice that equations (27) depend on the value of the
initial conditions, so it is not surprising (and it will be
evident in the next analysis) that the observability itself
can depend on the initial condition. This is a classical
result for nonlinear systems: some initial conditions may
be uniquely reconstructed while some others cannot. A
goal of our analysis is the mathematical description of all
indistinguishable (feasible) states for a given x0.

Inspired by the Popov - Belevitch - Hautus (PBH) Lemma
Antsaklis and Michel (2007), we impose that µ ∈ Xno

by looking for those directions belonging to ker{C} that
are A-invariant (i.e., eigenvectors of A). Notice that eigen-
vectors with nonzero imaginary component generate two
(real) independent unobservable directions Antsaklis and
Michel (2007). Using the parametrization (25), we look for
nonzero νa,νb such that

Aµ = λµ (29)

being λ an eigenvalue of A in equation (23) and µ defined
in equation (28) that, by its very construction, satisfies
Cµ = 0. In particular after some algebraic manipulation,
equation (29) can be expressed as follows:

−S(ω1/0)νa + u2 νb = λνa

S(ω2/1)νb = λνb

−u1 e>1 νa + u2
(
x>1 (0)νb + ν>a x2(0) + ν>a νb

)
= 0

νa ⊗
(
S(ω2/1) x2(0)

)
+ (30)

+
(
S>(ω1/0) x1(0) + u2 x2(0) + λνa − u1 e1

)
⊗ νb = 0

νb ⊗
(
S(ω2/1) x2(0)

)
+

+
(
S(ω2/1) x2(0) + λνb

)
⊗ νb = 0.
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4. MAIN RESULTS

With reference to step S-2 described in subsection 3.1,
a key tool here adopted for the observability analysis
is the PBH Lemma (Antsaklis and Michel (2007)): this
requires a rank-based analysis on each eigenvalue of the
system (equations (29) - (30) in our case). A first step
toward this goal is the computation of the spectrum of
the dynamical matrix. Here, things are simplified by the
block-diagonal structure of such matrix; following the rules
of the eigenstructure of kronecker product matrices (Laub
(2005)), by direct computation the set of eigenvalues of
(29) - (30) is

{0, ±j ω1/0,±j ω2/1,±j (ω1/0 + ω2/1),

±j (ω1/0 − ω2/1),±j 2ω2/1}. (31)

A first preliminary result is about the observability of all
eigenvalues but λ = 0,±j ω1/0,±j ω2/1.
Proposition 4.1. Given the system (22) - (24) with spec-
trum (31), the motion associated to the nonnull eigenval-
ues ±j (ω1/0 +ω2/1),± j (ω1/0−ω2/1),± j 2ω2/1 is always
observable from the output map (24).

Proof. According to the PBH Lemma, the unobservable
evolutions are directed along the eigenvectors of matrix A
belonging to the kernel of the output map. Consider the
first two blocks of equations in (30):

S(ω1/0)νa + u2 νb = λνa
S(ω2/1)νb = λνb.

(32)

The last equation is satisfied either for νb = 0 or λ ∈
{0,±jω2/1}. But, in turn, if we consider νb = 0 the
first block has a nonzero solution either for νa = 0 or
λ ∈ {0,±jω1/0}. The solution νb = 0 and νa = 0
leads to a zero vector µ, so it must be excluded, and we
conclude that nonzero solutions of (30) can exist only if
λ ∈ {0,±jω2/1,±jω1/0}.

The previous result is important because it allows to
reduce the problem to the observability analysis of the mo-
tion associated to three eigenvectors. Another preliminary
result having the same importance of reducing the initial
problem is related to the following parametrization of all
unobservable configurations corresponding to νb = 0.

4.1 Unobservable configurations with νb = 0

The next two results are on the unobservability conditions
and characterization for the extended-space system; after
that, the same results are adjusted for the original nonlin-
ear system
Proposition 4.2. Consider system (22) - (24) with spec-
trum (31); set νb = 0 in (28) and consider ω2/1 6= 0.

