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Abstract: In this study, we investigate the maximum possible profit for a commercial office
building participating in New York’s Day-Ahead Demand Response (DADR) program. We
formulate an optimal control problem, assuming perfect knowledge of future weather, occupancy,
and day-ahead electricity price predictions to examine this potential benefit. Then, a practical
control strategy based upon the framework of Model Predictive Control (MPC) is proposed,
which enables a building to participate in the DADR program. The controller decides once every
day, whether or not to participate in the Demand Response (DR) event, and then optimizes
the electric consumption to increase savings. A simulation study is carried out using a building
model extracted from an EnergyPlus model, real measured weather data, and real day-ahead
spot market price data for New York. Savings in the range of 23% to 33% are reported.
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1. INTRODUCTION

The growing addition of renewable energy sources in the
electricity grid increases the variability of generation. This
increased variability and the expected growth of the elec-
tricity consumption, require higher levels of regulating
power in order to meet the peak load demands and to
balance production and consumption on the electric grid.
Traditionally, the required operating reserves needed to re-
act to contigencies on the network were provided by energy
producers. The independent system operators (ISOs) are
looking more and more to the demand side to perform this
regulation. A variety of demand response (DR) programs
have been created and can be classified in price-based pro-
grams where a variable tariff is the driver, and incentive-
based programs where temporary financial incentives are
given for participation [Albadi and El-Saadany, 2008]. The
main purpose of these programs is to incentivize participa-
tion of demand-side resources in the regulation of the grid.
Early programs include direct control of flexible loads such
as electric boilers, e.g., the one proposed by the company
Voltalis [Hull, 2010]. More recently, control of more sophis-
ticated loads have been proposed to provide DR services.
[Oldewurtel et al., 2013] highlights that buildings are fit for
providing services on slow timescales in the range of hours.
We consider in this work the participation of commercial
buildings in DR programs.
Model Predictive Control (MPC) is a popular advanced
control technique in which control decisions are taken
via an optimization problem over future trajectories in
receding horizon. Numerous authors have considered MPC
for control of building Heating, Ventilation, and Air Condi-
tioning (HVAC) systems. It is particularly appreciated for
its natural ability to deal with contraints and incorporate
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future prediction of weather [Oldewurtel et al., 2012]. [Ma
et al., 2012] reports significant savings in the operation of
the cooling system of the Merced University campus and
overall coefficient of Performance (COP) increase of 19%
by using MPC controllers. Savings reported are sometimes
not deemed sufficient to offset the costs involved in the
implementation of these complex controllers. Offering ser-
vices to the electric grid is a way of leveraging additional
revenues that further justify their use. Participation of real
commercial buildings in DR programs has been reported
in [Page et al., 2011]. It mainly involves using simple
strategies to dim lights and change temperature setpoints.
Modest peak demand reductions are reported and the need
for tailored DR strategies is underlined.
The contribution of this paper is two-fold: firstly, the max-
imum benefit for a commercial office building participating
in the day-ahead demand response (DADR) market of the
New-York ISO (NYISO) [NYISO, 2003] is evaluated. This
market-driven program allows consumers to bid demand
reductions on the energy market. Secondly, a practical
control architecture based on MPC is proposed for partic-
ipation. The control architecture comprises two decision
layers: one, executed every day, decides on the participa-
tion of the building in the DR market. A second layer
operates the building in real-time, taking into account the
decisions of the upper layer. This control scheme helps
evaluate the saving potential under realistic settings.
The rest of the paper is structured as follows. Section 2
summarizes the main characteristics of the NYISO DR
program. The building model used in this study is de-
scribed in Section 3. The control setup is presented in
Section 4. Section 5 gives an overview of the results of
the simulation study. Conclusions are drawn in Section 6.
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Min. duration of participation 1h

Max. duration of participation 8h

Payment Day-ahead Clearing price

Minimum bid 1 MW

Bid increment 1 MW

Bid price floor 75 $/kWh

Table 1. Characteristics of DADR Program

2. NEW YORK’S DAY-AHEAD DR PROGRAM

A variety of DR programs have recently appeared in en-
ergy markets. The New York ISO is one of the pioneering
system operators proposing DR programs, with four pro-
grams for medium and large consumers. In this work, we
focus on their Day-Ahead DR program (DADR). It allows
customers to bid consumption reductions on the day-ahead
market similarly to energy producers. The main reason to
focus on this program is that it allows the bidders to choose
the participation times freely. Therefore it is one of the
most flexible program from the consumer’s point of view.
Characteristics of the DADR program are summarized in
Table 1 and all regulations can be found in [NYISO, 2003].
Features of this program are outlined below:

