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Abstract: This paper presents the development of a dynamic optimization model to manage
the generated energy in a micro-grid. Without loss of generality, the micro-grid consists of
the following components: a wind energy system, an energy storage element, a load, and the
interconnection with the utility grid. The optimization scheme considers the minimization of
the associated cost due to the purchase of energy from the utility grid and simultaneously
maximizing the profits associated with the sale of the generated energy to the utility grid.
This energy generation and optimization schemes could represent the operation of a micro-grid,
which considers different renewable resources and its energy management. The optimization
model considers the dynamics of charge and discharge of the storage element, energy prices and
forecasting for wind energy, buying and selling prices, and load energy demand, such that an
efficient use of the generated energy in a micro-grid can be achieved.

1. INTRODUCTION

This contribution proposes an optimization scheme for an
electrical micro-grid based on the forecast of time series,
such as load energy demand, electrical energy prices and
the forecast for generated wind energy in a micro-grid.
The forecast task is realized by techniques for modelling
time series, such as the Autoregressive integrated Moving
Average (ARIMA) model [13, 10, 8, 3] and the Exponential
Smoothing (ETS) model [4, 11, 18].

Since renewable energy is intermittent in nature, it moti-
vates to developing an optimization algorithm to manage
the energy in a micro-grid such that energy in the load
is ensured by properly storing/extracting energy in/from
an energy storage device and determining the amount of
energy to be used from the utility grid. One of the main
goals of the optimization scheme is to obtain the maximum
profit by the sale of the generated or stored energy based
on forecast information. The results of the optimization
algorithm could be used as the reference values for power
converters to manage the energy in a micro-grid.

The concept of micro-grid [14, 15, 6, 16] assumes a group
of loads and micro-sources operating as a system that
provides from energy to a local area. The micro-grid can
be seen as a system designed to meet special needs, such
as support local voltages, correct the voltage sags, etc.;
moreover, the micro-grid could have the ability to respond
in few period of time to meet the system requirements such
as absorption or supply of harmonics, among others.
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The organization of this paper is described as follows.
Section 2 describes the components of the micro-grid,
whose operation is required to be optimized. In Section
3 it is presented the time series forecast models for load
energy demand, buying and selling prices, and wind energy
generation. Section 4 presents the optimization scheme
for a micro-grid, which uses the results from the forecast
process. Finally, Section 5 presents the conclusions.

2. COMPONENTS OF THE MICRO-GRID

This section describes the components of the micro-grid
to be optimized in this paper, which includes wind energy
generation, an energy storage device, a load and the
connection with the utility grid to interchange energy. The
addressed micro-grid has a power capacity of 1 kW , which
is the average power to be consumed in a small house.

2.1 Wind Energy

It is possible to convert wind energy to electrical energy
by generators [5]. The mechanical power of a wind turbine
PWm,k at time k is defined as

PWm, k =


0, vk < v1 or v3 ≤ vk

1
2
Cp ρAv

3
k, v1 ≤ vk < v2

PWmax
, v2 ≤ vk < v3

(1)

where Cp is the power coefficient which relates the amount
of wind energy that is transferred to the electrical gen-
erator. In practice, this coefficient takes values between
0.25 and 0.45 [5]. The parameter ρ is the air density with
approximate value of 1.225 kg/m3, A is the swept area
of the rotor in m2 and vk is the wind speed in m/s at
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Fig. 1. Energy storage device.

time k; v1 is minimum wind speed to generate energy,
v2 is the nominal wind speed for power generation and
v3 is the maximum wind speed allowed by the generator
according to its construction and generation capacity. For
an average wind speed vav (m/s), it is common to consider
v1 = 0.6vav, v2 = 1.5vav ∼ 1.75vav and v3 = 3vav [5].

Finally, the mechanical power PWm,k is converter to elec-
trical power PW,k through of a generator (with an effi-
ciency η) as

PW, k = η PWm, k. (2)

2.2 Energy Storage

Without lost of generality, it is considered as energy stor-
age device a supercapacitor as the described in Fig. 1. The
continuous-time voltage dynamics of the charge/discharge
of this device is given as

V̇c = − VC

RC C
− 1
C
i

where VC is the capacitor voltage, i is the current in the
storage device, C is the capacitance and RC is the internal
resistance of the capacitor. Considering that the model of
the supercapacitor is a linear one, an exact discretization
[2] can be used to obtain a discrete-time dynamical model
as

VC,k+1 = αVC,k + β ik (3)
where α = e−Ts/RC C , β = −RC

(
1− e−Ts/RC C

)
and Ts is

the sampling time. Thus, the electrical power of this device
at time k is given by PS,k = VC,k ik. Additionally, a power
constraint can be imposed to limit the energy exchange as

PS−max
≤ PS, k ≤ PSmax (4)

where PS−max
is the maximum power stored in the superca-

pacitor and PS+
max

is the maximum power extracted form
the storage device, or equivalently
VCmin

≤ VC,k ≤ VCmax
and i−max ≤ ik ≤ i+max

where VCmin and VCmax are the minimum and maximum
voltage value allowed for the capacitor, respectively, and
i−max is the maximum amount of current injected in the
storage device and i+max is the maximum amount of current
extracted from the storage device.

