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A. Ferramosca ∗ A. H. González ∗ D. Limon ∗∗ D. Odloak ∗∗∗

∗ INTEC, CONICET - Universidad Nacional del Litoral (UNL). Güemes
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Abstract: In this paper, an MPC that explicitly integrates the RTO structure into the dynamic control
layer is presented. In particular, a robust MPC is proposed, which takes into account the uncertainties
that arise from the difference between nonlinear and linear models, by means of a multi-model approach:
a finite family of linear models is considered, which operate appropriately in a moderate-to-large region
around a given operating point. In this way, each linear model provides an enough accurate description
of the system. Feasibility and stability conditions are preserved. Moreover, the real plant converges to
the optimal point that optimizes the economic cost function.
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1. INTRODUCTION

Modern industrial application of model predictive control
(MPC) requires a number of specific properties that have to
be accounted for theoretic formulations (Rawlings and Mayne
2009). If petrochemical processes are considered, one of the
main requirement is the economic optimization of the plant
operation. In this context, the hierarchical control structure, in
which an economic optimization level - usually referred as Real
Time Optimizer (RTO) - sends setpoints to the MPC layer, is the
usual strategy to account for the economic requirements (Engell
2007). However, the drawbacks of this strategy - i.e., com-
munication problems between layers, different time scaling,
model mismatches - motivate the development of the so-called
one-stage strategies. The idea of this approach is to merge
the RTO layer with the MPC layer, by designing controllers
that integrates the RTO economic cost function as part of the
MPC cost as in (Adetola and Guay 2010, Zanin et al. 2002,
Biegler 2009, De Souza et al. 2010). Another approach, the so-
called economic MPC, consists in using the RTO cost function
directly as the MPC stage cost function (Rawlings et al. 2012,
Müeller et al. 2013, Ferramosca et al. 2010b).
However, the proposed MPC is nominal and industrial appli-
cations requires the consideration of some kind of robustness.
For the case of petrochemical processes, for instance, the plant
to be controlled is nonlinear, but has sparse operation points
with different economic behaviors. So, a convenient form of
representing the models uncertainty is by considering a finite
family of linear models (multi-model uncertainty), which oper-
ate appropriately in a moderate-to-large region around a given
operating point (Badgwell 1997, González et al. 2009, Find-
eisen et al. 2000). In this context, each operating point defines
a linear model sufficiently accurate to describe the system.

Furthermore, since no many operating points are considered in
the operation of this kind of systems, a few linear models could
be required to describe the complete operation.
In this work, a one-layer economic MPC suitable for multi-
model uncertainty is presented. To this end, a finite and count-
able family of model is considered, while the feasibility and
stability conditions are preserved no matter which member of
the family represents the true model. Furthermore, as required
in petrochemical applications, the proposed controller can be
easily adapted to the case of a gradient-based approximation of
the economic cost (Alamo et al. 2012, Limon et al. 2013) and
the zone control case, which consists in guiding the output to a
economically optimal region, instead of a point (González et al.
2009, Ferramosca et al. 2010a).
The work is organized as follows. In Section 2 the problem is
stated. In Section 3 the proposed multi-model one-layer MPC
is presented. Finally, illustrative examples and conclusions of
this study are provided in Sections 4 and 5.

2. PROBLEM STATEMENT

Consider a system described by an unknown linear discrete
time-invariant model

x+ = Arx+Bru, y = Crx (1)

where x ∈ Rn is the system state, u ∈ Rm is the current control
vector, y ∈ Rp is the controlled output and x+ is the successor
state. The solution of this system for a given sequence of control
inputs u and initial state x is denoted as x(j) = ϕ(j;x,u)
where x = ϕ(0;x,u). The state of the system and the control
input applied at sampling time k are denoted as x(k) and u(k)
respectively. The system is subject to hard constraints on state
and control:
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x(k) ∈ X, u(k) ∈ U (2)
for all k ≥ 0.
Assumption 1. X is convex and closed, U is convex and com-
pact and both sets contain the origin in their interior.