• Consumers post bids on the day-ahead market com-
prising a reduction level and a price above which the
reduction can be performed.
• If the bid is accepted, the consumer has to reduce its

consumption by the bid amount during the participa-
tion time.
• The reduction is computed with respect to a baseline

consumption, which is known when the bid is posted.
This baseline basically depends on consumption dur-
ing days preceding the DR participation. Hence, the
lower the consumption during the past days, the more
difficult it is to reduce consumption. Additionally, a
correcting factor can be taken into account to adjust
for weather on the day of the event. Namely, the
baseline is adjusted up or down by comparing the con-
sumption during the hours preceding the DR event
with the same hours during previous days. Details
are given in Section 4.
• The payment for the reduction is the locational day-

ahead clearing price (and not the bid price). In case
of failure to decrease consumption, a penalty has to
be paid.

A challenging feature of the DADR market is that even
when the building does not participate on the DADR
market, the current consumption still impacts the poten-
tial benefits of future participation through the baseline.
This occurs on a timescale that exceeds usual prediction
capabilities for the weather or price. Hence the objective
of this work is to first evaluate the maximum potential
benefits of DADR participation and secondly to propose a
more practical participation strategy using receding hori-
zon control on a short horizon, but which still tries to
capture the longer term effects.

3. BUILDING MODEL

This section presents the building model used in this study.
EnergyPlus[Crawley et al., 2001] is a widely used detailed
building energy simulation tool used for the thermody-
namic modeling of buildings and HVAC systems. It is

considered to give a good approximation of the thermal
behavior of buildings, but is not suitable for control. We
use the toolbox OpenBuild [Gorecki et al., 2014] to extract
a linear state space model from an EnergyPlus building
model. The toolbox uses a physical modeling approach to
model the thermodynamics of the building. The effect of
the HVAC system is modeled directly as independent heat
fluxes input to the zones. This is justified by the fact that
the building is equipped with independent terminal cooling
units. The central heating is not explicitly modeled and we
consider it has a fixed COP. For more details, we refer the
reader to [Gorecki et al., 2014].
The model obtained with OpenBuild is reduced using
classical balanced truncation method to model with a few
states per zone. This gives a model of the form:

xk+1 = Axk +Buuk +Bwwk (1)

yk = Cxk

where xk ∈ Rn is the state, uk ∈ Rm is the thermal energy
input to the rooms, wk ∈ Rp is the disturbance input
(including weather, long-wave radiations, solar gains, and
internal gains), and yk ∈ Rq is the output containing
the room air temperature of each zone at time step k.
The conversion from electrical energy to thermal energy is
modeled using a constant COP for the heating (ηh) and
cooling (ηc) systems, and is given as:

ek = ηh
∑
ui
k
≥0

uik − ηc
∑
ui
k
≤0

uik (2)

where ek is the consumption of electrical energy (kW ) at
time step k.

Remark 1. The time step index {k} can equivalently be
written as the index {d, h} referring to the day d, and
hour h. In the sequel we use both these notations inter-
changeably.

4. CONTROL SETUP

This section presents the optimal control problem, formu-
lated to investigate the maximum potential benefit of a
building participating in the New York’s DADR program,
and an MPC controller enabling a building to participate
in this program.

4.1 Optimal Control problem

Our objective is to maximize the total profit of a building
participating in the DADR program while maintaining
acceptable comfort constraints in the building. Our cost
include both the cost of the energy consumed, and the
payments obtained during the DR participations.
The cost of energy consumption is given by:

V ek = ctkekTs, (3)

where ctk is the electricity tariff ($/kWh) at time step k,
and Ts the sampling time in hours. DR payments are given
by:

V drk = cdkTs(Bd,h − ed,h), (4)

where cdk is the day-ahead clearing price of electricity
($/kWh) and, Bd,h is the baseline consumption at time
step k. The baseline consumption for an hour h is the
average energy consumption during hour h over a set of
previous days Sd,h, and is given by:
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Bd,h = βd,h
1

|Sd,h|
∑
j∈Sd,h

ed−j,h, (5)

where Sd,h is the set of days used to compute the baseline,
and βd,h is a weather correction factor. In case d is a week
day (a similar procedure applies for weekend days), the
steps to select the days Sd,h are:

• Starting two days before d, select the ten previous
weekdays during which the building did not partici-
pate in a DR event during hour h.
• Among these, select the five days with highest con-

sumption during hour h.