2.3 Load in the Micro-grid

The energy consumption due to the load connected to the
micro-grid can be represented in a general form as

PLmin ≤ PL, k ≤ PLmax (5)

where PL, k is the power of the load at time k, PLmin
and

PLmax
are the minimum and maximum consumed power

by the load, respectively.

2.4 Energy from/to the Utility Grid

The analysis and design procedure realized in this paper
consider that a large amount of energy can be extracted
by the micro-grid from the utility grid to provide energy to
the load and to the storage device. Further, it is considered
that a large amount of energy can be injected to the utility
grid from the renewable resource and from the storage
device in the micro-grid. Hence, a restriction of the power
extracted or supplied to the utility grid is given as

PG−max
≤ PG, k ≤ PG+

max
(6)

where PG, k is the utility grid power at instant k, PG−max

is the maximum power that can be generated in the
micro-grid and inject the utility grid, while PG+

max
is the

maximum power that can be extracted from the utility
grid to provide of energy to the micro-grid.

3. TIME SERIES FORECASTING

This section gives a review for time series and forecasting
techniques. Then, these tools are used to forecast time
series, which will be required in the optimization scheme
of the micro-grid.

For convenience purposes it is required to know or predict
the behavior of a phenomena or a variable in order to
plan or take decisions such that a desired objective can
be accomplished. Hence, the analysis of time series can
be used in order to forecast the future values for these
variables, where the forecast process is based on past
values of these variables. Thus, for a time series given as
Y1 Y2, ..., Yt, it is desired to describe the behavior of that
variable by means of a model, which is used to forecast
future values.
Definition 1. (Time Series). A time series, denoted by
Y1, Y2, . . . , Yt, is a family of random variables, observations
or measurements ordered according to an unit of time t
[13].

The models for time series analysis are generally defined by
three components: Trend Tt , seasonal St and a random
component (a stochastic process) εt. These components
are defined as:
Definition 2. (Trend). It is a function Tt describing the
slow evolution and long-term average level of the series
[8].
Definition 3. (Seasonal Component). The seasonal com-
ponent St is the trend of the data of the time series, which
presents a behavior that is repeated every L periods of
time [12].
Definition 4. (Random Component). The random com-
ponent εt are those movements which do not show a recog-
nizable and periodical behavior, and they are considered
random and assumed to be independent of each one, whit
zero mean and variance σ2 [17, 1].

In general, two models are used to describe a time series:
the additive model and the multiplicative model. The
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additive model supposes that the value of the time series
is composed of the addition of the three components as

Yt = Tt + St + εt. (7)
On the other hand, the multiplicative model considers
that the value of the time series is composed of the
multiplication of the three components as

Yt = TtStεt. (8)

From the available information (past values of the series),
the forecast analysis consists of estimating Tt and St as
T̂t and Ŝt, respectively, then they are extracted from Yt

to obtain ε̂t = Yt − T̂t − Ŝt. Further, the resulting series
ε̂t is modeled and estimated. Finally, a time series model
Ŷt = T̂t+Ŝt+ε̂t is obtained, and estimated future values of
this series can be computed as ŶT+h = T̂t+h+ŜT+h+ε̂T+h,
where h = 1, 2, . . . ,m, with m the number of observations
to be predicted.

The common forecast techniques to deal with time series
are ARIMA and ETS, which are described as follows:

3.1 ARIMA

In late 60’s, Box and Jenkins developed the methodology
ARIMA for modeling time series. ARIMA is a statistical
model that uses variations and statistical data regressions
in order to forecast future values of the series. An ARIMA
model is usually expressed as ARIMA (p, d, q), where the
parameters p, d and q are non-negative integers, which
indicate the order of the model components such as au-
toregressive, integrated and moving average, respectively.

