
     

LPV Gain-scheduling Control for a Phase-shifted PWM Full-bridge Soft Switched 

Converter 
 

*Chih-Chieh Chen, **Cheng-Lun Chen, **Jing-Xie Chang, and **Cheng-Fu Yang 


*Wiwynn Corporation, New Taipei City 22102, Taiwan 

**Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan 

( e-mail: *dennisbest7735@gmail.com,**chenc@dragon.nchu.edu.tw) 

 

Abstract: This paper presents an output feedback LPV gain-scheduling control design for a class of 

PSPWM full-bridge power converters. The design starts with an averaged model of the converter with 

adequate complexity. One main contribution of this work is to demonstrate how to reformulate the 

averaged model into an LPV one. A gain-scheduling controller can then be synthesized taking advantage 

of the design framework of LPV-based H-infinity control. Forming the open-loop LPV system and 

synthesizing the controller, a repetitive control module and an anti-windup scheme are incorporated into 

the design. The proposed design is further justified with a numerical simulation. 
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1. INTRODUCTION 

Conventional linear power converters are gradually replaced 

by switching power converters because of the advantages such 

as being compact, lightweight, high-efficiency and larger input 

voltage range. With the rapid development and prevalence of 

personal computers, mobile communication devices, and 

automotive electronics in recent years, necessity of stability 

and efficiency for converters is increased. Among the 

switching power converters, the phase-shifted pulse-width 

modulated (PSPWM) full bridge soft switched power 

converter (Mweene, Wright, & Schlecht, 1989; Redl, Sokal, & 

Balogh, 1991) and corresponding modifications (Brunoro & 

Vieira, 1999; Cho, Sabate, Hua, & Lee, 1996; Hua, Lee, & 

Jovanovic, 1993; Yungtaek Jang & Jovanovic, 2004; Yungtack 

Jang, Jovanovic, & Chang, 2003; Redl, Balogh, & Edwards, 

1994) have become a widely used circuit topology due to 

various beneficial characteristics. The ZVS operation 

significantly reduces switching losses and stresses, and 

eliminates the need of primary snubbers. Hence, the circuit is 

capable of high switching frequency operation with improved 

power density and conversion efficiency. 

The input and output voltages for switching power are often 

subject to fluctuations due to unstable power sources (such as 

batteries or utility lines) and varying load current, respectively. 

Most applications (in additional to laboratory power supplies) 

require constant output voltage or current of wide-ranging 

adjustability. Some even have need for variable output voltage. 

Therefore, feedback control has been incorporated into 

switching power converters to not only stabilize, but also 

improve the performance robustness of the output voltage. 

Most of the closed-loop control designs study simple dc-dc 

(buck, boost, or buck/boost) converters with immediately 

obtained linear or nonlinear mathematical models. Design 

approaches ranging from linear to nonlinear control have been 

introduced in the literatures (Carbonell, Garcerá, & Hilario, 

1999; Mariéthoz et al., 2010; Ng, Leung, & Tam, 1997; 

Oettmeier, Neely, Pekarek, DeCarlo, & Uthaichana, 2009; 

Carlos Olalla, Leyva, El Aroudi, & Garces, 2009; C Olalla, 

Leyva, El Aroudi, Garces, & Queinnec, 2010; Torres-Pinzon 

& Leyva, 2009). Aside from closed-loop stability, taking into 

account voltage/current disturbances, parametric uncertainty of 

components, and nonlinearities due to PWM switching has 

increasingly been deemed as an essential aspect of control 

design. Resorting to nonlinear control technique may directly 

tackle the nonlinearities. The drawback, in general, is the 

absence of a systematic design framework in unifying various 

design objectives, such as stability, rejection of disturbance, 

actuator saturation, and reduction of sensitivity to parametric 

uncertainty. By linearizing the averaged model of the 

converter around an operating point, linear robust control 

paradigm provides the aforementioned design framework, and 

the formulated problem can readily be solved using existing 

numerical tools. However, the design will only guarantee 

stability and performance for a small region around the 

operating point. Recent development in the field of linear 

matrix inequalities (LMI) has inspired a new development of 

linear robust control, which can now address certain category 

of nonlinear systems, i.e., those formulated as linear parameter 

varying (LPV) systems, with the so-called LPV gain 

scheduling control (Gahinet, P., & Apkarian, P. 1994; Becker, 

G., & Packard, A. 1994). Apart from inheriting the aforestated 

benefits of linear robust control design, utilization of LPV gain 

scheduling control can extend the operation range of a system. 