The weather correction factor βd,h adjusts the baseline
for the weather conditions on the day of the event. It is
computed as the ratio of the energy consumption during a
time period preceding the participation period (hours h1,
and h2) of the day d, to the average energy consumption
during the same period for the days used in the baseline
computation:

βd,h =
ed,(h1,h2)

1
|Sd,h|

∑
j∈Sd,h(ed−j,(h1,h2))

(6)

Furthermore, it is saturated so that 0.8 ≤ βd,h ≤ 1.2. Com-
fort is maintained by enforcing temperature constraints on
the zone temperatures:

Tmin,k ≤ yk ≤ Tmax,k, (7)

where Tmin,k and Tmax,k are the minimum and the max-
imum allowable temperature in each zone at time step k,
respectively. Constraint on the input actuators are given
by

umin ≤ uk ≤ umax, (8)

where umin and, umax are the minimum and the maximum
allowable actuator limits. The optimal control problem is
formulated as:

VOC(x0, {wk}, {cdk}) =

=minimize
x,u,s,δ

NOC−1∑
k=0

V ek − δkV drk + V sk

subject to (1), (7), (8),

δk ∈ {0, 1}, k = 0, . . . , NOC − 1

(9)

where δk is the binary variable indicating the status of
DR participation at time step k. It is one if the building is
participating at time step k, zero otherwise. The comfort
constraint (7) is implemented as a soft constraint, and V sk
is the quadratic penalty on the constraint violation. Solv-
ing (9) over a long period gives us the best participation
strategy in DR. If the problem is solved on a long enough
horizon, then it allows to both optimize our consumption
during DR participation, and prepare the baseline when
not participating. This means that a long horizon (more
than a week to optimize the baseline) is desirable. In
the case studied here, the dynamics of the system are
relatively fast because we consider an air based system,
but decisions have long lasting impact because of the effect
of the baseline.

4.2 Model Predictive Control Problem

In MPC, a measurement is obtained at time step k, a
prediction model is used to predict the future trajectories
of the system, and an optimization problem is solved

to compute a sequence of optimal control inputs over a
predefined prediction horizon. The first optimal control
input is applied and at the next time step, the procedure
is repeated. An MPC controller is proposed to solve the
problem presented in the previous section.

Demand Response MPC We propose an MPC strategy
allowing the building to participate in the DADR program.
Using a shorter receding horizon reflects the fact that,
in practice, the predicting ability is limited by the lack
of confidence in the long term (typically longer than two
days) future weather predictions. The computational com-
plexity of the resulting optimization problem also increases
with the horizon. The MPC optimization problem solved
at each time step k is exactly the same as in (9), except
that the baseline Bk is a known constant and is an input
to the optimization problem, due to the fact that the
prediction horizon is shorter than two days. Since the
prediction horizon is not long enough, the MPC controller
is not able to optimize the future baseline. At each time
step k the baseline Bk is computed using past energy
consumption (5).

Suboptimal Demand Response MPC In practice, the
participation in DR for the next day is decided once
a day when the market is cleared. There is then no
possibility to reoptimize for them as in a classical MPC
scheme. Therefore, we propose a sub-optimal solution
where the demand response optimization problem with
binary variables is solved only once each day and the
decision variables δk are fixed over the prediction horizon.
At each time step, a simplified version of the optimization
problem (9) is solved, where the decision variables δk are
fixed as inputs to the optimization problem. In reality, if
the horizon is more than a day, there still is the possibility
to reoptimize for participation decisions beyond the first
day of prediction, however, we keep this structure for the
MPC controller because it reduces the computational load
significantly, and as we will detail in the next sections,
the controller decides most of the time to participate
systematically, which implies that its decisions in closed
loop are very consistent.