Then, system (22) - (24) is completely observable if and
only if neither{

ω1/0 ⊥
(
±u2 ω̌2/1 − u1 e1

)
x2(0) = ± ω̌2/1

(case a) (33)

nor {
ω1/0 ‖

(
±u2 ω̌2/1 − u1 e1

)
x2(0) = ± ω̌2/1

(case b) (34)

holds. Moreover, in the case of loss of observability, all the
indistinguishable states of (22) - (24) with respect to the
initial conditions

x1(0) arbitrary
x2(0) = ± ω̌2/1 (35)

are given by the following configurations:{
x∗1(0) = x1(0) + αω1/0 : α 6= 0
x∗2(0) = x2(0)

(36){
x∗1(0) = x1(0) + γ : γ>ω1/0 = 0
x∗2(0) = x2(0)

(37)

in other words, the initial conditions

(x1(0)>,x2(0)>)> and (x∗1(0)>,x∗2(0)>)>

generate the same output.

Proof. Set νb = 0. As a direct consequence of this choice,
equations (29) - (30) take the form:

−S(ω1/0)νa = λνa (38)

−u1 e>1 νa + u2ν
>
a x2(0) = 0 (39)

νa ⊗
(
S(ω2/1) x2(0)

)
= 0 (40)

for a nonzero νa. Equation (38) implies λ ∈ {0,±jω1/0}.
As for equation (40), recall that we must consider νa 6= 0
to guarantee (28) µ 6= 0: hence, assuming νa 6= 0, equation
(40) is satisfied either by x2(0) = ± ω̌2/1 if ω2/1 6= 0 or
by an arbitrary unit vector x2(0) if ω2/1 = 0.

Equation (39) can be always satisfied by some values of u1
and u2. In view of the previous results on x2(0), equation
(39) can be rewritten as

ν>a ṽ± = 0 (41)

ṽ± :=
(
±u2 ω̌2/1 − u1 e1

)
. (42)

Defining the set

P± =
{
x ∈ R3 : x>

(
±u2 ω̌2/1 − u1 e1

)
= 0
}

(43)

(one for the + sign and one for the − sign), the condition
in equation (41) can be alternatively formulated stating
that

νa ∈ P±. (44)

Now, νa is an eigenvector of S(ω1/0) with eigenvalue
λ = 0 or λ = ± jω1/0. Consider λ = 0 first; then
νa = αω1/0 with α 6= 0 and equation (41) is satisfied

if ω>1/0
(
u1 ∓ ω̌2/1u2

)
= 0 as in equation (33). Notice

that the unobservable states in equation (35), (36) are
initial conditions of unobservable motions associated to
the eigenvalue λ = 0.

Consider now the loss of observability of eigenvalues λ =
± jω1/0: then, the unobservable subspace is generated by
the real and imaginary parts of its eigenvectors (see
Appendix). On the other hand, the real and imaginary
part of any complex eigenvector of S(ω1/0) span the
plane orthogonal to ω1/0, so relation (41) is indeed always
satisfied if ṽ± is orthogonal to such plane or, equivalently,
if ṽ± is parallel to ω1/0, i.e.

ω1/0 ‖
(
±u2 ω̌2/1 − u1 e1

)
, (45)
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namely
ω1/0 ⊥ P±.

The condition derived above can be seen as an existence
condition for unobservability in terms of motion parame-
ters: if the vehicles’ velocities satisfy (45) then some unob-
servable states are expected to exist, otherwise not. In the
former case, the unobservable states are those orthogonal
to ω1/0, and (37) follows.

Following the same logic of the previous proof it is possible
to find an analogous result related to the case of ω2/1 = 0.
We report the statement hereafter and we give omit the
proof for the sake of brevity.