In spite of its advantageous features, feedback control for soft 

switched PSPWM full-bridge converters is still confined to 

simple linear time-invariant design, e.g., proportional-integral 

(PI) or lead-lag compensators based on a linearized model 
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(Cho et al., 2010; Lim, Lim, & Chung, 2007; Liu, Meyer, & 

Liu, 2009; Tseng, K. H., & Chen, C. L., 2011). As pointed out 

by (Schutten & Torrey, 2003; VlatkoviC, Sabate, Ridley, Lee, 

& Cho, 1992), due to the increased number of topological 

stages and the PWM duty cycle being affected by input 

voltage, output voltage, and load current, the dynamics of a 

PSPWM full-bridge converter is much more sophisticated  

than that of a simple buck converter. A trade-off needs to be 

made regarding whether a simple model (e.g., linearized 

model) or a complex one (e.g., switched model) is to be 

established for the purpose of control design. 

In this work, an advanced gain-scheduling control design is 

proposed for a PSPWM full-bridge zero-voltage-switching 

(ZVS) power converter, which can also cope with periodic 

disturbances and actuator saturation. First, an averaged model 

of the converter, with decent complexity and appropriate for 

subsequent control design, is formed. Next, a sequence of steps 

is presented, which details how to reformulate the averaged 

model into an LPV one. Note that the suggested steps do not 

involve approximation or linearization. Finally, an LPV 

gain-scheduling controller can then be synthesized utilizing 

corresponding design framework. Note that, in the process of 

forming the open-loop LPV system and synthesizing the 

feedback controller, the repetitive control module and the 

anti-windup scheme are integrated into the design. The 

feasibility and capability of the proposed design is 

demonstrated by numerical simulation. 

This paper is organized as follows. Section 2 will detail how to 

formulate the averaged model of a PSPWM full-bridge power 

converter into an LPV model. Section 3 describes the 

procedure for synthesizing the output feedback LPV 

gain-scheduling controller. Numerical simulation and 

discussion are given in Section 4. Conclusion is made in 

Section 5. 

2. PROBLEM FORMULATION 

In this section, we demonstrate how to reformulate the 

averaged model of a PSPWM full-bridge ZVS converter (see 

Fig. 1) into an LPV model. 

.  

Fig. 1 Circuit topology of a PSPWM full-bridge converter 

L

RC

 

Fig. 2 The equivalent circuit of the converter 

Consider the (simplified) equivalent circuit of the converter 

shown in Fig. 2. Based on Fig. 2, the averaged model of the 

converter is described by 
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where 
Li  is inductance current, 

iv  is input voltage, 
ov  

is 

output voltage, fbd  is the effective duty cycle, 
2 1N N n  

is the transformer turns ratio, L is inductance, C is capacitance, 

and R is resistance. 

Define  ( ) ( ) ( )
T

L ox t i t v t  and decompose each state 

variable into its steady-state and perturbation components: 

 ˆˆ ˆ, ,i i i fb fb fbx X x v V v d D d       (2) 

where  
T

L oX I V , 
iV , and fbD  are steady-state 

variables with  ˆ T

L ox i v , 
îv , and ˆ

fbd  corresponding 

perturbation terms. Since the steady-state variables should 

satisfy 
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 (3) 

Equation (1) can be rewritten as 
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 (4) 

For a PSPWM full-bridge ZVS converter, because of leakage, 

there exists duty cycle loss D  on the secondary side, such 

that fb pwmD D D  , where pwmD  is the duty cycle of the 

primary voltage. The duty cycle loss (VlatkoviC, Sabate, 

Ridley, Lee, & Cho, 1992) 

 4 (1 ) lk
L lk pwm o i

nL
D nI L fs D V V

L
     (5) 

where 
lkL  is leakage inductance, and fs  is switching 

frequency. Using (5), the effective duty cycle in steady state 

can be expressed by 

 

4 (1 ) lk
L lk pwm o

fb pwm

i

nL
nI L fs D V

LD D
V

 

   (6) 

Denote ˆ ˆ ˆ ˆ ˆ( )
L i ofb b i v vd d d d d    , where ˆ

ovd , ˆ
Li

d , ˆ
ivd  and 

ˆ
bd  are duty cycle changes caused by the output voltage, filter 

inductor current, input voltage and duty cycle of the primary 

voltage. Each variation term of the duty cycle can be derived 

by taking partial derivative with respect to a corresponding 
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variable (
Li , 

0v , or 
iv ): 
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Substituting (6) and (7) into (4), we may use the relationship 

ˆ
i i iv V v   to combine terms related to the input voltage. 