The steady state, input and output of the plant (xs, us, ys) are
such that (1) is fulfilled, i.e.

xs = Arxs +Brus, ys = Crxs (3)
Consider now, a nonlinear function feco(y, u, ρ) that takes into
account the economic objectives of the plant. ρ is a parameter
that takes into account prices, costs or production goals. Let us
define the RTO problem as follows:
Definition 1. The optimal steady point, (x∗

s, u
∗
s, y

∗
s ), satisfies

(x∗
s, u

∗
s, y

∗
s ) = arg min

(x,u,y)
feco(y, u, ρ) (4)

s.t. x ∈ X, u ∈ U

x = Arx+Bru, y = Crx

Assumption 2. The economic cost function feco(y, u, ρ) is con-
vex in (y, u).

2.1 Multi-model description of the plant

It is assumed that the real model of the plant (1) is not known to
the controller. However, a collection of L linear models of the
form

x+
i = Aix+Biu, yi = Cix (5)

is supposed to be known (Badgwell 1997, González et al. 2009),
in such a way that model uncertainties are represented. Let us
define the set of possible linear plants as Π = {π1, ..., πL},
where πi corresponds to the particular plant (Ai, Bi, Ci), i ∈
I1:L. Let us define as πr ∈ Π, the model that represents the
plant in its actual operation point, and as πno ∈ Π, an average
(or nominal) model.
Assumption 3. Each plant Ai is stable. The pair (Ai, Bi) is
controllable and each model πi is subject to constraints (2).
Moreover, it is assumed that the state of the real plant xr is
completely measurable (Ci = In).

Under Assumption 3, the set of steady states and inputs of sys-
tem (5) is a m-dimensional linear subspace of IRn+m (Limon
et al. 2008) given by

(xs,i, us) = Mθ,iθ

Every pair (xs,i, us) ∈ IRn+m is characterized by only one
parameter θ ∈ IRm. The steady controlled outputs are given by

ys,i = Nθ,iθ

where Nθ,i = CiMθ,i.
We define the sets of admissible equilibrium states, inputs and
outputs as

Zs,i={(xi, u) ∈ X× U | xi = Aixi +Biu} (6)

Xs,i={xi ∈ X | ∃u ∈ U such that (xi, u) ∈ Zs,i} (7)

Ys,i={y = Cixi | (xi, u) ∈ Zs,i} (8)
We assume that (x∗

s, u
∗
s) ∈ Zs,i, for all i ∈ I1:L.

In this paper, we consider the control structure shown in Figure
1. The objective is to design a one-layer RTO+MPC controller
that directly account for stationary economic objectives. In
particular, a robust MPC is proposed, which takes into account
the uncertainties that arise from the lack of knowledge of the
real plant, by means of a multi-model approach.

RTO+MPC Plant 

Observer 1 

Observer L 

�� (!), "�#(!) 

�$ (!), "$#(!) 

�(!), %(!) &(!) 

' 

⋮ 

⋮ 

Figure 1. Control structure.

3. PROPOSED FORMULATION

Since we don’t know a priori which is the real model of
the plant, an augmented system, with an additional integrating
disturbance is introduced:[

x+
i

d+i

]
=

[
Ai 0
0 Ip

] [
xi

di

]
+

[
Bi

0

]
u (9)

yi = [Ci Ip ]

[
xi

di

]
where di represents an output disturbance corresponding to
model πi.
From Figure 1, it is clear that the control structure is equipped
with one observer per each model, and the observer of the
real plant is based on the real model πr. Moreover, we want
to estimate the output disturbances di. We propose an open-
loop state observer and a closed-loop disturbance observer of
the form:

x̂i(k + 1) =Aix̂(k) +Biu(k) (10)

d̂i(k + 1) = d̂i(k) + Ld
i (Cix̂i(k)− y(k) + d̂i(k)) (11)

where x̂i(k) ∈ Rp is the observed state at time k, with x̂i(0) =

x(0), that is the measured state at k = 0; d̂i(k) ∈ Rp is the
estimated disturbance at time k, with d̂i(0) = 0p

1 ; y(k) is the
measured output at time k. Furthermore, Ld

i is the observer gain
of the disturbance estimation. Notice that, for the real plant πr,
the estimated disturbance will always be d̂r = 0.
For the sake of clarity let us define

z=

x1

...
xL

, d=
d1...
dL

, h=
y1...
yL

 (12)

where z ∈ IRLn, d ∈ IRLp, and h ∈ IRLp.
To propose a robust MPC controller, based on a multi-model
approach, that integrates the RTO into the MPC problem, and
capable of ensuring feasibility for any economic objective feco,
the following cost function is proposed:

VN (x, d̂,ρ;u, θ)=
N−1∑
j=0

∥xno(j)−xs,no∥2Q+∥u(j)−us∥2R

+VO(hs, us, ρ) (13)
1 0p is a vector in IRp with all elements equal to 0.
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where x is the real plant measured state at time k, xno(j) is
the prediction based on the nominal model and is such that
xno(0) = x, u is the control sequence to be calculate, which
is unique for all models in Π, and Q and R are positive definite
matrices. The variable (xs,no, us, hs) represents an admissible
equilibrium point - the so-called artificial reference - and are
all parameterized by θ. Notice that us and θ are unique for all
models in Π. VO(hs, us, ρ) represents the economic cost, which
is given by:

VO(hs, us, ρ) =

L∑
i=1

feco(ys,i, us, ρ) (14)

At the time k, the optimization problem PN (x, ẑ, d̂, ρ, ũ, θ̃) to
be solved is given by:

Problem PN (x, ẑ, d̂, ρ, ũ, θ̃)

min
u,θ

VN (x, d̂, ρ;u, θ)

s.t. xi(0) = x̂i, i ∈ I1:L
xi(j + 1) = Aixi(j) +Biu(j), j ∈ I0:N−1, i ∈ I1:L
xi(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1, i ∈ I1:L
(xs,i, us) = Mθ,iθ, i ∈ I1:L
ys,i = Nθ,iθ + d̂i, i ∈ I1:L
xi(N) ∈ Xs,i i ∈ I1:L
V i
N (x̂i, d̂i, ρ;u, θ) ≤ V i

N (x̂i, d̂i, ρ; ũ, θ̃), i ∈ I1:L
(15)

where the last constraint, is a robustness constraint, added for
stability reasons (Badgwell 1997), and

V i
N (x̂i, d̂i,ρ;u, θ)=

N−1∑
j=0

∥xi(j)−xs,i∥2Q+∥u(j)−us∥2R

+feco(ys,i, us,i, ρ) (16)

Remark 2. Notice that ũ and θ̃ are feasible solutions to problem
(15), based on a solution of the same problem at time k − 1.
Moreover, at time k = 0, z(0) is such that xi(0) = x(0).

The optimal cost and the optimal decision variables will be
denoted as V 0

N (xr, d̂, ρ) and (u0, θ0) respectively. Based on
this, at time k, we define ũ(k) = {u0(1; k − 1), u0(2; k −
1), ..., u0(N−1; k−1), ũ}, where ũ is a feasible control action,
and θ̃(k) = θ0(k − 1).
Considering the receding horizon policy, the control law is
given by

κN (x, ẑ, d̂, ρ, ũ, θ̃) = u0(0;x, ẑ, d̂, ρ, ũ, θ̃) (17)
Since the set of constraints of problem (15) does not depend
on p, its feasibility region does not depend on the economic
objective. Then, for any plant πi there exists a region XN,i ⊆
X, which represents the set of initial states xi that can be
admissibly steered to Xs,i in N steps. The domain of attraction
of the proposes controller can then be defined as

XN =
L∩

i=1

XN,i

Consider the following assumption on the controller parame-
ters:
Assumption 4. The prediction horizon N is such that

rank(CoN,i) ≥ n, i ∈ I1:L
where CoN,i = [AN−1

i Bi ... AiBi Bi] is the N -controllability
matrix of system (Ai, Bi). Moreover, there exists a dead-beat

control gain Ki, such that Ai + BiKi, i ∈ I1:L, has null
eigenvalues.

Theorem 1. Consider that Assumptions 1-4 hold, and consider
a given parameter p for the economic cost feco(y, u, ρ). Then,
for any xr ∈ XN,r, the system controlled by the MPC control
law κN (xr, d̂, ρ) at each time step k is stable and fulfills the
constraints throughout the time. Furthermore, the closed-loop
system converges asymptotically to a steady point (x∗

s, u
∗
s, y

∗
s )

that satisfies (4).