Proposition 4.3. Consider system (22) - (24) with spec-
trum (31). If νb = 0 in (28) and ω2/1 = 0, then all
the indistinguishable states of (22) - (24) are given by the
following configurations:

x1(0) and x2(0) arbitrary (46)

if ω1/0 ⊥ (±u2 x2(0)− u1 e1) holds then (47){
x∗1(0) = x1(0) + αω1/0 : α 6= 0
x∗2(0) = x2(0)

(48)

or, if ω1/0 ‖ (±u2 x2(0)− u1 e1) holds then (49){
x∗1(0) = x1(0) + γ : γ>ω1/0 = 0
x∗2(0) = x2(0)

(50)

where the initial conditions

(x1(0)>,x2(0)>)> and (x∗1(0)>,x∗2(0)>)>

generate the same output of the model in equations (22) -
(24).

The main difference between the case ω2/1 6= 0 and
ω2/1 = 0 relates to the existence condition of unobservable
configurations. In the latter case, the two unobservability
conditions (equation (45) and first line of (33)) involve
system parameters that can be verified in advance. On
the contrary, in the latter case equations (47) and (49)
depend on the value x2(0) which is not known and so there
is no way to ensure in advance complete observability by
choosing suitable motion parameters.

With reference to the three steps procedure described in
subsection 3.1, we are now ready to implement step S-
3, namely to identify which unobservable states of the
augmented system (22) - (24) are also feasible states for
the original system (12), (13). In particular, consider the
case νb = 0 addressed in Propositions 4.8 and 4.3.
Proposition 4.4. Consider system (12), (13). If νb = 0
in (28) and ω2/1 6= 0, then all the indistinguishable states
of (12), (13) are given the following configurations:

• Initial conditions as in equation (35) and (36) with

α = −
2 x1(0)>ω1/0

‖ω1/0 ‖2
. (51)

• Initial conditions as in equation (35) and (37) with

γ = x1(0)− d(x1(0),P±)ω̌1/0 + (52)

+
√
‖x1(0)‖2 − d(x1(0),P±)2 (v̌1 cos(θ) + v̌2 sin(θ))

where: i) d(x1(0),P±) is the euclidean distance of
x1(0) from P±, ii) v̌1 and v̌2 are two orthonormal

vectors belonging to P± and iii) θ is a generic angle
in [−π, π].

Proof. Consider the first case of Proposition 4.4, namely
the one leading to equation (51). The indistinguishable
states for the original system in equations (12) - (13) will
satisfy equation (33) while also being compatible with the
output map (13). In particular, the indistinguishable states
with respect to a given x1(0) are those

x∗1(0) = x1(0) + αω1/0

such that
x∗1(0)>x∗1(0) = x1(0)>x1(0)

that immediately implies equation (57) for α.

Consider now the set (37) according to which an unob-
servable vector γ = νa must belong to P± as defined in
equation (43). Moreover, among these vectors γ = νa,
those associated to indistinguishable states of system (12),
(13) must satisfy equations (26) and (27) that is

ν>a νa = −2 x1(0)>νa.

Relation (26) for a given x1(0) and νa ∈ R3 can be
seen as a sphere Sx1(0) centered in −x1(0) with radius

‖x1(0)‖. The values νa ∈ R3 that belong to P± and
concurrently verify (26) belong to the intersection set
Sx1(0)

⋂
P±, i.e. to a circumference (that we denote with

Cx1(0) from now on). If the set Cx1(0) contains nonzero real
points, then these points are associated to unobservable
initial conditions. In order to check whether there exist
real points, one may verify if the distance between the
center of the circumference and the center of the sphere is
smaller than the sphere radius or not, i.e.

d(x1(0),P±)2 ≤ ‖x1(0)‖2. (53)

Interestingly, by direct calculation it can be shown that
equation (53) is always true. In particular, the sphere
Sx1(0) and the plane P± both contain the origin: the
condition of full observability will hence correspond to the
situation where the plane P± and the sphere Sx1(0) are
tangent being the origin the tangent point.

As for the condition expressed by equation (58), the points
γ are precisely the points of Cx1(0), i.e. of Sx1(0)

⋂
P±. Such

points can be parametrized identifying the center of Cx1(0),
namely c the closest point of P± from x1(0):

c := x1(0)− d(x1(0),P±)ω̌1/0. (54)

The radius r of Cx1(0) is given by

r =
√
‖x1(0)‖2 − d(x1(0),P±)2 . (55)

From equations (54) and (55) the condition (52) follows
immediately.