Define ˆ
îw v  as disturbance input and ˆˆ

bu d  as the input 

of the actuator. We arrive at 
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where 24d lkR n L fs . Denote ˆ( )sat u  as the output of the 

actuator. We may define three varying parameters 
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sat u
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An affine parametric varying system of (8) is represented by 
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where ˆ( )x t  denote the state, ˆ( )x t  is the state derivative, 

ˆ ( )w t  is the disturbance, ˆ( )z t  is the output related to system 

performance, ˆ( )y t  is the output, and ˆ( )u t  is the control 

input. Note that  0 1zC  ,  0 1yC  , 1zwD  , 

1ywD  , 0yuD   and 0zuD  . 

3. SYNTHESIS OF AN OUTPUT FEEDBACK LPV 

GAIN-SCHEDULING CONTROL 

This section will present the procedure for synthesis of an 

output feedback LPV gain-scheduling controller. A repetitive 

control kernel and an anti-windup mechanism will be 

embedded into the controller to devote to rejection of periodic 

disturbances and abatement of actuator saturation. 

3.1 Synthesis of Output Feedback Gain-Scheduling 

For the LPV system represented in (9), suppose an LPV 

output feedback dynamic controller is to be designed from ŷ  

to û , i.e., 

 
ˆˆ ( ) ( ) ( )( )

( ) ( ) ( )ˆ( )

k k kk

k k

A B x tx t

C D y tu t

 

 

    
    
     

 (10) 

Equation (10) is a full-order design in the sense that ˆ nx R  

implies ˆ n

kx R . The controller matrices in (10) are function 

of parameter  , which indicates how gain-scheduling is 

achieved. 

Define ˆ ˆ ˆ[ ]T

cl kx x x . The closed-loop system with (9) and 

(10) can be expressed as 
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Denote the LPV closed-loop system as 
clP . In the following, 

we summarize the main theoretic results for synthesizing an 

LPV H
 controller, which takes the form of (10). 

The quadratic LPV  -performance problem: The LPV 

closed-loop system Pcl is exponentially stable and the induced 

L2 norm of the system is less than a scalar 0  , i.e., 
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for all   belonging to a parameter variation set  , if there 

exist symmetric matrices (R, S) such that the following matrix 

inequalities hold for all   (Becker, G., & Packard, A. 

1994; Gahinet, P., & Apkarian, P. 1994; Becker, G., & Packard, 

A. 1994): 
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where 
( )RN 

, 
( )SN 

 are orthonormal bases of the null 

space of 
[ ( ) ]T T

u zuB D
, 

[ ]T T

y ywC D
 respectively, and R, 

S
n nR   are symmetric matrices. For a polytopic LPV system 

satisfying the following two assumptions: (i) There is no 

direct transmission from û  to ŷ , i.e., 0yuD  . (ii) The 

matrices 
uB , yC , 

zuD , and ywD  are constant matrices 

(independent of the varying parameters). It can be shown that 

(12) and (13) hold if and only if they hold for the matrices 

corresponding to the vertices of the parameter polytope. In 

other words, only the LMIs corresponding to the vertices of 

the parameter polytope need to be formed for solving matrices 

R and S. For the formerly formulated LPV system, it can be 

seen that most matrices satisfy both assumptions except that 

( )uB   is a parameter dependent matrix. The parameter 

dependency of the ( )uB   matrix can be removed by filtering 

the input channel, as will be discussed in next section. 

3.2 Repetitive and Anti-windup Control 

The proposed control configuration is depicted in Fig. 3. The 

performance weighting 
1W  is for the measured output error, 

which should supply suitable gain (e.g., >1) in the frequency 

region where non-periodic disturbances locate. It is also 

selected as a stable low-order filter, e.g., 

  1 bW k e s b       

where e, b, 
b  and k are constants. These parameters will be 

specified in next section. The open-loop LPV system ( )G   is 

expressed by (9). 
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2ŷ

u
umin

umax

－

1ŷ
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Fig. 3 Control structure with repetitive and anti-windup 

control 

In this study, we will consider a low-order and attenuated 

repetitive controller, which takes the form of 
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where k is the number of periodic frequencies to be rejected, 

ni  is the thi  disturbance frequency, and 
i  and 

i  are 

two damping ratios that satisfy 0 1i i    . We can adjust 

the gain of RC(s) at those periodic frequencies by varying the 

values of 
i  and 

i . A low-pass filter of roll-off frequency 

r  is also added, which serves as similar role as the q-filter 

used in a digital repetitive controller. Suppose that RC(s) has 

the following state space realization 
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As shown in Fig. 3, the repetitive controller is augmented to 

the ‘to-be-designed’ LPV controller. Furthermore, consider 

the anti-windup scheme (Wu, F., Grigoriadis, K. M., & 

Packard, A., 2000) that feeds the difference between the 

actuator input and output back to the controller, as shown in 

Fig. 3. This corresponds to create a new input for the 

controller, i.e. 
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deactivated. If the control û  saturates (i.e., 1  ), then 

