
Optimal Sensor Trajectories for Mobile

Underwater Target Positioning with Noisy

Range Measurements

Moreno-Salinas, D. ∗ Pascoal, A. M. ∗∗ Aranda, J. ∗

∗ Department of Computer Science and Automatic Control, National
University Distance Education (UNED), Spain (e-mail:

{dmoreno,jaranda}@dia.uned.es)
∗∗ Laboratory of Robotics and Systems in Engineering and Science
(LARSyS), Instituto Superior Tecnico (IST), University of Lisbon,

Portugal; Adjunct Scientist, National Institute of Oceanography (NIO),
Goa, India (e-mail: antonio@isr.ist.utl.pt)

Abstract: There is considerable interest in reducing the number of sensors/beacons involved
in underwater positioning/navigation systems since this has the potential to drastically reduce
the costs and the time spent in deploying, calibrating, and recovering acoustic equipment at
sea. Motivated by these considerations, we address the problem of single underwater target
positioning based on acoustic range measurements between the target and a moving sensor at
the sea surface. In particular, the goal of the present work is to compute optimal geometric
trajectories for the surface sensor that will, in a well defined sense, maximize the range-related
information available for underwater target positioning and tracking. To this effect, the Fisher
Information Matrix and the maximization of its determinant are used to determine the sensor
trajectory that yields the most accurate positioning of the target, while the latter describes a
preplanned trajectory. It is shown that the optimal trajectory depends on the velocity of the
sensor, the velocity and trajectory of the target, the sampling time between measurements,
the measurement error model, and the number of measurements used to compute the FIM.
Simulation examples illustrate the key results derived.

Keywords: Autonomous underwater vehicles, Fisher information matrix, Cramer-Rao Bound,
optimization, positioning, single tracker.

1. INTRODUCTION

In the last decade there has been a surge of interest
worldwide in the development of marine technologies, in
general, and in autonomous underwater vehicles (AUVs),
in particular, for ocean exploration and exploitation. The
interest in these vehicles resides in the important fact that
they are capable of roaming the oceans freely, collecting
relevant data at an unprecedented scale without the need
for explicit human interaction. In fact, for reasons that
have to do with autonomy, flexibility, and the new trend in
miniaturization, AUVs are steadily emerging as excellent
tools to execute many demanding tasks at sea that include
pipeline inspection, seabed surveying, and archaeological
research, to name but a few.

Central to the operation of some classes of AUVs is
the availability of reliable underwater positioning systems
capable of positioning one or more vehicles simultaneously,
based on information received on-board a support ship
or an autonomous surface vehicle. The info thus obtained
can be used to follow the state of progress of a particular
mission or, if reliable acoustic modems are available, to
relay it as a navigation aid to the navigation systems
existent on-board the AUV. For a review on underwater
positioning systems and related work on this area the

reader is referred to Moreno-Salinas et al. (2013) and
references therein.

A large body of work described in the literature exploits
the geometric configuration of a number of sensors in
order to estimate the position of a target from range or
bearings measurements. These measurements are obtained
at different locations to determine the target position. In
this paper an alternative approach is adopted: a single
mobile sensor measures the successive ranges to an under-
water target and, by exploiting its own spatial diversity,
acquires information to compute the position of the lat-
ter. Our objective is to compute the optimal motion or
trajectory of a single sensor that will, in a well defined
sense, maximize the range-related information available for
underwater target positioning and tracking. To this effect,
we assume that the range measurements are corrupted
by white Gaussian noise, the variance of which depends
on the distance between the two objects that exchange
range data. It is interesting to remark that in spite of the
importance and relevance of the optimal sensor placement
problem, the topic is far from being studied exhaustively
when a single sensor is used.

The rationale for this study stems from the fact that,
from a practical standpoint, there is considerable interest
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in reducing the number of beacons involved in acous-
tic navigation/positioning systems, as they usually in-
volve deployment, calibration and recovery time which is
costly and time consuming. For these reasons, the con-
cept of underwater localization using ranges to a single
beacon/transponder has received increasing attention in
the marine robotics community. The challenge of reducing
the number of sensors involved in underwater acoustic
systems has been addressed previously in the literature in
the different, yet related context of underwater navigation
(in contrast with positioning, which is the core problem
considered in this paper). In fact, there is a vast number of
references that tackle the underwater navigation problem
by assuming that only ranges from a moving vehicle to a
single beacon/transponder installed at a known position
are available (single beacon navigation). For a review on
early work in this area and relevant references that ad-
dress the problem from diverse perspectives the reader is
referred to Alcocer (2009).