Baseline increase With a short horizon, the MPC con-
troller cannot optimize the future baseline and DR par-
ticipation status, thus limiting our ability to participate
in DR. When not participating in DR, our consumption
influences future baseline computations. Given the ex-
pression of the baseline computation (5), we make the
approximation that our current consumption will influence
the future profits from DR participation in a linear fashion,
yielding:

V bk = αkekTs (10)

where αk > 0 captures how the future payments for DR
participation will change and indicates our confidence in
future DR participation. A larger value of αk implies a
higher confidence in future DR participation. For simplic-
ity, we focus here on constant values of α. The optimization
problem solved at each time step is given by:
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Building Type Office Building

Location Representing eight climate zones,
including New York

Floor Area (m2) 4979

No. of Zones 15

No. of Floors 3

Window Fraction 33%

Peak Occupancy
(people/100m2)

5.4

Table 2. Building Characteristics

VDR(x0, wk, c
d
k, δk, Bk) =

=minimize
x,u,s

NDR−1∑
k=0

V ek − (1− δk)V bk − δkV drk + V sk

subject to (1), (7), (8), k = 0, . . . , NDR − 1
(11)

5. SIMULATION CASE STUDY

5.1 Simulation Setup

We use the standard ASHRAE EnergyPlus model of a
medium-size modern commercial office building for this
study, taken from the reference building data base of
the U.S. department of energy 1 . The characteristics of
this building are summarized in Table 2. The building
is described with typical usage schedules for equipment,
lights, and occupancy. It is equipped with one centralized
cooling system for each floor with electrically powered
cooling coils. The zones are each equipped with individual
terminal VAV units controlling the airflows. Therefore, it
is realistic in our model to consider that we control the
energy input to the rooms independently. Specific details
of the simulation are outlined below:

• Simulations are performed on a two month period
from June, 5. to August, 18. 2012.
• We use real measured weather data for New York,

provided by the company WeatherAnalytics.
• Real day-ahead prices for Long Island, the most

constrained part of the New York network are used in
this study. This price data is obtained from the New
York’s ISO.
• The electricity tariffs published by the Long Island

power authority are used, i.e., ctk = 0.15$/kWh.
• A maximum of eight hours of DR participation is

allowed each day (i.e., between 1pm and 9pm). The
hours h1 and h2 used in (6) are hour 10, and 11.
• Participation is not allowed if the day-ahead price

is below a minimum floor price level, which is
75$/MWh in this case.
• The comfort constraint Tmin,k, and Tmax,k is 20 ◦C,

and 23 ◦C during office hours, and 15 ◦C, and 27 ◦C
otherwise.

5.2 Validation of the model

We aim to compare the thermal model of the building
since the cooling system is not modeled. We simulate the
EnergyPlus model with the building’s built-in controller
1 http://www1.eere.energy.gov/buildings/commercial/ref_new_

construction.html
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Fig. 1. Validation of the extracted model

to maintain a constant indoor temperature of 23◦C in
the control zones. On the other hand, a simulation is
performed with our linear model and an MPC controller
maintaining the same temperature. The simulation covers
the full month of July 2012. Figure 1 shows the aggregated
cooling power in the two cases. We see that the power
requirements of the building are successfully captured by
our linear model. A tendency to overestimate the lowest
consumption peak during the day is noticeable. The model
reduction itself impacts the power consumption by less
than one percent in the worst case. This justifies the use
of the reduced linear model as our prediction model.

5.3 Simulations

The study aims at investigating the following questions:
Q1: Bound on maximum savings: What is the maxi-
mum potential benefit for a building participating in New
York’s DADR program, utilizing only the available ther-
mal storage of the building, and what is the impact of the
participation strategy on this maximum saving potential?
This will help us decide if this DR program is beneficial
for a typical commercial office building.
Q2: Bound on maximum savings under limited
forecasts: What is the maximum potential benefit under
a more realistic setting, i.e., without assuming long-term
future knowledge of weather, occupancy, and price predic-
tions, and what is the impact of α (confidence in future
participation) on this maximum saving potential? This will
indicate how close to the optimum we can get with limited
knowledge of the future.
To answer these questions, we consider three simulation
cases:
Minimum Cost Trajectory without DR [no DR]:
This is the minimum cost trajectory without DR over a
simulation period of two months. It is found by solving
the optimal control problem over the complete two months
period (9) with δk = 0 being enforced, i.e., no DR partici-
pation. We assume perfect knowledge of the weather, and
occupancy predictions on this period. This is the base case
to compare the cost of energy consumption and potential
DR income. The results in this case are very close to
using the built-in EnergyPlus controller, which comforts
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its choice as our base case.
Minimum Cost Trajectory with DR [DR]: This is the
minimum cost trajectory among all possible trajectories
with DR over a simulation period of two months. We use
this simulation to compute the bound on the maximum
savings achievable. It is obtained by solving (9), which
is a large scale mixed-integer bi-linear problem. There,
the sets Sd,h depend on the participation decisions δk. To
circumvent this difficulty, we use fixed participation hours
in advance, which leaves a bi-linear problem to solve. For
the optimization, we consider the weather rule inactive,
i.e., βk = 1. DR payments with the weather rule are
then post-computed. The problem then boils down to a
large quadratic program. It is solved over the two months,
assuming perfect knowledge of future weather, occupancy,
and day-ahead price.
Minimum Cost Operation with DR and Limited
Forecast [DR & MPC]: This is the minimum cost
trajectory under closed-loop MPC control with limited
forecast horizon. This simulation is useful to evaluate the
maximum savings under limited forecasts. We solve (9)
over an horizon of two days, once per day. Notice that with
such horizon, the baseline (5) becomes a linear function of
ed,(h1,h2). In turn, the payment (4) is a linear function of
the optimization variables and (9) becomes a MIQP with
a limited number of integer variables, which is therefore
tractable. The participation decisions for the first day are
then fixed and fed to a second MPC controller (11) that
optimizes the consumption over an horizon of one day in
a receding horizon fashion. Perfect knowledge of future
weather, occupancy, and day-ahead price predictions is
again assumed, but only on an horizon of two days.