The ARIMA model can be generalized by considering
the effect of seasonality. In this case, it is obtained a
Seasonal ARIMA (SARIMA) model, which is denoted as
SARIMA (p, d, q) (P,D,Q)s [10] and described as

Φ (Bs)φ (B) (1−Bs)D (1−B)d
Yt = Θ (Bs) θ (B) εt (9)

where Φ (Bs) ) is the polynomial corresponding to the
autoregressive part (AR) of order P , Θ (Bs) is the poly-
nomial corresponding of the moving average part (MA)
of order Q, φ (B) is the polynomial corresponding to the
autoregressive (AR) of order p and θ (B) is the polynomial
corresponding to the part of moving averages (MA) of
order q, d is the number of differentiation so that the series
is stationary, D is the number of seasonal differentiation
so that the series is stationary, B is the shift operator in
time (BjYt = BYt−j) and s is the seasonal frequency [7].

3.2 ETS

Exponential smoothing method was developed by Robert
G. Brown [4] in 1956; however, a modelling framework
which incorporates a model selection procedure was devel-
oped until recently by [11, 18]. Exponential smoothing is
usually expressed as ETS, where the three letters refer
to three components: error, trend and seasonality. The
notation ETS ( · , · , · ) is used to represent the model of
a time series, besides describes the type of the model
components [9], for instance, ETS (A,N,A) refers to a
model with additive errors (denoted by a A in the model),
no trend (denoted by N) and additive seasonality (de-
noted by A). ETS is a technique for time series prediction

Fig. 2. Electrical demand forecasting (The dashed line
shows the real series. The continuous-line shows the
forecast of the series)

that exponentially weight the historical data, so that the
most recent data may have greater weight with respect to
(w.r.t.) previous data.

3.3 Forecasting for Demand, Costs and Wind Energy

In this paper, the series models are determined automati-
cally by the software R, which is an open source software
[R Development Core Team], for object-oriented program-
ming and dedicated to financial and statistical computa-
tions. This software includes the package forecast, which
is used to obtain the ARIMA and ETS models. Thus, it is
obtained a model for the time series of demand, cost and
wind energy. The models are used to perform a prediction
of 24 values of each series, in intervals of 1 hour, i.e., it is
realized a forecast of 24 hrs. This information will be used
for the optimization algorithm to manage the micro-grid
energy in order to decide the amount and direction of the
stored energy and the energy extracted/injected from/to
the utility grid.

Electrical Demand Forecasting of the Load The time
series corresponding to the load demand was taken form
the series of New York City, USA, during the period of
January 2008 to February 2013, whose data were taken
hourly [PJM Interconnection]. For our convenience, the
demand values are scaled to meet the demand capacity
specification of 1 kW , in accordance with the power of the
proposed micro-grid. Using the software R, it is obtained
automatically the models ARIMA and ETS by using
historical data of last 10 days. The obtained ARIMA and
ETS models, with their respective root-mean-square-error
(RMSE), result in

ARIMA(1, 1, 0)(2, 0, 2)24 with RMSE = 9.21323

ETS(A,N,A) with RMSE = 11.7064.

The ARIMA model has a smaller RMSE error w.r.t. the
ETS model; therefore, the ARIMA model is used for
forecasting this series. The forecast result is shown in Fig.
2.

Forecasting for Energy Prices The series of prices is
taken from [PJM Interconnection], where data refer to the
purchase price of electric energy in the city of New York
during the period of January 2008 to February 2013. Using
the software R, the models ARIMA and ETS, and its
respective errors, are given as
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Fig. 3. Forecast of the purchase price of electrical en-
ergy (The dashed-line shows the real series. The
continuous-line shows the forecast of the series)

Fig. 4. Forecast of sale price of electrical energy (The
dashed-line shows the real series. The continuous-line
displays the forecast of the series)

ARIMA(4, 1, 2)(2, 0, 0)24 with RMSE = 20.94120

ETS(A,N,A) with RMSE = 19.42686.
The ETS model is selected based on its smaller RMSE
w.r.t. the error of the ARIMA model. The result of the
prediction is depicted in Fig. 3.

For the series corresponding to the sale prices of the
injected energy toward the utility grid, it is considered
that an energy selling price is 10% lower than the purchase
price, that is, the selling price is the purchase prices series
scaled by a factor of 0.9. Fig. 4 shows the forecast of selling
price.

Forecasting for Wind Energy From data sampled each
hour of the wind speed in the Ventosa, Oaxaca, Mexico,
and using the software R, the models ARIMA and ETS,
and its respective errors, are obtained as

ARIMA(1, 1, 0)(2, 0, 1)24 with RMSE = 0.97254

ETS(A,Ad, A) with RMSE = 1.00982.

Therefore, the ARIMA model is selected due its lower
RMSE w.r.t. the ETS model. The forecast of the wind
speed is displayed in the upper graph on Fig. 5, whereas
the lower graph shows the generated power by using (1)–
(2), with Cp = 0.40, A = 0, 7854m2 and η = 0.94.