Proof. Consider the measured output at time k, y(k), the state
of the real plant, xr(k), and the observed state and disturbance
ẑ(k) and d̂(k). Consider also the solution to Problem (15),
given by (u0(k), θ0(k)), where

u0(k) = {u0(0; k), u0(1; k), ..., u0(N − 1; k)}
From Problem (15), this sequence is a feasible sequence that
accounts for the constraints of all models πi ∈ Π. Since we
know that the real plant model πr ∈ Π, then its state sequence
corresponding to applying u0(k) is

x0
r(k) =

{
x0
r(k), x

0
r(1; k) · · · , x0

r(N ;x)
}

where x0
r(N ; k) = x0

s,r(k). This comes from the constraint
xi(N) ∈ Xs,i.
Now, consider the successor states at time k + 1

x+
r = Arxr(k) +Bru

0(0; k) = x0
r(1; k)

which is obtained by implementing the control law (17), and
define the following feasible solution to problem (15), at time
k+1, ũ(k+1) =

{
u0(1; k), ..., u0(N − 1; k), ũs(k + 1)

}
and

θ̃(k + 1) = θ0(k).
Notice that ũ(k + 1) is a sequence made by shifting one step
ahead the sequence u0(k) and adding the admissible equi-
librium input at time k. In fact (x̃s,i(k + 1), ũs(k + 1)) =

Mθ,iθ̃(k+1) = Mθ,iθ
0(k) = (x0

s,i(k), u
0
s(k)), for all i ∈ I1:L,

and so for i = r. Notice also that this equilibrium input u0
s(k) is

unique for all models in Π. Define also the associated real plant
state sequence, x̃r =

{
x0
r(1; k), ..., x

0
s,r(k), x

0
s,r(k)

}
, where

the last state is given by x0
s,r(k) = Arx

0
s,r(k) +Bru

0
s(k).

The observed real plant disturbance at time k+1 will be d̂r(k+
1) = d̂r(k) = 0p, and hence ỹs,r(k + 1) = Nθ,r θ̃(k + 1) +

d̂r(k + 1) = y0s,r.
Now, following standard arguments in MPC literature (Rawl-
ings and Mayne 2009), the cost function of the real plant
corresponding to u0(k), V r0

N (xr, d̂r, ρ;u
0(k), θ0(k)) will be

compared to the one given by ũ(k + 1). We get

∆V r
N=V

r
N (x+

r , d̂r(k+1),ρ; ũ(k+1), θ̃(k+1))−V r0
N (xr, d̂r(k),ρ)

=−∥xr(k)− x0
s,r(k)∥2Q − ∥u0(0; k)− u0

s(k)∥2R
From the last constraint of problem (15), we get that, the
optimal cost at time k + 1 cannot exceed, V r

N (x+
r , d̂(k +

1), ρ; ũ(k + 1), ũs(k + 1)). Hence, we can state that

∆V r0
N = V r0

N (xr(k + 1), d̂r(k + 1), ρ)−V r0
N (xr(k), d̂r(k), ρ)

≤−∥xr(k)− x0
s,r(k)∥2Q + ∥u0(0; k)− u0

s(k)∥2R
Since Q and R are positive definite, the previous inequality
implies that there exists a K-function α such that:

∆V r0
N ≤ −α(∥xr(k)− x0

s,r(k)∥) (18)
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Define the function J(xr, ρ) = V r0
N (xr, d̂, ρ)−feco(y

0
s , u

0
s, ρ).

This function is well defined in XN,r = proj(ZN )xr . Define
also e(xr) = xr − x0

s,r. Notice that, since Q and R are positive
definite, J(xr, ρ) ≥ α(∥e(xr)∥), for all xr ∈ XN,r; due to
(18), we have that J(x+

r , ρ)−J(xr, ρ) ≤ −α(∥e(xr)∥), for all
xr ∈ XN,r.
From Lemma 5 in the Appendix, it follows that

α(∥e(xr)∥) ≥ α(αe(∥xr − x∗
s,r∥)) = αJ (∥xr − x∗

s,r∥)
where αe and αJ are K-functions. Then, we can conclude that:

(i) J(xr, ρ) ≥ αJ (∥xr − x∗
s,r∥), for all xr ∈ XN,r.

(ii) J(x+
r , ρ) − J(xr, ρ) ≤ −αJ(∥xr − x∗

s,r∥), for all xr ∈
XN,r.

(iii) Since XN,r is compact, J(x∗
s,r, ρ) = 0, and J(xr, ρ) is

continuous in xr = x∗
s,r, then there exists a K-function βJ

such that J(xr, ρ) ≤ βJ(∥xr − x∗
s,r∥), for all xr ∈ XN,r,

Rawlings and Mayne (2009).