The dual of the above problem is that of tracking an
underwater target with a single range measuring device.
We recall that an important question in underwater target
positioning with sensor networks is that of finding the
minimum number of beacons that can be used to perform
an underwater target positioning task. In a practical sit-
uation, because the target is known to be beneath the
sea surface, only 3 non colinear range measurements are
needed. Instead of a static surface sensor network, one may
envision a surface vehicle that, by moving along adequate
trajectories, exploits its spatial diversity while measuring
ranges to the underwater platform in order to determine
the position of the latter, as we do in the present paper. An
early reference to this problem can be found in Been et al.
(1991) where target motion analysis (TMA) with respect
to an unknown marine platform using sonar measurements
is discussed. Other previous results in this challenging area
go back to the work of Passerieux & Capel (1998) where
optimal control theory is used to determine the course
of a constant speed observer. Other interesting references
on the subject are Dandach et al. (2009) that presents
a continuous time adaptive localization algorithm for a
mobile agent where only distances are used to estimate the
localization of an static source, Fallon et al. (2010) that
describes the experimental implementation of an online
algorithm for cooperative localization of AUVs supported
by an autonomous surface craft, Batista et al. (2011) where
the problem of navigation and source localization based on
range measurements to a source is tackled, and Arrichiello
et al. (2011) where the problem of observability of the rela-
tive motion of two AUVs equipped with velocity and depth
sensors, and inter-vehicle ranging devices, is studied. In
Scherbatyuk & Dubrovin (2012) a number of algorithms to
position an AUV based on range measurements obtained
with a single acoustic sensor at the ocean surface are also
described. Finally, in Moreno-Salinas et al. (2013b) the
authors study algorithms to position a static underwater
target using range measurements assuming constant co-
variance of the measurement noise.

Motivated by this circle of ideas, in this paper we seek
to characterize, from a theoretical standpoint, the optimal
trajectories that a single range sensor must execute, in
order to maximize the accuracy with which a target can

be tracked and localized. From a practical standpoint, this
will provide guidelines as to how one should operate in
practical scenarios. The key contributions of the present
paper are threefold: i) a methodology is proposed to
compute the optimal trajectory that a single sensor must
execute once the number of measurements is fixed, ii) a
general solution is obtained numerically for positioning
and tracking of a mobile underwater target describing
straight lines and circumferences, and iii) a distance-
dependent measurement error is considered to include the
important fact that measurement errors may grow in a
nonlinear manner with the distance between the sensor
and the target.

The paper is organized as follows. Section 2 describes the
computation of the Fisher Information Matrix (FIM) for
the problem at hand when a noise model with distance-
dependent covariance is considered. In Section 3 the posi-
tioning problem is formulated and the assumptions made
for the computation of its optimal trajectories are estab-
lished. Section 4 contains the description of the algorithm
adopted to compute the trajectories. Simulation examples
are included for different target trajectories. Finally, Sec-
tion 5 contains the conclusions.

2. FISHER INFORMATION MATRIX WITH
DISTANCE-DEPENDENT MEASUREMENT NOISE

There is a wide range of error sources that can affect
underwater range measurements: depth-dependent speed
of propagation of sound in the water, physical propagation
barriers, ambient noise, and degrading signal-to-noise ratio
as the distance between the two objects increases, to name
but a few. For analytical tractability, it is usually assumed
that the measurement errors are corrupted by Gaussian,
zero mean, additive noise with constant covariance. To
better capture physical reality, in this paper we assume
that the measurement noise is modelled by a zero-mean
Gaussian process where the covariance depends on the
distance between the two objects that exchange range
data. Other references where similar measurement error
descriptions can be found are Jourdan & Roy (2008) and
Moreno-Salinas et al. (2013). Stated mathematically,

ω = (I + ηδ(rγ)) · ω0 (1)

where ω is the measurement noise, ω0 is a zero mean
Gaussian process N(0,Σ0) with Σ0 = σ2 · I, I is the
identity matrix, r is range, and η and γ are the modelling
parameters for the distance-dependent noise component.
In the above, δ is the operator diag, that converts a vector
into a square diagonal matrix whose diagonal components
are the array elements. With these assumptions, the mea-
surement noise covariance is given by

Σ = σ2 (I + ηδ(rγ))2 (2)