5.4 Analysis of Results

Q1: Bound on maximum savings: The maximum
savings achievable for the commercial office building par-
ticipating in the DADR program is 33%. This result is
obtained by comparing the results of the minimum cost
trajectory without DR [no DR], with the minimum cost
trajectory with DR [DR], as depicted in Fig. 2, which
shows the cumulative expenses over the simulation period.
The results are normalized with respect to the cost of the
minimum cost trajectory without DR [no DR]. The total
DR payment (top red line) amounts to 40% of the total
minimum energy cost resulting in a net saving of 33%,
as illustrated in Fig. 3. In Fig. 2, the cumulative profit
generated by DR participation progresses in steps, i.e.,
only when the building is participating in a DR event.
The cumulative DR profit increase sharply between days
30 to 34, and days 41 to 45. The reason is that these days
have particularly high day-ahead prices. On the contrary,
towards the end of the simulation period, the cumulative
DR profit increases very slowly because of low day-ahead
prices.
In order to investigate the impact of the participation
strategy on the savings potential, we performed a set of
simulations [DR] with different floor prices for partici-
pation ranging from 75$/MWh to 200$/MWh. Savings
compared to the minimum cost trajectory without DR
[no DR] are depicted in Figure 4. The maximum bene-
fit is obtained by participating systematically above the
minimum allowed floor price of 75$/MWh. This suggests
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that a systematic bidding strategy at the minimum price
is reasonable, and this simple strategy is the one adopted
in [DR] in the rest of the simulations.
Q2: Bound on maximum savings under limited
forecasts: The maximum savings achievable for the com-
mercial building, under limited forecast are 23%. This
is obtained by comparing the minimum cost trajectory
without DR [no DR] with the minimum cost operation
with DR and limited forecast [DR & MPC], as depicted
in Fig. 2. The cumulative DR income for [DR & MPC]
(top blue line) shows a similar trend to the cumulative
DR income for the minimum cost trajectory [DR] (top red
line). This shows that the MPC controller almost always
decides to participate in the DR event. However, the total
DR profit for [DR & MPC] amounts to about 28% of the
total minimum energy cost resulting in a net saving of
23%, as illustrated in Fig. 3.
Finally, the impact of the tuning parameter α (our con-
fidence in future DR participation) was studied. A set of
simulations [DR & MPC] with uniformly increasing values
of α was performed. Results are depicted in Fig. 5. It
can be seen that as expected, by increasing α the total
energy cost increases, whereas the profit increases to its
maximum, and then starts to decrease again. Indeed, if the
future baseline is increased too much, the overall energy
consumption of the building will increase, thus reducing
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Fig. 2. Normalized Cumulative Cost
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the total increase in profits. We used a fixed optimum
value of α = 0.8ctk in our simulation [DR & MPC] result
depicted in Fig. 2. However, it is expected that a time-
varying α may improve the performance, especially if the
building is not able to participate often.

6. CONCLUSION

We used optimal control to investigate the maximum pos-
sible savings for a commercial office building participating
in New York’s DADR program. The simulation results
showed that significant savings are attainable. Further-
more, a practical MPC controller was proposed to enable
a building to participate in the DADR program under
realistic settings. It was shown that even with a limited
availability of forecasts, the building was able to make
significant savings. All these savings come by using only
the thermal storage capacity of the building. The available
storage in the electrical equipment of the building and the
HVAC system is expected to increase this saving potential.
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