
Multicore partitioned systems based on
hypervisor

A. Crespo ∗ M. Masmano ∗∗ J. Coronel ∗∗ S. Peiró ∗

P. Balbastre ∗ J. Simó ∗

∗ Universitat Politècncia de València, Spain (e-mail: acrespo, speiro,
pbalbastre, jsimo@ai2.upv.es).

∗∗ Fent Innovative Software Solutions S.L. (FentISS) València, Spain
(e-mail: mmasmano, jcoronel@fentiss.com)

Abstract: Multi-core processors are increasingly being considered to provide the performance
required by future safety critical systems. In some domains like space, it is specially significant
due to the processor technology frequency is limited by the presence of radiation. In that case,
the way to increase computing power can be achieved by the use of multi-core systems.
There is a number of challenges involved in the migration to multi-core processor architectures
in safety-critical embedded systems domain which are still unresolved and which contribute to
increase the complexity of the design. Even if multi-core processors may offer several benefits
to embedded systems, their use is not straightforward. Virtualization techniques maturity have
reach the level to offer guarantees in critical systems.
In this paper, we present a multi-core hypervisor for mixed-criticality applications as one of
the results of the MultiPARTES project. The paper analyse the design and implementation of
XtratuM for multi-core and details a performance analysis to determine the overheads incurred
by the virtualization layer and presents some results when shared resources are considered.

Keywords: Embedded control systems, Scheduling, Partitioned systems, Mixed-Criticality

1. INTRODUCTION

Control system activities have been traditionally designed
as a control application with several tasks that perform
the control, display data, interact with user, etc. All these
activities have different level of criticality due to the timing
constraints or the implication of faults. Mixed-criticality
system approach tries to organize in a more coherent way
the different activities according to the level of criticality
they present. It has important advantages considering the
robustness, fault isolation and certifiability of the system.

Mixed-criticality has increased the interest of researchers
and industry for conceptualization and use where mul-
tiple components with different dependability, real-time
and certification assurance levels (e.g., safety-critical and
consumer functionality) are integrated into a shared com-
puting platform Commision (2012).

On the other hand, the market for real-time embedded sys-
tems has experienced a huge growth, and it is expected to
grow for the foreseeable future ARC (2012). This growth is
translated in terms of increasing computing power, greater
levels of security and greater performances needs. As result
of this, more complex control applications will be used
which can require more complex design and implementa-
tion techniques. The need of higher computing power is
being covered by the adoption of multi-core architectures.
Multi-cores offer better performance than single-core pro-
cessors, while maintaining a relatively simple processor
design. Moreover, multi-core processors ideally enable co-
hosting applications with different requirements (e.g. high

data processing demand and stringent time criticality).
Executing non-safety and safety critical applications on
a common powerful multi-core processor is of paramount
importance in the embedded system market for achieve
mixed-criticality systems. It allows to schedule a higher
number of tasks on a single processor so that the hardware
utilization is maximized, while cost, size, weight and power
requirements are reduced.

There is a number of challenges involved in the migra-
tion to multi-core processor architectures in safety-critical
embedded systems domain which are still unresolved and
which contribute to increase the complexity of the design.
Even if multi-core processors may offer several benefits to
embedded systems, their use is not straightforward. On the
one hand, real time embedded systems require guarantees
on the timing correctness of the system, providing strong
arguments for the most critical ones. On the other hand,
it is required to prevent that one application could corrupt
the state of other applications; paying special attention in
preventing low-criticality applications to affect the high-
criticality ones. This can be accomplished using time and
space separation techniques; the application of such tech-
niques to multi core processor is explored in this paper.

In order to fully exploit the performance improvements
of modern processors in safety-critical applications, it is
advantageous to enable the integration of applications at
multiple levels of critically and security on the same pro-
cessing resource. Partitioned software architectures have
been designed to deal with these aspects. They have
evolved to fulfill security and avionics requirements where

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 12293



predictability is extremely important. The separation ker-
nel proposed in Rushby (1981) established a combination
of hardware and software to allow multiple functions to be
performed on a common set of physical resources without
interference.

The European Space Agency (ESA) has promoted the
adaptation of Integrated Modular Avionics (IMA) to cover
the space market needs. The IMA-SP project ESA (2010-
2012) has defined a partitioned architecture with addi-
tional services to ARINC-653 standard ARINC-653 (1996)
to deal with the new challenges of future software develop-
ment. Temporal and Space Partitioning (TSP) preserves
the fault containment properties and development separa-
tion of concerns. The functional benefits are related to the
allocation of different criticality / security classes to coex-
ist within the same computer, management of the growth
of software functionality, achieve higher degree of integra-
tion as more performing processors becomes available and
facilitate design for re-use Windsor and Hjortnaes (2009).