Let q = [qix, qiy, qiz ]
T be the position of an arbitrary target

at sampling time i, pi = [pix, piy, piz]; i = 1, 2, .., n, the
position of the acoustic ranging sensor also at sampling
time i, and ωi the corresponding measurement noise.
Further let ri be the distance between the target position
qi and the i− th sensor position at the time at which the
acoustic reply from the target is received by the sensor,
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see Section 3 for further details. With this notation, the
measurement model adopted is given by

r̂i(q) = ‖(pi − qi)‖+ ωi = ri + wi (3)

To compute the optimal trajectory for the ranging sensor,
a numerical algorithm that optimizes an indicator based
on an appropriately defined Fisher Information Matrix
is computed. Stated in simple terms, the FIM captures
the amount of information that measured data provide
about an unknown parameter (or vector of parameters) to
be estimated. Under known assumptions, the FIM is the
inverse of the Cramer-Rao Bound matrix (abbv. CRB),
which lower bounds the covariance of the estimation error
that can possibly be obtained with any unbiased estimator,
see Van Trees (2001). Thus, ”minimizing the CRB” may
yield (by proper estimator selection) a decrease of uncer-
tainty in the parameter estimation. We therefore focus on
the computation of the FIM. In particular, we maximize
the FIM determinant to determine the optimal acoustic
sensor trajectory that maximizes the expected positioning
accuracy. Following standard procedures, the FIM for a
moving target qi, with i = 1, · · · , n, where i represents
the different points at which the ranges are measured, is
computed from the likelihood function,

Pq =
1

(2π)
n

2 |Σ|
1

2

exp

{

−
1

2
(y − h(q))

T
Σ−1 (y − h(q))

}

(4)

where y = [r1, r2, ..., rn]
T consists of n measured ranges,

h(q) = r(q) are the actual ranges, q = [q1, q2, ..., qn] are the
successive target positions, and n is the number of range
measurements with which the FIM is computed. Notice the
important fact that if one knows in advance the type of
trajectory that the target follows as well as its speed, but
not its initial position, we can define the different target
positions as a function of the initial position q1 = q0, the
target speed Vt, and its orientation αt(t). Thus, qi = q0 +
fi(Vt, αt(t)) and we may estimate the initial target position
q0 from the n measured ranges. Thus, taking the logarithm
of (4), computing its derivative with respect to q0, and
computing its expected value, the FIM becomes:

FIM = Cδ(r)−1δ
(

rγ−1
)

Σ−1δ
(

rγ−1
)

δ(r)−1CT (5)

where C = (q1Tn − p) ∈ ℜ3xn, 1n ∈ ℜnx1 is a vector of
1s, and p is the vector of sensor positions, the latter being
defined in ℜ3xn. Once the FIM is computed, then the CRB
becomes CRB = FIM−1. In this context, the optimal
sensor trajectory is obtained by maximizing a quantity
related to the determinant of the FIM. In a practical
situation, the remaining n − 1 target positions may be
obtained with the estimate of q0 and the known target
trajectory.

3. PROBLEM FORMULATION

For a given moving target tracking problem, the optimal
sensor trajectory will depend strongly on the constraints
imposed by the task (e.g. maximum number of mea-
surements used for the computation of the FIM, target
trajectory, or the type of sensor that can be used) and
the environment (e.g. ambient noise). It is clear that an
inadequate sensor trajectory may yield large positioning
errors, thus, it is important to define the constraints and

Ei

∆t V(ti)

βi

∆t V(ti)-di
pi

di

Ri

ri

p’i

r’i

di+1

ri+1

r’i+1

pi+1p’i+1

Ei+1

Ei+2

Ri+1

q

βi+1

Fig. 1. Problem Setup for a Static Target

assumptions considered in this paper to solve the problem
at hand. The problem framework is defined as follows:

• The unmanned surface vehicle (USV) that carries the
acoustic ranging sensor must localize a single moving
target that describes straight lines and circumferences
with constant speed Vt(t) = Vt.

• The initial USV position is arbitrary for it does
not condition the final optimal solution but only
conditions the time to reach it.

• The target position is estimated with a fixed number
of measurements n, i.e., the FIM is computed using
n range measurements.

• The acoustic signals are emitted at constant intervals
of time ∆t and there exists a delay between the
emission by the pinger on board the USV and the
reply from the target. Therefore, the reception of the
acoustic reply takes place at a different point from
the emission point, see Fig 1.