Hence J(xr, ρ) is a Lyapunov function and x∗
s,r is an asymptot-

ically stable equilibrium point for the closed-loop system, that
is, there exists a KL-function ϑ such that

∥xr(k)− x∗
s,r∥ ≤ ϑ(∥xr(0)− x∗

s,r∥, k)
for all xr(0) ∈ XN,r. �
Remark 3. If the economic cost function feco is highly nonlin-
ear, but still convex, the results proposed in (Alamo et al. 2012)
and (Limon et al. 2013) can be applied to the proposed con-
troller, in order to reduce computational complexity. Moreover,
a zone control strategy (González et al. 2009, Ferramosca et al.
2010a), which consists in guiding the output to an economically
optimal region instead of a point, can also be applied to the
proposed controller.
Remark 4. Notice that, if the real plant (1) is a nonlinear
plant, d̂r will not be identically null, but it will converge to a
constant value, as any other estimated disturbance d̂i. In this
case, the results presented above are still valid, and the multi-
model approach will provide not only robustness, but offset
cancelation as well.

4. ILLUSTRATIVE EXAMPLE

The proposed controller has been tested in simulation on a 4
tanks system.

The four tanks plant (Johansson 2000) is a multivariable labora-
tory plant of interconnected tanks with nonlinear dynamics and
subject to state and input constraints. The inputs are the flows of
the two pumps and the outputs are the water levels in the lower
tanks. The nonlinear continuous time model of this process can
be derived from first principles as follows (Johansson 2000)

dh1

dt
=−a1

A

√
2gh1 +

a3
A

√
2gh3 +

γa
A

qa
3600

(19a)

dh2

dt
=−a2

A

√
2gh2 +

a4
A

√
2gh4 +

γb
A

qb
3600

(19b)

dh3

dt
=−a3

A

√
2gh3 +

(1− γb)

A

qb
3600

(19c)

dh4

dt
=−a4

A

√
2gh4 +

(1− γa)

A

qa
3600

(19d)

The linearized model is given by:

Table 1. Linearization points.

Model h1 h2 qa qb
π1 0.4210 0.4678 1.4802 1.5197
π2 0.2977 0.3308 1.2447 1.2779
π3 0.8550 0.5672 1.0444 2.6980
πno 0.6487 0.6636 1.63 2

dx

dt
=



−1

τ1
0

A

Aτ3
0

0
−1

τ2
0

A

Aτ4

0 0
−1

τ3
0

0 0 0
−1

τ4


x+



γa
3600A

0

0
γb

3600A

0
(1− γb)

3600A
(1− γa)

3600A
0


u

where xi = hi − ho
i , uj = qj − qoj , j = a, b and i =

1, · · · , 4. τi = A
ai

√
2h0

i

g ≥ 0, i = 1, · · · , 4, are the time
constants of each tank. The plant parameters, estimated on a
real experimental plant developed at the University of Seville,
are given in (Alvarado et al. 2011, Table 1). The constraints on
the state are given by 0.2 ≤ hi ≤ 1.2 [m], while the constraints
on the inputs are 0 ≤ qa ≤ 3.26 [m3/h] and 0 ≤ qb ≤ 4
[m3/h].
The multi-model MPC has been applied by linearizing the plant
in 4 different operation points, one of them - given by the pumps
at one half of their power - has been taken has the nominal
model. These linearization points are shown in Table 1. The
linearized models have been discretized using the zero-order
hold method with a sampling time of 15 seconds.
The economic objective is to minimize the plant energetic

consumption, by minimizing the voltage of the two pumps, and
at the same time to maximize the volume of water in the tanks
1 and 2. The economic cost function reads:

feco(y, u, ρ) = (q2a + ρ1q
2
b ) + ρ2

Vmin

A(h1 + h2)
(20)