Finally, the indistinguishable states of (12), (13) can be
identified in the case νb = 0 and ω2/1 = 0. In partic-
ular, this case is addressed in the following Proposition.
Consider the plane

P̃x2(0) =
{
x ∈ R3 : x> (u2 x2(0) + u1 e1) = 0

}
. (56)

Proposition 4.5. Consider system (12), (13). If νb = 0
in (28) and ω2/1 = 0, then all the indistinguishable states
of (12), (13) are given the following configurations:
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• Initial conditions as in equation (47) and (48) with

α = −
2 x1(0)>ω1/0

‖ω1/0 ‖2
. (57)

• Initial conditions as in equation (49) and (50) with

γ = x1(0)− d(x1(0), P̃x2(0))ω̌1/0 + (58)

+
√
‖x1(0)‖2 − d(x1(0), P̃x2(0))

2 (v̌1 cos(θ) + v̌2 sin(θ))

where: i) d(x1(0), P̃x2(0)) is the euclidean distance of

x1(0) from P̃x2(0), ii) v̌1 and v̌2 are two orthonormal

vectors belonging to P̃x2(0) and iii) θ is a generic angle
in [−π, π].

The proof of Proposition 4.5 is omitted for the sake of
brevity. It can be derived following exactly the same
procedure used to demonstrate Proposition 4.9 the only
difference being to replace the plane P± defined in (43)

with the plane P̃x2(0) defined in equation (56).

We are now ready to derive the set of solutions associated
to νb 6= 0.

4.2 Unobservable configurations with νb 6= 0

As far as the case νb 6= 0 is concerned, some preliminary
remarks are useful to decompose the problem into a set
of easier problems. A first consequence of equation (30)
is that a nonzero solution ν can exist only if λ is an
eigenvalue of S(ω2/1), so that a loss of observability with
a nonzero νb is possible only if λ ∈ {0,±jω2/1}.
First, a technical lemma is reported. We skip the proof for
the sake of brevity, the interested reader may refer to Laub
(2005).
Lemma 4.6. Let α,β ∈ Cn;

α⊗ β + β ⊗α = 0 (59)

if and only if either α or/and β is the zero vector.

Remark If vectors α = αR + jαI and β = βR + jβI have
nonzero real part, relation (59) can be rewritten as

αR ⊗ βR + βR ⊗ αR − αI ⊗ βI − βI ⊗ αI = 0 (60)

αI ⊗ βR + βR ⊗ αI + αR ⊗ βI + βI ⊗ αR = 0. (61)

and the above relations are satisfied if and only if either
αR = αI = 0 or βR = βI = 0.

We now try and seek all possible unobservable configura-
tions associated to νb 6= 0. We start with a preliminary
result giving some necessary conditions for unobservability
involving a relation between x0 and νb when ω2/1 6= 0.
Lemma 4.7. Consider the system (12)-(13). For any

given initial condition x0 ∈ R6, x0 =
[
x>01 x>02

]>
all

unobservable configurations associated to νb 6= 0 and
ω2/1 6= 0 are relative to

νb = −2 x02. (62)

Proof. According to the proof of Proposition 4.1, a neces-
sary condition to hold when νb 6= 0 is S(ω2/1)νb = λνb
being ω2/1 6= 0 by hypothesis. In order to find indistin-
guishable initial conditions, we compare the evolution of
two initial conditions x0 = [ x>01 x>02 y0 (x01⊗x02)> (x02⊗

x02)> ]> and x̄0 = x0 + µ where µ is a vector structured
as in (28). Consider the last block of equations of (30); the
left-hand side can be rearranged as follows:

S(ω2/1)νb ⊗ x02 + νb ⊗ S(ω2/1)x02 + S(ω2/1)x02 ⊗ νb+
+x02 ⊗ S(ω2/1)νb + S(ω2/1)νb ⊗ νb + νb ⊗ S(ω2/1)νb.

allowing to rewrite the last equation in (30) as:

νb⊗
(
S(ω2/1)x02 +

λ

2
νb

)
+

(
S(ω2/1)x02 +

λ

2
νb

)
⊗νb = 0.