• The sensor, or USV, moves with constant speed
V (t) = V that is always larger than that of the target.

• It is considered that the measured ranges rk used to
define the FIM correspond to the time for the acoustic
signal to travel from the target back to the sensor.

Some of the above issues are illustrated in Figure 1. Notice
how the sensor (red points) emits the acoustic signal at
time Ei and the reply from the target (green points)
is received by the sensor at time Ri, with di being the
distance between the two above points. The distance di
depends on the velocity of sound in the water, the sensor
speed V , target speed Vt, and on the range distances r′i and
ri associated with the times that it takes for the acoustic
signal to travel from the emitter to the receiver underwater
and back to the emitter, respectively. The emission point
Ei defines the point p′i, the reception point Ri defines
the i − th measurement point pi, and the range distance
measured for the FIM computation is considered to be ri,
i.e., the distance between the target position qi and the
sensor position pi. Thus, with the above notation pi = Ri

and qi corresponds to the target position at the moment
of the reply by the underwater target. In this theoretical
setting it is considered that r′i and ri, and therefore p′i and
pi, are known, so we can define analytically the distance
di that separates the emission and reception points. Let cs
be the speed of sound in the water. Then,

di
V

=
r′i
cs

+
ri
cs

(6)
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Moreover, if β is the angle defined by r′i and di, from

the theorem of cosines it follows that r2i = r′
2

i + d2i +
2dir

′

i cos (β) with

β = arccos

(

〈(q − p′i) (p
′

i − pi−1)〉

r′i · (∆tV (ti)− di−1)

)

, (7)

where <> denotes the inner product operation, see Fig. 1.
It follows from (6) that

dk
V

−
r′i
cs

=

√

r′2i + d2i + 2dir′i cos (β)

cs
(8)

Taking the square of both sides and rewriting the above
equation yields

di =
2r′i
cs

(

cos (β)

cs
−

1

V

)(

1

c2s
−

1

V 2

)

−1

(9)

so that the new measurement points may be explicitly
defined considering only the past known trajectory in-
formation and the orientation angles αi that the surface
sensor must take at the Ri (also pi) points.

In this work we study the (ideal and seemingly artificial)
situation where the successive positions or trajectory of
the target are known in advance in order to characterize
and fully understand the types of optimal solutions that
the sensor should follow in this ideal case. In a practical
and real situation, these points or trajectory are only
known with uncertainty, and this uncertainty must be
explicitly considered. In this case, an iterative process
can be envisioned in which an initial estimate of the
target trajectory is used to compute the corresponding
optimal sensor trajectory, and once the mission unfolds
the information acquired by the sensor can in turn be used
to refine the underwater target trajectory, after which the
cycle repeats itself. Clearly, having the means to generate,
for an assumed trajectory of the target, the corresponding
optimal trajectory of the surface ranging device (sensor) is
also advantageous in this case. See Moreno-Salinas et al.
(2013) for a discussion of this circle of ideas in the case of
positioning with sensor networks.

4. OPTIMAL TRAJECTORY COMPUTATION

In this section we describe the numerical algorithm to
compute the trajectory that a moving surface sensor must
follow in order to maximize the accuracy with which a
moving underwater target describing different trajectories
can be localized. The computation of the optimal trajec-
tory is done recursively by maximizing the FIM determi-
nant for a given number of measurements points, which
the sensor must track. Therefore, the resultant optimal
trajectory to be followed by the sensor is composed of
partial trajectories of n points, so that for each n range
measurements the positioning accuracy of the underwater
target is maximized, and the new target position estimates
may be obtained every n · ∆t seconds. In a practical
situation we would estimate the initial target position of
the corresponding partial trajectory, and then the pos-
terior target positions would be defined given the prior
knowledge about the target’s motion.

Once the mission is running and an initial estimation
of the target position is available, possibly with a large

error, it is necessary to determine the trajectory that
the single tracker must follow in order to maximize the
positioning accuracy. For given values of the sensor speed
and sampling time, it is easy to derive the analytical
expression that provides the next optimal points because
the new FIM determinant will only have as unknown
parameters the angles αi, which define the successive
heading angles of the sensor for the optimal trajectory.
Since the sensor speed V and the sampling time ∆t are
known, the sensor positions for which the corresponding
ranges are measured can be written as pi+1 = pi +
[ξ cos(αi+1), ξ sin(αi+1), qz] with ξ = (V∆t − di + di+1);
and di, di+1 defined as in Section 3. Thus, the problem to
solve can be defined as that of finding