where y = (h1, h2), u = (qa, qb), ρ = (ρ1, ρ2) are the prices
on the cost function, and Vmin is the minimum volume to be
accumulated.
The controller has been tested in two simulations, in order
to compare the multi-model MPC with a mono-model MPC.
Model π1 is been taken as the real plant model. In the mono-
model controller, the nominal model πno is used. Three changes
of the economic cost have been considered, based on the fol-
lowing prices: ρ[1] = (1, 20), ρ[2] = (1, 10) and ρ[3] =
(0.4, 30). The MPC controller has been setup with Q = I4,
R = 0.01I2, and N = 6. In both simulations, the plant is
assumed to start from the linearization point of the nominal
model. The optimizations have been executed using the Matlab
function fmincon.
The results of these simulations are shown in Figure 2. The
solid lines represent the multi-model controller, while the
dashed line the nominal MPC. In both cases, the controller is
capable to drive the plant to the optimal point that optimizes
the economic cost function. However, the system is driven to
different setpoints. This result becomes clearer in Figure 3. In
this figure, the solid line represents the multi-model controller,
while the dashed line the nominal MPC. The dotted line rep-
resents the optimal value of the economic cost, provided by a
stationary optimization of feco. Notice how, the multi-model
approach ensures convergence to the optimal cost, while the
nominal MPC always provides a larger cost.
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5. CONCLUSIONS

In this paper, a robust MPC that integrates a Real Time Opti-
mizer (RTO), based on a multi-model strategy, has been pre-
sented: a finite family of linear models has been considered
(multi-model uncertainty), which operates appropriately in a
moderate-to-large region around a given operating point. In this
way, each operating point defines a linear model, providing an
enough accurate description of the system. It has been shown
that feasibility and stability conditions are preserved. Moreover,
the real plant converges to the optimal point that optimizes
the economic cost function. The proposed controller has been
tested in simulation on a 4 tanks system.

6. APPENDIX

Lemma 5. Consider system (1) subject to constraints (2). Con-
sider that Assumptions 1-4 hold. Let x∗

s,r be the optimal steady
state defined in Definition 1. For all xr ∈ XNr and x0

s,r ∈ Xs,r

such that x0
s,r is a fixed point of the closed-loop system, define

the function e(xi) = xi − x0
s,r. Then, there exists a K-function

αe such that
∥e(xr)∥ ≥ αe(∥xr − x∗

s,r∥) (21)

Proof. Notice that, due to convexity, e(xr) is a continuos
function (Rawlings and Mayne 2009). Moreover, let us consider
these two cases.

(1) ∥e(xr)∥ = 0 iff xr = x∗
s,r. In fact, (i) if e(xr) = 0, then

xr = x0
s,r, and from Lemma 6, this implies that x0

s,r =

x∗
s,r; (ii) if xr = x∗

s,r, then by optimality x0
s,r = x∗

s,r, and
then xr = x0

s,r. Then, ∥e(xr)∥ = 0.
(2) ∥e(xr)∥ > 0 for all ∥xr − x∗

s,r∥ > 0. In fact, for any
xr ̸= x∗

s,r, ∥e(xr)∥ ̸= 0 and moreover ∥xr − x∗
s,r∥ > 0.

Then, ∥e(xr)∥ > 0.

Then, since XN,r is compact, in virtue of (Vidyasagar 1993, Ch.
5, Lemma 6, pag. 148), there exists a K-function αe such that
∥e(xr)∥ ≥ αe(∥xr − x∗

s,r∥) on XN,r. �
Lemma 6. Consider system (1) subject to constraints (2). Con-
sider that Assumptions 1-4 hold, and consider a given parame-
ter ρ for the economic cost feco(y, u, ρ). Consider that, at time
k, the disturbance reaches a stationary value d∞s and the optimal
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Figure 2. Comparison of multimodel approach and standard
MPC: time evolution of outputs and inputs when the
controller is applied to a linear plant given by model π1.
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Figure 3. Comparison of multimodel approach and standard
MPC: evolutions of the economic cost, feco.

solution to Problem (15) is such that yi(k) = y0s,i(k), xi(k) =

x0
s,i(k) and u(k) = u0

s(k), and that xi(k + 1) = x0
s,i(k). Then

yr(k) = y(k) = y∗s and ur(k) = u(k) = u∗
s .

Proof. Consider that (x0
s,i(k), u

0
s(k), y

0
s,i(k)) is the optimal

solution to (15) at time k. Then

V 0
N (x0

r(k), d̂(k), ρ) = VO(h
0
s(k), u

0
s(k), ρ)

Moreover, (x0
s,i(k), u

0
s(k), y

0
s,i(k)) is a stationary point.