However, applying these solutions to real-time embed-
ded systems design is not feasible, because they could
introduce timing anomalies Lundqvist and Stenström
(1999) Cullmann et al. (2010) due to their non-deterministic
run-time behavior.

The European Project MultiPARTES (2011) is aimed
to develop a reference architecture for mixed criticality
embedded systems based on virtualized open source plat-
forms. One of the key aspects in MultiPARTES is the vir-
tualization layer that has to achieve the requirements for
mixed-criticality application development and execution.
The virtualization layer is based on previous XtratuM
developments adapting it for multi-core. In this paper,
we describe the XtratuM Multi-core hypervisor that has
been developed to support partitioned systems for real-
time embedded systems. Section 2 presents the goals of
the MultiPARTES project. Section 3 describes the soft-
ware architecture for the virtualization layer. Section 4
details the evaluation of the hypervisor overheads and an
analysis of the impact of shared resources. Finally, some
conclusions are presented.

2. MULTIPARTES PROJECT

Multi-cores Partitioning for Trusted Embedded Systems
(MultiPARTES) MultiPARTES (2011) is a research project
supported by the European Union focused on the devel-
opment of tools and solutions based on mixed criticality
virtualization systems for multi-core platforms as a means
to lower down development, validation and certification
efforts.

The project relies on a virtualization layer to establish
multiple partitions (independent execution environments)
with different criticality requirements on a single hardware
platform. Spatial and temporal isolation between parti-
tions enables independent validation and certification, in-
creases maintainability and reduces development labor.

Five engineering use cases based on existing industry ex-
amples, that have been found relevant from the method-
ology and platform specific demands point of view, have
been identified in order to highlight the requirements of
trusted embedded systems development. These use cases

aim to depict current or foreseen scenarios where dif-
ferent levels of dependability and security are stressed,
and where MultiPARTES technological innovations could
achieve significant improvements on the development of
future products.

2.1 Hardware Platform

The selected hardware architecture is an heterogeneous
multiprocessor System-on-Chip (MPSoC) consisting of a
dual-core Intel Atom processor connected to a FPGA
containing up to three LEON3 CPUs via PCI-Express,
where the LEON3 cores are also connected to the PCI-
Express through a shared memory interface.

The Intel Atom dual-core processor is intended to ac-
commodate general purpose operating systems running
non-critical applications, and has a simple x86 architec-
ture with local L1 and L2 cache memories and a global
memory controller. The Supermicro X7SPA-H mainboard
is a Commercial Off-The-Shelf (COTS) mainboard that
provides expansion capabilities such as Ethernet, SATA
PCI-e, USB etc. A second mainboard is supported, since
one of the use cases specifically requires the use of the
Intel Desktop Board D525MW. The FPGA board that
will host RTOS running high criticality applications is a
Xilinx Spartan6 development board that incorporates up
to 3 LEON3 CPUs. Its increased logic capacity enables the
use of different configurations for different use cases. The
PCI-e port is used to interconnect the Atom mainboard
to the FPGA board creating an heterogeneous multi-core
platform.

Due to space limitations, in this paper, the analysis and
performance measurements are focused on the x86 ar-
chitecture. However, the results are extrapolated to the
LEON3 architecture. In that case, the processor frequency
is 50Mhz that impact directly in the cost of the instruc-
tions.

3. XTRATUM MULTI-CORE HYPERVISOR

3.1 SMP Virtualization layer

In order to integrate several applications on a single
multi-core architecture, two software approaches can be
used: the Symmetric Multi Processing (SMP) and the
Asymmetric Multi Processing (AMP). Using the SMP
solution a single Operating System (OS) runs on all
the cores, each applications is executed in a separated
process of the OS. This solution usually allows for good
performance; however the development and qualification
of an SMP OS is a complex and costly process. Moreover,
all the applications have to use the same OS, which can
be a constraint in some cases. In the AMP scheme, an
independent OS is executed on each core. This obviously
allows for running applications using different OS, but in
this case the spatial partitioning between the applications
can be difficult to enforce, as each OS has access to the
complement memory map.