α∗

i = argmax
αi

|FIM | (10)

for i = 1, · · · , n. The solution may be computed analyt-
ically from the derivatives of the FIM determinant with
respect to the angles αi, i = 2, · · · , n, that determine
the distance and relative orientation of two consecutive
measurements. It is clear, by considering that the initial
sensor position is known (i.e, the last measurement point
of the previous trajectory of n points), that we have n− 1
variables αi, i = 2, · · · , n, and n−1 derivatives with respect
to these angles αi, so that a system of equations with the
same number of equations and unknowns is obtained. The
complexity of this approach resides in the fact that the
process to obtain the solution of this equation system is
complex and tedious. Moreover, we must resort to numer-
ical methods to solve it. Therefore, these derivatives are
used for a gradient optimization algorithm and can be
computed by decomposing the determinant in terms of its
adjoints, yielding

∂|FIM |

∂αi

=
3

∑

j,k

(−1)j+k|Adjj,k(FIM)| ·
∂FIM(j, k)

∂αi

(11)

where |Adjj,k(FIM)| is the determinant of the adjoint
matrix of the FIM with respect to the element (j, k).
Making the equations obtained from (11) equal to 0 we can
find the angles that make the FIM determinant maximum.
It can be seen that although (11) depends only on the
angles αi and an analytical solution may be defined, the
computation of the optimal solution is not immediate.
Therefore, the optimal solution is obtained with a gradient
optimization algorithm using the Armijo rule. The sensor
trajectory is recomputed and the FIM updated each new
n range measurements.

At this point it is interesting to comment that if the
target is static and the values of V , ∆t and n are the
optimal ones for a given target depth so that the maximum
theoretical FIM determinant can be obtained, the same
solution defined in Moreno-Salinas et al. (2011) for surface
sensor networks is recovered.

4.1 Simulation Examples

Some examples of optimal sensor trajectories are now
studied addressing three different scenarios. The range
measurements with which the FIM is computed in each
scenario are n = 5 and n = 8, both with constant and
distance-dependent covariance, for comparison purposes,
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but the procedure would be very similar for any number
of measurements. For each iteration of the algorithm
explained above, the first point of the new trajectory is
the last one in the previous iteration, so that for each
iteration the next n−1 measurement points are computed.
Moreover, because there is no guarantee that the cost
function in (10) is convex, Monte Carlo simulations will
be carried out together with a gradient optimization
algorithm to define the optimal sensor trajectory. The
orientation angles that can be taken by the sensor’s
heading throughout its motion are limited, i.e., we consider
that the vehicle orientation can change by a maximum
angle of 45 deg between two consecutive measurement
points. For all the examples, 100 trajectories of n points
are computed, and a constant speed V = 2 m/s and a
sampling time ∆t = 5 s are considered, with a constant
target depth of 50 m. In the distance-dependent examples,
the added error parameters are set to η = 0.01 and γ = 1.

Example 1: Static target positioning. In this first exam-
ple we consider a static target. In Figure 2(a) the trajec-
tory followed by the sensor is shown for constant covari-
ance error, with n = 5 (red) and n = 8 (green). Notice how
the optimal trajectories are very similar to circumferences
centered at the target position, with the radius depending
on the number of range measurements used. The average
FIM determinants obtained are |FIM |avg1 = 4.3313 · 104

for n = 5, and |FIM |avg2 = 8.7444 · 105 for n = 8,
with the standard deviations SD1 = 3.402 · 103 and
SD2 = 1.1437 · 105, respectively. These imply a deviation
of about 10 percent with respect to the average value,
and thus, the accuracies obtained are almost constant for
the successive optimal partial trajectories. In Figure 2(b),
the same problem is studied but in this case we consider
a distance-dependent covariance error. Notice again how
the optimal trajectories are very similar to circumferences,
and how the radii of the latter increase with the number
of points used to compute the FIM. The average determi-
nants for this case are |FIM |avg1 = 3.4395 · 103 for n = 5,
and |FIM |avg2 = 6.3654 · 104 for n = 8, with standard
deviations SD1 = 355.7804 and SD2 = 1.0706 · 104,
respectively. Again, these standard deviations are less than
the 10 percent of the average values.