If the real plant reaches a stationary point, the disturbance
observer equation at stationary conditions reads (the time de-
pendence is removed for the sake of clarity):

d̂∞s,i=d̂
∞
s,i+Ld

i (Cix
0
s,i−ys+d̂∞s,i), (22)

where x0
s,i = Aix

0
s,i+Biu

0
s, and u0

s is the stationary input that
correspond to the measured stationary output ys. Notice that all
d̂∞s,i are constant, and in particular, d̂∞s,r = 0p. If the gain Ld

i

is such that the eigenvalues of (Ip + Ld
i ) are strictly inside the

unite circle, then we have

ys = Cix
0
s,i + d∞s,i = y0s,i, ∀i ∈ I1:L (23)

This implies that, the output of all models in Π converges to the
same stationary point y0s,i = ys. Hence, from (14):

VO(h
0
s, u

0
s, ρ) =Lfeco(ys, u

0
s, ρ) (24)

Assume now that, the stationary point at time k is not the
optimal one, that is (y0s , u

0
s) ̸= (y∗s , u

∗
s). Then, by convexity,

there exists a γ ∈ [0, 1] such that such that

θ̃ = γθ0 + (1− γ)θ∗

characterizes a stationary point and moreover

VO(h̃s, ũ
0
s, ρ) ≤ VO(h

0
s, u

0
s, ρ) (25)

with (z̃s, ũs) = Mθ θ̃ and h̃s = Nθ θ̃ + d∞s . That is, since the
system is not at the optimal point (y∗s , u

∗
s), it is more convenient

to move towards (ỹs, ũs), than to remain in (y0s , u
0
s). Define

as ũ = {ũ(0), ũ(i), ..., ũ(N − 1)} a feasible sequence, to
Problem (15), that drives the system from (y0s , u

0
s) to (ỹs, ũs).

This sequence is such that, the j-th element is given by ũ(j) =
Ki(x̃i(j) − x̃s,i) + ũs, and x̃i(j + 1) = Aix̃i(j) + Biũ(j),
x̃i(0) = x0

s,i, for all i ∈ I1:L. Let us consider the real plant πr.
Then, the cost to drive the system from (y0s , u

0
s) to (ỹs, ũs) is

given by
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VN (x0
s,r, d̂

0
s, ρ; ũ, θ̃)=

N−1∑
j=0

∥x̃r(j)−x̃s,r∥2Q+∥ũ(j)−ũs∥2R

+VO(h̃s, ũs, ρ)

=∥x0
s,r−x̃s,r∥2Pr

+ VO(h̃s, ũs, ρ)

=(1− γ)2∥θ0−θ∗∥2Hr
+VO(h̃s, ũs, ρ)

where Hr = M ′
x,rPrMx,r, Pr is given by

Pr =
N−1∑
j=0

(Ar +BrKr)
j(Q+K ′

rRKr)(Ar +BrKr)

andKr is a dead beat controller for the real plant πr.
Now define W (γ) = (1− γ)2∥θ0−θ∗∥2Hr

+VO(h̃s, ũs, ρ) and
notice that for γ = 1, W (1) = VO(h

0
s, u

0
s, ρ). Taking the partial

of this function with respect to γ, and evaluating it for γ = 1
we obtain:

∂W

∂γ

∣∣∣∣
γ=1

= g0
′
(h0

s, u
0
s, ρ)

where g0
′ ∈ ∂VO(h

0
s, u

0
s, ρ), defining ∂VO(h

0
s, u

0
s, ρ) as the

subdifferential of VO(h
0
s, u

0
s, ρ). From convexity and from (25),

∂W

∂γ

∣∣∣∣
γ=1

=g0
′
(h0

s, u
0
s, ρ) ≥ VO(h

0
s, u

0
s, ρ)−VO(h̃s, ũs, ρ)>0

This means that there exists a value of γ ∈ [0, 1) such
that VN (x0

s,r, d̂
0
s, ρ; ũ, θ̃) is smaller than the value of the cost

VN (x0
s,r, d̂

0
s, ρ; ũ, θ̃) for γ = 1, which is VO(h

0
s, u

0
s, ρ). This

contradicts the optimality of the solution to Problem (15) at
time k, and the assumption that (y0s(k), u

0
s(k)) is a fixed point,

that is the optimal solution to Problem (15) at time k + 1 is
still (y0s(k), u

0
s(k)). Then it has to be that (y0s(k), u

0
s(k)) =

(y∗s , u
∗
s). Moreover, from (24), we can state that this point is the

one that optimizes the economic function feco(y, u, ρ). So the
Lemma is proved. �
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