(63)
Consider λ = 0. In view of Lemma (4.6), the above
relation holds if and only if S(ω2/1)x02 = 0. Considering
the algebraic constraint (26) and νb = βω2/1, the only
solution is νb = −2x02.

On the other hand, if λ = jω2/1 then we look for two
directions νbR , νbI orthogonal to ω2/1 6= 0 satisfying
S(ω2/1)νbR = ω2/1νbI and S(ω2/1)νbI = −ω2/1νbR .

By direct inspection it is seen that equation (63) takes the
form

ω2/1νbI ⊗
(

x02 +
1

2
νbR

)
+

(
x02 +

1

2
νbR

)
⊗ ω2/1νbI +

+ νbR ⊗
(
S(ω2/1)x02 +

ω2/1

2
νbI

)
+

+
(
S(ω2/1)x02 +

ω2/1

2
νbI

)
⊗ νbR = 0.

In view of equation (61) the above relation is satisfied if
and only if

ω2/1

(
x02 +

1

2
νbR

)
= 0

S(ω2/1)x02 +
ω2/1

2
νbI = 0

(64)

which are simultaneously satisfied choosing νbR = −2x02.

Remark Notice that a direct consequence of the above
result is that the second constraint of (26) is satisfied.

Having determined above that νb is either null or (62)
νb = −2x02, in case νb 6= 0 (and ω2/1 6= 0) we can now
study the solution for νa. For the ease of presentation, we
separate the observability analysis related to λ = 0 from
λ = ±jω2/1.
Proposition 4.8. Consider system (22) - (24), νb 6= 0
in (28) and consider ω2/1 6= 0.

Then, λ = 0 is not observable if and only if
ω>1/0ω2/1 = 0

ω>1/0e1 = 0
x2(0) = κ ω̌2/1 κ ∈ R

(65)

In the case of loss of observability, all the indistinguishable
states of (22) - (24) with respect to the initial conditions

x1(0) =

(
κu2

2ω2
1/0

ω2/1 +
u1
ω2
1/0

e1

)
× ω1/0 + γω1/0,

x2(0) = κ ω̌2/1

(66)

where γ and κ are real parameters, are given by the
following configurations:
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x∗1(0) =

(
− κu2

2ω2
1/0

ω2/1 +
u1
ω2
1/0

e1

)
× ω1/0 + δω1/0,

x∗2(0) = −κω̌2/1

(67)
in other words, the initial conditions

(x1(0)>,x2(0)>)> and (x∗1(0)>,x∗2(0)>)>

generate the same output.

Proof. From Lemma 4.7, we now look for those solutions
of (30) with νb = −2x2(0) in the case of λ = 0. A
consequence of the second line of equations (30) is that

νb = κω2/1, κ ∈ R, so that also x2(0) = −
κω2/1

2
. The

first block of equations in (30) for λ = 0 is

− S(ω1/0)νa = −u2νb (68)

and, in view of the above results and that S(ω1/0)ω1/0 =
0, it is easily seen that a nonzero unobservable configura-
tion with νb 6= 0 might exist only if ω>1/0ω2/1 = 0. In this

case, all the solutions of (68) are

νa =
u2κ

ω2
1/0

ω1/0 × ω2/1 + β ω1/0, β ∈ R (69)

Consider now the fourth block of equations (30); in view
of S(ω2/1)x2(0) = 0 and νb 6= 0, it is reduced to

S>(ω1/0)x1(0) =
κu2
2
ω2/1 + u1e1. (70)