1
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manipulating the control û . 
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control can be shown to have the following state-space 

representation 
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  (15) 

We can further eliminate the parameter dependency of the 

input and output matrices by considering the dynamic 

responses of the sensor and actuator. Basically each input or 

output channel of the open-loop system (15) is passed through 

a low-pass filter 
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respectively, before connecting to the parameter dependent 

controller. The bandwidth of the low-pass filters depends on 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6138



 

 

     

 

the sensor and actuator dynamics. For negligible senor or 

actuator dynamics, the bandwidth can be assigned to be much 

larger than that of the open-loop system to ensure least 

interference. The overall open-loop LPV system with 

parameter-free input-output matrices can be found after some 

matrix manipulations, which is depicted in Fig. 4. 

Open-loop LPV 

Systemŵ
ẑ

H3

H1

û

2ŷ

ŷ

1ŷ

F H2

RC

Open-loop LPV 

System with RC 

and Anti-windup

( )K 

 

Fig. 4 Control structure with repetitive, anti-windup control, 

and isolated filters 

The results summarized in previous section can then be used to 

synthesize an LPV gain-scheduling controller. 

4. SIMULATION RESULTS 

The open-loop LPV model is formulated preiously. The 

nominal system parameters listed in Table 1 are specified in 

accordance with a typical PSPWM full-bridge ZVS power 

converter in our laboratory. The polytopic parameter variation 

set   of four vertices is specified as 

 {( , , ) :150 170,0.1 1, }              

Based on the above simulation setup, with the varying range of 

  specified, the parameters of the weighting filter 
1W  can 

be properly determined to reflect the different performance 

requirement for the unsaturated (  =1) and saturated (  <1) 

system. The low-pass filters H(s) and F(s) are selected as 

 
4

1
( ) ( )

/ (2 5 10 ) 1
H s F s

s p
= =

´ ´ +
 

to reflect negligible sensor and actuator dynamics. The 

low-order attenuated repetitive controller is specified such that 

the periodic disturbances aimed for rejection are tentatively set 

at 10000, 15000 and 18000 Hz. Fig. 5 shows the magnitude 

curves of H(s), F(s), RC(s) and W1(s). A feasible LPV 

gain-scheduling controller is acquired using MATLAB Robust 

Control Toolbox (Balas, G., Chiang, R., Packard, A., & 

Safonov, M. 2005) according to the above parameter settings, 

and reaches γ=1.717958. Structured singular value (µ) is 

employed to evaluate the nominal performance of the control 

system. The sensitivity plots for the four nominal closed -loop 

systems lying at the vertices of the polytope are shown in Fig. 

6. A numerical simulation is also performed under the 

environment of Simulink to justify the design. The input 

voltage perturbation w is a combination of three sinusoids of 

amplitude equal to one and frequencies set to 1 kHz, 1.5 kHz, 

and 1.8 kHz, respectively. Fig. 7 shows that the controller 

successfully stabilizes the output voltage. 

5. CONCLUSION 

Current research on feedback control of dc-dc power 

converters mostly focuses on systems with simple circuit 

topology (buck, boost, or buck/boost). In particular, control for 

soft switched PSPWM full-bridge converters is still limited to 

linearized design with PI or lead-lag compensators. This 

motivates the work presented in this paper. Although the 

parametric uncertainty is not considered in this work, it can be 

readily incorporated into the proposed design framework. This 

along with experimental verification will be pursued in our 

future study. 
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Table 1 Nominal parameters of the converter 

Nominal Parameters Unit 

n=0.5 (transformer turns ratio)  

160iV   volt 

50oV   volt 

10LI   Ampere 

62.5fbD   % 

87.36pwmD   % 

R = 5   

C = 940 F  

L = 300 H  

20lkL   H  

100sf   kHz 

24 2d lk sR n L f     
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Fig. 5 Magnitude plots of H(s), F(s), RC(s), W1_romax and 

W1_romin 
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Fig. 6 Sensitivity plots corresponding of the closed-loop 

systems at the four vertices 
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Fig. 7 The response of the output (perturbed) voltage 
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