Instead we propose to use a hybrid solution based on
a SMP virtualization layer that provides virtualization
services to guest applications. Each application can run
its own OS on its virtual processor. The hypervisor kernel

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

12294



is able to enforce a strict time and space partitioning the
of the hardware resources. Figure 1 shows the hypervisor
based SMP architecture.

Fig. 1. Hypervisor SMP software architecture

This approach has the advantages of allowing a smooth
transition from mono-core applications to multi-core plat-
forms. An application developed to run on top of a mono-
core hypervisor would run transparently on a multi-core
hypervisor, only the hypervisor kernel needs to be ported
and qualified to the multi-core processor. The main ad-
vanced feature of the hypervisor kernel that could allow
for a more efficient use of a multi-core processor in a time
and space partitioning context. The possibility to allocate
several virtual processing cores to a single partition at
the same time. This allows allocating more processing
resource to a given partition, for instance a data processing
partition.

3.2 XtratuM hypervisor

XtratuM Masmano et al. (2010, 2009) is a hypervisor for
embedded real-time systems that initially was developed
for x86 processor and ported to LEON2 and LEON3.
XtratuM was designed to meet safety critical real-time
requirements. The most relevant features are:

• Bare hypervisor.
• Employs para-virtualization techniques.
• Strong temporal isolation: fixed cyclic scheduler.
• Strong spatial isolation: all partitions are executed in

processor user mode, and do not share memory.
• Fault management using a Health Monitor that is

statically configured to confine the faults of the sys-
tem and partitions.

• Fine grain hardware resource allocation via a config-
uration file.

• Robust communication mechanisms (XtratuM sam-
pling and queuing ports).

Based and preserving the properties of the XtratuM, it
has been adapted to be executed on the x86 and LEON3
multi-core in order to achieve a heterogeneous multi-core
platform. The adaptation design has followed the next
criteria:

• A hypervisor is a software layer that offers a virtual
machine near the real one. From this point of view,
the design goal is to provide as many virtual CPUs
as the hardware provides.

• The hypervisor mimics the hardware behavior. The
hypervisor, as the hardware does, offers one virtual

CPU initialized to the partitions and they are respon-
sible of the initialization of other virtual CPUs when
needed.

• Partitions can be mono or multi-core. The hypervisor
does not force to have multi core partitions (multi-
core operating systems). A mono-core partition can
be executed without the knowledge of the underlying
multi-core hardware.

• Separation concerns among virtual and real CPUs. A
partition using a virtual CPU can allocate it in any
of the real CPUs.

• Real CPUs can be scheduled under different schedul-
ing policies. The system integrator can decide the
more appropriated scheduling policy for the real
CPUs. Some CPUs can be scheduled under a cyclic
scheduling policy and others can be scheduled under
a priority-based scheduling.

• Partitions vCPUs are statically allocated in the con-
figuration file.

Figure 2 shows an example of three partitions using
different cores and the mapping between the virtual and
real CPUs.

Fig. 2. virtual CPUs allocation to real CPUs

3.3 Virtual CPUs (vCPUs)

XtratuM offers as many virtual CPUs as the hardware
provides. Partitions can define in the configuration file the
number of vCPUs and its allocation in the real CPUs.
XtratuM mimics the hardware behavior and boot for each
partition one vCPU (vCPU0). If more than one vCPU
are declared, partitions have be multi-core and are in
charge of booting the rest of the declared vCPUs. Specific
services to deal with vCPUs at partition level are provided
by the hypervisor. These services allow the partition to
start, suspend, resume and halt its vCPUs. vCPUs only
are visible for the container partition.

The states of a vCPU are: Normal, Halt, Suspend or Boot.
For instance, a vCPU of a partition can change to Boot,
independently of the current state, as result of a reset on
the vCPU or reset partition (all vCPUs change to Boot).
A vCPU can halt itself or be halted by another vCPU of
the same partition. When halted, the vCPU is not selected
by the scheduler and the time slot allocated to it is left
idle (it is not allocated to other partitions). All resources
allocated to the vCPU are released. It is not possible to
return to normal state.

In suspended state, the vCPU is not be scheduled and
interrupts are not delivered. Interrupts raised while in
suspended state are left pending. The vCPU can return to

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

12295



ready state if requested by another vCPU of the partition
by calling the resume vCPU hypercall.