The above equation is fit to compute the initial conditions
x1(0) compatible with some unobservable configurations.
Equation (70) does not always admit solutions and this
means that there exist some configurations that are always
observable. Again, in view of S(ω1/0)ω1/0 = 0, by premul-

tiplying equation (70) with ω>1/0, the existence condition

for equation (70) to hold is

ω>1/0e1 = 0 (71)

and, when (71) holds, any x10 satisfying (70) can be
written as(
κu2
ω 2/1

+
u1
ω2
1/0

e1

)
× ω1/0

x1(0) =

(
κu2

2ω2
1/0

ω2/1 +
u1
ω2
1/0

e1

)
×ω1/0+γω1/0, γ ∈ R

(72)

Finally, last equation of (30) to be satisfied is

− u1 e>1 νa + u2
(
x>1 (0)νb + ν>a x2(0) + ν>a νb

)
= 0

and it is a matter of algebraic manipulations to see that it
is always satisfied.

Proposition 4.9. Consider system (12), (13). If νb 6= 0
in (28) and ω2/1 6= 0, then λ = 0 is not observable if
conditions (65) hold for κ = 1 and all the indistinguishable
states of (12), (13) are given by (66), (67) and (69)

with β and γ satisfying

β(β + 2γ)ω2
1/0 =

4u1u2
ω2
1/0

ω>2/1e1. (73)

Proof. Consider the algebraic constraints (27) and the
parametrizations (66) and (69); the quantity νa + 2x1(0)
is easily computed

νa + 2x1(0) =
2u1
ω2
1/0

e1 × ω1/0 + (β + 2γ)ω1/0

and (27) takes the form

ν>a (νa + 2x10) =
2κu1u2
ω4
1/0

(ω2/1 × ω1/0)>(e1 × ω1/0) +

+ β(β + 2γ)ω2
1/0 (74)

Considering the equality (ω2/1 × ω1/0)>(e1 × ω1/0) =

‖ω1/0‖2ω>2/1e1, the algebraic constraint (27) can finally

be reduced to the following expression

2κu1u2
ω2
1/0

ω>2/1e1 + β(β + 2γ)ω2
1/0 = 0 (75)

We now consider the PBH criterion to find some config-
urations related to unobservable sinusoidal motions, i.e.
we consider the case of λ = ±jω2/1. If ω2/1 6= ±ω1/0

then λ is a simple eigenvalue of A in (23). In this case,
the eigenspace associated is monodimensional and, denot-
ing with µR,µI ∈ R3 such that S(ω2/1)µR = ω2/1µI ,
S(ω2/1)µI = −ω2/1µR, it can be parametrized as

νaR = −u2
(
S2(ω2/1) + ω2

2/1I)
)−1

S(ω1/0)µR

νaI = −u2
(
S2(ω2/1) + ω2

2/1I)
)−1

S(ω1/0)µI

(76)

Notice that in this case the solutions νa, νb of (32) do not
contain any parameter that can be adjusted in order to
fulfill the other equations in (30) together with (26) and
(27).

On the contrary, in the case of ω2/1 = ±ω1/0, a larger set
of solutions might exist if some additional conditions are
satisfied, as it is stated in the following Lemma.
Lemma 4.10. Let S(ωi), ωi ∈ R3, be the matrix defined
in (1) and consider matrix Ω ∈ R6×6 defined as

Ω =

[
−S(ωi) κ I3×3
03×3 S(ωj)

]
. (77)

Ω has complex eigenvalues with geometric multiplicity
equal to 2 if and only if ωi = ±ωj.

Proof. First, since the eigenvalues of S(ωi) are
{0, jωi,−jωi}, then Ω has complex eigenvalues with alge-
braic multiplicity equal to 2 if and only if ωi = ±ωj . Now,
consider two matrices Ti, Tj representing the coefficients
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of two orthogonal bases to describe Ti and Tj in their
real canonical form Antsaklis and Michel (2007). More
specifically, if Ti = [ωi vRi vI i] where vRi and vI i are
the real and complex parts of any eigenvector of S(ωi)

associated to λ = jωi, then TiS(ωi)Ti
−1 =

[
0 0 0
0 0 ωi
0 −ωi 0

]
and it can be easily seen that vRi and vI i are orthogonal
with respect themselves and ωi.