4. OPTIMIZATION OF THE MICRO-GRID

The proposed micro-grid to be optimized is shown in Fig.
6. The figure illustrates the energy flow between the com-
ponents of the micro-grid. The amount and direction of the
energy is determined by an optimization algorithm, which

Fig. 5. Forecast of the wind speed and generated electrical
power (The dashed-line shows the real series. The
continuous-line shows the forecast of the series)

Wind
Energy

Utility
Grid

Load

Energy
Storage

Optimization

Forecast Energy Prices

PSPPPW

PLPPGP

Fig. 6. Optimization scheme for the micro-grid.

considers the prediction of the wind energy availability,
energy demand and the costs of electrical energy along a
period of time T .

The main objective of the optimization scheme is to
determine the optimal amount of energy to be transferred
from/to the storage element and the utility grid, such
that it is minimized the cost associated to the energy
consumption from the utility grid and simultaneously it
is maximized the profit due to the sale of electrical energy
stored and generated in the utility grid.

4.1 Optimization Model

The objective function to be minimized in the optimization
process corresponds to a function composed of 24 future
values (i.e., T = 24) for the variables, where the values
are taken in periods of 1 hour. The model considers the
predicted values from Section 3 for each respective time
series. The proposed model is given as

min
T−1∑
k=0

λk [CB, kPL, kPG, k − CS, kPW, kPS, k] (10)

subject to:
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PG, k + PS, k = PL, k − PW, k

VC,k+1 = αVC,k + β ik

(ik+1 − ik)2 ≤ γ2

VCmin
≤ VC,k ≤ VCmax

i−max ≤ ik ≤ i+max

PG−max
≤ PG, k ≤ PG+

max

VC,0 = 0.70VCnom

VC,T = 0.85VCnom

where 0 < λ ≤ 1 is a discount factor, CB, k is the cost per
kWh associated to the buying of electrical energy from
the utility grid, CS, k is the cost per kWh associated to the
selling of electrical energy toward the utility grid, VC,min =
0.7VCnom

and VC,max = VCnom
, VCnom

is the nominal
voltage of the storage device, γ is a positive constant which
limits the current flow. The decision variables are PG,k and
PS,k. In order to determine PG,k in (10), two issues are
taken into account, the energy buying cost and the load
demand, which allows to obtain a lower value for (10), and
a similar consideration is realized for determining PS, k.

The value for T = 24 is selected by considering that this
time interval is enough to take in advance the decision at
time k = 1 for charging or discharging the supercapacitor
in accordance with energy prices, energy demand and
energy availability. Hence, the optimization is realized at
each time k by considering 24 hours in advance, which
results in an optimization scheme that needs to be updated
each hour.

4.2 Optimization Results

The values used for the optimization algorithm are: T = 24
hrs, λ = 0.995, the sampling time Ts = 1hr, γ = 4, RC =
10 × 106 ohms, C = 100F , VCnom

= 12V , i−max = −10A
and i+max = 10A.

Fig. 7 shows the forecast-based optimization results, where
in the top of the figure it is shown the power flow of
the micro-grid components and in the bottom figure the
respective prices for the energy. The results are described
as follows:

• For the time (1, 6.15) hrs: the generated energy is
greater than the consumed by the load, and besides
the energy is cheap, then energy is extracted from the
utility grid and stored in the supercapacitor.

• For the time (6.15, 10.5) hrs: the energy consumption
by the load is greater than the generated by the wind
system, and the energy is expensive, thus the energy
is taken from the supercapacitor and only a small
amount of energy is taken from the utility grid.

• For the time (10.5, 17.38) hrs: the generated energy
is greater than the consumed by the load, and the
energy is cheap, hence there is energy to be sold to
the utility grid and to charge the supercapacitor.

• Finally, for the time (17.38, 23.4) hrs: the load en-
ergy consumption is greater than the generated, and
besides the energy is expensive, therefore the stored
energy is used by the load and additionally, it is
required to buy energy from the utility grid in order
to fully provide from energy to the load.
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Fig. 7. Optimization results.

As a result of the optimization algorithm, the charge-
discharge of the supercapacitor is depicted in Fig. 8.

5. CONCLUSIONS

This paper proposes an optimization algorithm to manage
in an optimized way the energy in a micro-grid. The values
of the amount and direction of the energy to be transfered
in the storage device and in the utility grid are determined
as a result of the optimization process based on an interval
of 24 hrs, which considers the predicted values for energy
availability, energy prices and load energy demand. A
posteriori, the optimization scheme will be used to manage
the energy reference values for power converters, which are
the elements that interchange the energy in a micro-grid,
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Fig. 8. Voltage and current in the supercapacitor.

and where the energy losses due the converters need to be
considered.
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