3.4 Scheduling policies

The basic scheduling policy provided by XtratuM is cyclic
scheduling. This policy ensures that one partition cannot
use the processor for longer than scheduled to the detri-
ment of other partitions (temporal isolation). The set of
time slots allocated to each partition is defined in the
configuration file at the design phase. Each partition is
scheduled for a time slot defined as a start time and a
duration. Within a time slot, XtratuM allocates the pro-
cessor to the partition. The cyclic schedule is defined in a
Major Frame (MAF) that corresponds to the hyperperiod
of the periodic activities.

However, in order to add flexibility several scheduling
policies can be specified in the configuration file. The main
assumptions are:

• A scheduling policy can be attached to each physical
core.

• Several scheduling policies can coexist.
• All cores scheduled under cyclic scheduling share the

MAF.
• Other policies are: Fixed priority scheduling.
• A multi-core partition can use several cores under

different policies. These features permit to implement
a fast IO communications. A multi-core partition can
allocate a thread to core under a cyclic scheduling and
other thread to a core under a priority based schedule.

• Real CPUs can be scheduled under different schedul-
ing policies. The system integrator can decide the
more appropriated scheduling policy for the real
CPUs. Some CPUs can be scheduled under a cyclic
scheduling policy and others can be scheduled under
a priority-based scheduling.

4. PERFORMANCE EVALUATION

The performance evaluation is focused on the analysis of
several aspects as:

• A performance model is defined to calculate the over-
head introduced by the hypervisor in a partition that
is executed in several slots with different durations.

• The computation of the partition context switch as
the main impact of the hypervisor and the measure-
ment of the overhead in a scenario in order to compare
the computed and measured overheads.

• Effect of the hypervisor layer. The effect of the hyper-
visor layer is analysed by comparing the execution of
the benchmarks on the native hardware against its
execution as a partition on top of the hypervisor.

• Effect of the multi-core shared resources. The goal is
to analyse the impact of the shared resources on the
execution.

The target of evaluation is a X7SPA-H Board with Atom
Dual Core at 1.66 GHz, 1 Mb L2 cache, 4Gb RAM memory
DDR2 667MHz.

CoreMark benchmark have been used to perform the eval-
uation. CoreMark EEMBC (2001) is a simple benchmark
that is designed specifically to test the functionality of a

processor core. It uses basic data structures (lists, strings,
and arrays) and algorithms that are common in practically
any application. It allows analysing with accuracy the
impact of the hypervisor layer.

The adaptation of these tests to be executed as XtratuM
partitions is minimal (clock access and output).

4.1 Hypervisor layer performances

Performance tests measure the quality of the system, such
as overhead or performance. The performance of the multi-
core hypervisor is assessed through a overhead model and
a set of tests designed to capture the overheads induced by
the hypervisor under different loads. Standard Coremark
benchmark such as is run as bare metal applications as
well as partitions, the frequency of context switches and
the number of partitions executing concurrently will be in-
creased progressively in order to measure the performance
of the hypervisor at several different load points.

4.2 Overhead model

When the hypervisor schedules a partition, it is executed
without impact of the hypervisor. The hypervisor is ex-
ecuted only if the partition explicitly request hypervisor
services as set interrupt mask, send or receive a message,
etc. So, the partition execution is shown in figure 3. As
the partition slot is defined with a [start time, duration]
being the start time relative to the MAF origin, when this
time arrives, the hypervisor performs the partition context
switch (PCS) and sets a timer to trigger at the absolute
time start time+ duration.

Fig. 3. Partition effective slot duration

The effective slot time used by a partition k is the time
when the partition executes its own code. The effective
time of a slot ET can be modeled taking into account the
slot duration SD and the partition context switch PCS.

ET = SD − PCS

In general, if a partition k is executed in a MAF n times
with slots of different sizes, the total effective time in the
MAF can be computed as:

ETk =
∑n

i=1(SDk
i ) − (n ∗ PCS)

being SDk
i the slot duration of slot i of the partition k.

The virtualization layer produces a performance loss PL
in a partition k that can be modeled by:

PLk = n∗PCS∑n

i=1
SDk

i

4.3 Partition Context Switch (PCS)

In order to measure the PCS, XtratuM has been in-
strumented to get the exact instant times at which the

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

12296



partition switch is performed. These exact times are the
clock occurrence signaling the end of the previous slot (t1)
and the return of the hypervisor code to the partition code
(t2).

These direct measurements are obtained by forcing break-
points in the code instructions that initiate and finish
the process. In debugging mode, the execution is halted
each time the breakpoint is reached and the register that
contains the time is logged. Measured time for the x86
processor are 11 µsec.