Now, denote with µ an eigenvector of S(ωi) associated
to λ = jωi; it is straight to see that matrix Ω has an
eigenvalue λ = jωi with geometric multiplicity equal to
2 if and only if both Ωva = λva and Ωvb = λvb hold,

where va =

[
µ
0

]
and vb =

[
vµ
µ

]
, vµ a suitable vector.

Moreover, it is easily seen that vectors with the structure
of va are always eigenvector of Ω (even in the case of simple
eigenvalue λ) so that λ has geometric multiplicity equal to
2 if and only if Ω has eigenvectors with the structure of
vb.

Consider the transformation TΩT−1 with T =

[
T1 0
0 T2

]
;

direct computation shows that

[
T1 0
0 T2

] [
−S(ωi) κ I3×3
03×3 S(ωj)

] [
T1 0
0 T2

]−1
=

[
M(ωi) L
03×3 M(ωi)

]

where M(ωi) =

[
0 0 0
0 0 ωi
0 −ωi 0

]
and L = κT1

−1T2.

As a final step, considering this representation, a solution
to Ωvb = λvb exists if and only if

M(ωi)vµ = Lµ

admits solution. In view of the first row of M(ωi) this is
possible if and only if (L)12 = L13 = 0; since L = κT1

−1T2
and T1

−1 = T>, this holds only if the first column of T1 is
orthogonal to the second and third column of T2. This, in
turn, implies that ωi = ±ωj , thus proving the Lemma.

Remark In view of the previous result, it follows that, in
the case of multiple complex eigenvalues, either S(ωj) =
S(ωi) or S(ωj) = −S(ωi) must hold. Moreover, it is a
matter of simple computation to see that the vectors vb
used in the prevous proof can be parametrized as

vb =

[
vµ
µ

]
=

[
µR +

u2
ω
µI

µR

]
+ j

[
µI
µI

]
. (78)

Consider now equation (30); in view of Lemma 4.7 and
after some algebraic manipulations it can be put in the
more convenient form

S>(ω1/0)
(
x1(0) +

νa
2

)
= u1e1 (79)

so that it is easy to see that equation (79) has solution
only if ω>1/0e1 = 0 and it is equal to

x1(0) = u1ω1/0 × e1 + η ω1/0 −
νa
2
. (80)

Finally, last equation to consider can be reorganized as

u1e
>
1 νa = −u2x2(0)>(x1(0) + νa) (81)

which must be satisfied together with (27) to have an
unobservable configuration.
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Fig. 2. Indistinguishable motions and corresponding out-
put signal relative to the case in equation (37). Refer
to the text for details.

5. SIMULATION EXAMPLES

Numerical simulations have been performed to plot and
visualize unobservable motions generated according to the
developed theory. Examples are depicted in figures 2 -
5 where the vehicle’s paths and the system output y(t)
are reported. As apparent from the numerical results, in
agreement with the derived observability conditions, we
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have derived different initial conditions for the two vehicles
generating the same output (i.e. unobservable poses) for
given fixed velocity inputs. In all simulations the linear
angular velocities of the two vehicles are u1 = 0.75[m/s]
and u2 = 0.5[m/s].

The first simulation refers to the case in equation (37),
namely of complex unobservable eigenvalue λ with ω2/1 6=
0. In particular the vehicle velocities were

ω2/1 = (−0.4215,−0.2621, 0.0603)>[rad/s]

ω1/0 = (−0.9746,−0.2181, 0.0502)>[rad/s],

The top of figure 2 refers to paths generating the same
output depicted in the bottom of figure 2. In particular,
the relative distance among the vehicles with trajectory
plotted in red and blue and the ones plotted in red and
black generate the same output (blue plot in the bottom
of figure 2). The second simulation refers to the case
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Fig. 3. Case (33): the vehicles moving along the red
and blue paths (top figure) have a relative distance
(bottom plot) that is identical to the one between the
red and green paths.

in equation (33), namely to the λ = 0 unobservable
eigenvalue. The angular velocities were

ω2/1 = (−0.0210, 0.0625, 0.0183)>[rad/s]

ω1/0 = (0.0664, 0.1342,−0.0098)>[rad/s]

−15

−10

−5

0

−30
−25

−20
−15

−10
−5

0
5

10
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

[m]

Vehicle Paths

[m]

[m
]

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

time [s]

Sq
ua

re
 d

is
ta

nc
e/

2 
 [m

2 ]
Output

Fig. 4. Indistinguishable movements in the case of a
complex unobservable eigenvalue with ω2/1 = 0.
Refer to the text for further details.