Example 2: Straight line target tracking. This second
example deals with a moving target that follows a straight
line path. Figure 2(c) shows, for constant covariance, the
trajectories followed by the sensor while it tracks the
target, the latter advancing at a speed of Vt = 0.2 m/s.
Notice how these trajectories are spiral-like curves around
the successive target positions. It is clear that these spirals
are the deformation of the circumferences that would be
obtained if the target were static, as in the previous
example. The optimal FIM determinants obtained oscillate
between a maximum and a minimum value due to the
optimal spiral trajectory, that comes closer and further
from the target following the target motion. The average
FIM determinants obtained are |FIM |avg1 = 3.5149 · 104

for n = 5, and |FIM |avg2 = 7.6982 · 105 for n = 8,
with the standard deviations SD1 = 8.8551 · 103 and
SD2 = 2.0563 · 105, respectively. Notice how the average
FIM determinants are very similar to those obtained for a
static target. However, the standard deviations are larger,

approximately 20 percent of the average values, due to the
motion of the target. In Figure 2(d) the same situation is
analysed for distance-dependent covariance error. In this
case the average determinants are |FIM |avg1 = 2.7687·103

for n = 5, and |FIM |avg2 = 5.5492·104 for n = 8, with the
standard deviations SD1 = 800.2237 and SD2 = 1.5141 ·
104, respectively. Again the FIM determinants are very
similar to those obtained for a static target although the
standard deviations are larger too.

Example 3: Circular target tracking. In this final ex-
ample the target is considered to be moving following a
circular trajectory with a speed Vt = 0.4 m/s. Figure
2(e) shows the trajectories followed by the sensor while
it tracks the target for the case of constant measurement
noise covariance. Notice that the final trajectories are
again spiral-like curves around the target trajectory. The
average determinants are |FIM |avg1 = 2.1037 · 104 for
n = 5, and |FIM |avg2 = 5.6331 · 105 for n = 8, with the
standard deviations SD1 = 1.2243·104 and SD2 = 2.7349·
105. Notice also how the FIM determinants oscillate due
to the sensor spiral trajectories, although their average
values are close to the optimal of the previous examples.
The standard deviations are again larger due to the more
complicated target trajectory and the larger target speed,
which force the sensor to move back and forward to obtain
adequate positioning accuracy. In Figure 2(f), the optimal
trajectories are shown for distance-dependent covariance,
and again the sensor describes spirals around the target
path. The average FIM determinants for this case are
|FIM |avg1 = 2.0067 · 103 for n = 5, and |FIM |avg2 =
4.7785 · 104 for n = 8, with the standard deviations
SD1 = 1.1446 · 103 and SD2 = 1.9456 · 104, respectively,
that are very similar to those of Examples 1 and 2.

It is important to stress that when the number of points
used to compute the FIM increases, the trajectory de-
scribed by the sensor is located further away from the tar-
get, i.e., larger spirals are obtained. Moreover, the accuracy
obtained (i.e., FIM determinant) is larger too. It is clear
that the accuracies obtained for the constant covariance
cases are larger than those for distance-dependent covari-
ance, since the measurement error does not increase with
the distance. The accuracy, and the optimal trajectory,
also depend on the target depth but this is not shown in
detail due to space limitations. We can therefore conclude
that the approach proposed yields an efficient method to
compute the optimal trajectory that a sensor should track
in order to maximize the precision with which the position
of a moving target can be determined

5. CONCLUSIONS

In this paper, the problem of single underwater target posi-
tioning and tracking by a single surface sensor was studied.
The analysis of optimal sensor trajectories exploited the
spatial and temporal diversity of the measurements taken
by the surface sensor. The problem considered was that
of positioning a target moving along different trajectories.
Three different scenarios were studied, i) a static target,
ii) a moving target following a straight line trajectory,
and iii) a moving target following a circular trajectory.
The optimal trajectories were obtained by maximizing the
determinant of an appropriate FIM for a given number
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Fig. 2. Optimal sensor trajectories to position a static target, a) and b), a target following a straight line path, e) and
f), and a target following a circular path, e) and f), assuming constant covariance (upper figures) and distance
dependent covariance (lower figures) of the measurement noise; for n = 5 (red) and n = 8 (green).

of range measurements, i.e., the approach optimized the
corresponding trajectory for the n range measurements
considered for the FIM computation, and the whole trajec-
tory was defined by joining the consecutive optimal trajec-
tories of n points. The examples showed that the approach
proposed holds good potential to be used in practice (in a
moving-horizon type of approach) to compute the sensor
trajectory that will yield optimal target localization.
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