In order to confirm these result a scenario with several
partitions is build. The scenario consists in 3 counting
(increase an internal counter) partitions and a reader par-
tition that is able to access to the partition counters. The
reader partition reads the partition counters every second.
Counting partitions are executed in different experiments
with different slot durations. The goal of the experiment is
to measure the performance loss of the counting partitions
when the slot duration is 1000, 500, 100, 50, 10, 5 and 1
millisecond.

Table 1 summarizes the results comparing the theoretical
PL and the measured in the experiment. The experiment
with 1 second is taken as reference for the scenarios.

Slot duration (msec) Measured overhead Theoretical PL

1000 0,000% 0,001%

500 0,001% 0,002%

100 0,009% 0,011%

50 0,019% 0,022%

10 0,099% 0,110%

5 0,202% 0,220%

1 1,074% 1,100%

Table 1. Measured vs Calculated overhead

4.4 Native versus partition multi-core applications

This test aims to evaluate the performance loss due to the
multi-core hypervisor. The goal is to compare Coremark
benchmark running in the native hardware using a bare
implementation against the same benchmarks running as
a partition on top of the virtualization layer when it is
executed in 1 core without the interference of the other
core and in 2 cores at the same time intervals. The
partitioned benchmarks are executed under the hypervisor
cyclic scheduling. The slot duration is larger than 30
seconds in order to complete the execution in one slot
and avoid in the measurement the effect of the partition
context switch.

Table 2. shows the results obtained.

CoreMark Core Cores used CoreMark/MHZ Perf.loss

Native - - 1,78911 0,00%

Partitioned 1 1 1,78597 0,18%

Partitioned 1 2 1,77386 0,85%

Partitioned 2 2 1,77408 0,84%

Table 2. Native vs Partition performance

When comparing the native CoreMark with respect to
the partitioned version, the overhead is due to the use of
privileged instructions used by the benchmark that have
been para-virtualized invoking hypervisor services. When
the benchmark is execute at the same time in two cores an

additional overhead is detected due to the use of shared
resources (cache, memory, etc.).

4.5 Temporal interference due to shared resources

Temporal interference is produced when partitions in
different cores use shared resources. We focus on this
evaluation of the temporal impact that a target partition
suffers when another partition is executed in other core
and perform intensive access to memory.

To analyse this impact, a scenario with different levels of
overlapping in both partitions is defined. The scenario is
defined with 2 partitions. P1 is the target of evaluation and
perform a fixed payload that is measured in an isolated
environment. P1 performs the following steps: read the
clock (t1), perform the payload, read the clock (t2) and
computes the differences t2 − t1 (execution time). P2 is a
dummy partition that perform a loop accessing to a table
and modifying its values. P1 is executed in core 0 and P2

is executed in core 1.

In order to analyse the effects in the worst conditions,
cache management (instructions and data) is disabled
for both partitions forcing to both partitions to access
physically to memory.

This scenario is executed under the following scheduling
plan:

• MAF: 50 msec
• P1 slot duration: 20 msec. The payload is 830 µusec.
• P2 slot duration: 20 msec.
• Experiments:

· S0: No interference. P2 [20ms-20msec]
· S25: 25% of interference. P2 [600us-20msec]
· S50: 50 % of interference. P2 [400us-20msec]
· S75: 75 % of interference. P2 [200us-20msec]
· S100: 100 % of interference. P2 [0us-20msec]

Fig. 4 shows the schedule of S25.

Fig. 4. Schedule of the S25

Table 3 presents the results of the impact of P2 on the exe-
cution of P1. If there is an approximated overlapping of the
25%, the increment of the execution time is incremented
from 830 to 848 µsecs. Next table presents the statistics of
these measurement that corresponds to 100 measurements
in each experiment (time values are in µsecs).

Fig. 5 plots the measured values of the execution time in
the different experiments. X-axis represents the measure-
ments and Y-axis the execution time in µsecs.

These results show that the impact, as expected, depends
on the overlapping interval. The important aspect is that

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

12297



S0 S25 S50 S75 S100

Avg 834 848 869 895 946

Max 837 851 872 899 948

Min 831 845 865 888 944

Stdev 1,944 1,917 2,031 2,041 1,056

Interference - 1,68% 4,20% 7,31% 13,43%

Table 3. Impact of the memory accesses in the
P1 execution time

Fig. 5. Execution time plot

in a cyclic schedule that has been off-line generated, it
can be adjusted to limit the effects of the interference. If
the result in the S100 scenario (13,43 %) that corresponds
to the worst case scenario is compared with the obtained
in cache enabled conditions (table 4.4 0.85%), it can be
conclude that still flexibility in the margins is possible.