The third example reported in figure 4 refers to the case
of complex unobservable eigenvalue described in equation
(58), namely with ω2/1 = 0. In this case the angular
velocity vector ω1/0 was

ω1/0 = (−0.9699,−0.1197, 0.2119)>[rad/s].

Finally the simulation results in figure 5 refer to the case of
null unobservable eigenvalue with ω2/1 = 0. In particular
this case is addressed in equation (57): the angular velocity
ω1/0 in this simulation was

ω1/0 = (−0.0333, 0.1463, 0.0003)>[rad/s].

6. CONCLUSIONS

The problem of range only localization has received in-
creasing attention in the last years given its potential
impact on marine (and aerospace) application. To the
best of the author’s knowledge, most previous studies
have focused on the analysis of weak observability (for
simple kinematic models) rather than on observability as
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Fig. 5. Indistinguishable motions: the red and blue curves
in the top plot refer to vehicles having the same
relative distance as the green and red curves. The blue
and green trajectories are indistinguishable on behalf
of the relative distance measurement from the vehicle
moving on the red path (bottom plot).

usually defined for linear systems. As clearly illustrated by
Jouffroy and Ross (2005), Gadre and Stilwell (2004) and
Hermann and Krener (1977), the very definition of weak
observability does not allow to capture and describe indis-
tinguishable states at a global level. This implies that any
observer designed on the basis of weak observability (only)
will fail to guarantee global convergence. The need for tools
allowing to assess (global) observability appears thus to be
a fundamental pre-requisite to design globally convergent
observers. The proposed method exploits and extends a
state augmentation approach described in Batista et al.
(2011) Batista et al. (2010): in particular, building on the
preliminary results in Parlangeli et al. (2012), a method
to compute globally indistinguishable states for a non-
holonomic kinematic model capturing the main features
of an AUV Caffaz et al. (2010) has been described in the
general case of non-null linear velocity. Future work will
aim at exploiting the provided observability analysis to
design observer filters for pose estimation.
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APPENDIX

An effective tool for the observability analysis of linear
time invariant systems is the PBH Lemma: it consists
in computing the state matrix eigenvectors (i.e. invariant
directions of the dynamical system) belonging to the kernel
of the output map.

Given that complex eigenvalues are associated to complex
eigenvectors, if complex eigenvalues are present in the
spectrum of the dynamical matrix, the connection between
the complex eigenvectors and the real valued system
trajectories needs to be analyzed. A brief summary of the
results about this issue as applied to the case at hand is
here reported. Refer to Antsaklis and Michel (2007) for a
more general discussion about the subject.

Indicating with z̄ the complex conjugate of z, given a
square matrix A ∈ Rn×n, if λ ∈ C is an eigenvalue with
Im(λ) 6= 0 and v ∈ Cn its corresponding eigenvector, then
λ̄ ∈ C is also an eigenvector of A and its corresponding
eigenvector is v̄. Moreover, if we denote with λ = σ + jω
and v = vR + jvI being σ, ω ∈ R and vR,vI ∈ Rn,
it follows that AvR = σ vR − ω vI and AvI = ω vR +
σ vI . The observability condition for the eigenvalue λ
is equivalent to the observability for the eigenvalue λ̄,
namely they are both either observable or unobservable
at the same time. Consequently the directions v and v̄, or
equivalently, vR and vI , define a plane of unobservable
or observable states, respectively, for unobservable or
observable eigenvalues λ.
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