This analysis strongly depends on the hardware platform.
Specific analysis for each new platform should be per-
formed. The analysis gives an idea about the bound of
the impact. With these information, should be possible to
take into account it for the worst case analysis and also to
design the cyclic plan.

5. CONCLUSIONS

In this paper we presented the XtratuM hypervisor for
multi-core systems developed under the MultiPARTES
project to support mixed-criticality application on multi-
core systems. XtratuM is a hypervisor that is being uses
in space applications in single-core systems. In this work,
we presented the design and implementation issues of
the multi-core adaptation. Multi-cores offer better perfor-
mance than single-core processors to deal with executing
non-safety and safety critical applications on a common
powerful multi-core processor. It is of paramount impor-
tance in the embedded system market for achieve mixed-
criticality systems. It allows to schedule a higher number of
tasks on a single processor so that the hardware utilization
is maximized, while cost, size, weight and power require-
ments are reduced. Additionally, the described approach
for XtratuM permits to re-use single-core applications
running in a multi-core platform without impacting in the
application design and implementation.

However, the use of multi-core introduce a indeterminism
in the worst case execution time of the applications due
to the execution in other cores. This aspect can affect to
the temporal isolation of partitions because the execution
time is dependent of the other core load. In the evaluation
described in the paper, we shown that the effect of other
cores can be estimated in the worst case. It depends on
the overlapping execution that can be controlled in the

cyclic scheduling plan of the hypervisor that is off-line
designed and can be controlled when the plan is generated.
Appropriated tools to model margins to partition worst
case analysis and to generate the scheduling plan are
required. In MultiPARTES project, there is a specific work
package that is in charge of this activity.

Finally, the performance evaluation of XtratuM has shown
the low impact on application performances. It permits
to consider the virtualization approach as an important
component to build future secure and robust embedded
systems where several applications can have different lev-
els of constraints. One challenge that has to be solved
is the certifiability of virtualization layer for multi-core
platforms. It is an important issue that has to be supported
by appropriated methods and techniques.

ACKNOWLEDGEMENTS

This work has been funded by the 7th Framework Pro-
gramme (FP7), project MultiPARTES (IST 287702), and
by the Spanish National R&D&I program, project HI-
PARTES (TIN2011- 28567-C03) and COBAMI (DPI2011-
28507-C02-02).

REFERENCES

ARC (2012). Process Safety System. Market Analysis and
Forecast. ARC Advisory Group.

ARINC-653 (1996). Avionics Application Software Stan-
dard Interface (ARINC-653). Airlines Electronic Eng.
Committee.

Commision, E. (2012). Workshop on
Mixed Criticality Systems. Brussels.
cordis.europa.eu/fp7/ict/computing/home en.html.

Cullmann, C., Ferdinand, C., Gebhard, G., Grund, D.,
(Burguire), C.M., Reineke, J., Triquet, B., and Wilhelm,
R. (2010). Predictability considerations in the design of
multi-core embedded systems.

EEMBC (2001). Coremark benchmark.
Www.coremark.org/.

ESA (2010-2012). Integrated modular avionics for space
(ima-sp). ESA project.

Lundqvist, T. and Stenström, P. (1999). Timing anomalies
in dynamically scheduled microprocessors. In IEEE
Real-Time Systems Symposium, 12–21.

Masmano, M., Ripoll, I., Crespo, A., and Metge, J. (2009).
Xtratum: a hypervisor for safety critical embedded sys-
tems. In Eleventh Real-Time Linux Workshop. Dresden
(Germany).

Masmano, M., Ripoll, I., Peiró, S., and Crespo, A. (2010).
Xtratum for leon3: an open source hypervisor for high
integrity systems. In European Conference on Embed-
ded Real Time Software and Systems. ERTS2 2010.
Toulouse (France).

MultiPARTES (2011). Multi-cores partitioning for trusted
embedded systems. EU FP7-ICT-287702 2011-14.

Rushby, J. (1981). Design and verification of secure
systems. In ACM Operating Systems Review, volume
15, 5, 12–21.

Windsor, J. and Hjortnaes, K. (2009). Time and space
partitioning in spacecraft avionics. Space Mission
Challenges for Information Technology, 0, 13–20.
doi:http://doi.ieeecomputersociety.org/10.1109/SMC-
IT.2009.11.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

12298


