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Abstract: This work discusses several approaches to the multi input, single output problem in hydraulic
control. The multi input problem arises from the fact, that the actuator force in a hydraulic cylinder is
the result of a combination of two pressure states, which is not uniquely defined. With each individual
pressure state there may be associated a subsystem with a control input. To achieve a desired actuator
force there are inifinitely many combinations of pressure values possible, and it is therefore unclear how
to chose the tracking reference values for the pressure subsystems. Secondary objectives are defined, with
time optimality of the step response of the subsystems being one of them, that can be used to solve the
multi input problem by treating it as an optimization problem. The practical implications of the optimal
solutions are discussed and a new solution is proposed, motivated by the results of the optimization
problems. The proposed solution is used to develop a backstepping control for a hydraulic multi input
single output system, and its performance is shown in simulation.

1. INTRODUCTION

A popular control design methodology for hydraulic piston-
cylinder systems is the backstepping method (Krstić et al.
[1995], Choux et al. [2009], Kaddissi et al. [2007]). It is es-
pecially useful in the design of a tracking controller, as the
design method implicitely provides a combined feedforward
and feedback structure and is straight forward to apply to strict-
feedback systems in a single input single output configuration.
Typically this configuration appears in hydraulic systems with
a servo driven pump, where the rotational speed of the pump
can be viewed as the system input (cf. Habibi and Goldenberg
[2000], Ahn et al. [2013]) or in systems with a fixed speed pump
and a servo valve, where the valve opening acts as the input
to the system (cf. Ayalew and Kulakowski [2006],Loukianov
et al. [2009]). In those systems there is a single input (valve
position or pump speed) to single output (position, speed or
force) relationship and the backstepping design method ap-
plies straight forwardly, resulting in various extensions of the
backstepping having been applied in literature, ranging from
adpative methods (Ahn et al. [2013], Choux et al. [2009]) to
problem tailored lyapunov functions (Kaddissi et al. [2007]).

For systems that combine both inputs, a servo driven pump and
a servo valve, the application of the backstepping method, or
any other method that includes a feedforward part that relies
on the reference trajectory, faces the problem of the non-unique
relationship between the (reference or desired) force and the
cylinder pressures. This problem is adressed in this work by
defining secondary objectives that allow to cast this problem,
under reasonable assumptions, into an optimization problem.
Two different approaches are taken to cast the multi input prob-
lem as an optimization problem, aiming for different objectives.
Motivated by the results of the optimization problems, a solu-
tion is proposed, that shows some characteristics of the optimal
solutions and has advantages in the implementability.

The paper is structured as follows: First the hydraulic plant
model is introduced that shows a two inputs, one output struc-
ture and that is used to design the control system. In the fol-
lowing the multi input problem is highlighted as the first steps
of the backstepping control design are shown and different
approaches are discussed, based on the formulation as an op-
timization problem. Motivated by those results a new approach
to the multi input problem is proposed, which is used to design
the control in the succeeding section. The penultimate section
presents the simulation model and the simulation results of the
proposed controller. Finally the conclusions conclude the paper,
not without giving an outlook to possible follow up work.

2. PLANT MODEL

The schematic of the hydraulic plant that should be considered
in this work is shown in Figure 1. The hydraulic system consists
of a hydraulic fluid reservoir, under atmospheric pressure, a
pump driven by a servo, which allows to control the pump speed
and rotation direction (bidirectional pump), and a servo-valve,
in the schematic shown as a 4/3 way valve to show the possible
connections, but the valve can take all intermediate positions.
The actuator of the hydraulic system is a hydraulic cylinder
which acts against a load force FL. The pump rotational speed
and the valve position are considered as inputs u1, resp. u2,
where positive values in u2 represent the connection of A–T
and B–P, negative values A–P, B–T.

The system model (1) of the hydraulic plant in state space
form is derived using standard hydraulic equations for the flow
through an orifice and Newton’s Law for the movement of
a mass. The valve shows by construction different opening
characteristics for each of the four channels A–T, B–P, A–
P and B–T, which are represented by the positive parameters
sAP < sBP < sAT < sBT . Besides that the flow through the valve
is characterized by the nominal flow QN at a nominal pressure
drop pN .
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Fig. 1. Schematic of the hydraulic circuit in a multi input
configuration, with inputs u1 and u2.

ẋ1 = x2 (1a)

ẋ2 =
1
m
(x3A1− x4A2−FL) (1b)

ẋ3 =
E

V01 +A1x1

(
−A1x2−σ (u2− sBT )QN

√̂
x3− pT

pN

+σ (−u2− sBP)QN

√̂
x5− x3

pN

)
(1c)

ẋ4 =
E

V02−A2x1

(
+A2x2 +σ (u2− sAP)QN

√̂
x5− x4

pN

−σ (−u2− sAT )QN

√̂
x4− pT

pN

)
(1d)

ẋ5 =
E

V0P

(
VSηvu1−σ (u2− sAP)QN

√̂
x5− x4

pN

−σ (−u2− sBP)QN

√̂
x5− x3

pN

)
(1e)

The states of the model in (1) are as follows: x1 = x is the
position of the cylinder, x2 = v is the translational speed of
the cylinder, x3 = p1 is the pressure associated with chamber
A and cylinder area A1, x4 = p2 is associated with chamber B
(area A2) and x5 = pP is the pressure between pump and valve.
The parameter E represents the compressibility of the hydraulic
fluid, and V01 resp. V02 the volume of chamber A resp. B for
the cylinder position x1 = x = 0, while V0P is the volume of
the connection pump to valve. The pump is characterized by
the nominal volume VS per rotation and an efficiency factor ηv,
and the reservoir pressure is pT = 105 Pa. The function σ (·)
is limiting the opening of an individual valve channel to values
between 0 (channel closed) and 1 (channel fully open – nominal
orifice behaviour) and is defined as in (2),

σ (x) =


1 x > 1

x 0≤ x≤ 1

0 x < 0

(2)

and
√̂
· represents the signed square root, as defined in (3),

where sgn is the signum function.
√̂

x = sgnx
√
|x| (3)

3. MULTI INPUT PROBLEM

The objective of the control system is to follow a given ref-
erence trajectory with the hydraulic cylinder. To highlight the
multi input problem we detail the first steps in the backstepping
design procedure for the tracking control design of the partic-
ular hydraulic plant. We define therefore the first error variable
as the deviation from the reference position

z1 = x1,re f − x1

and the associated lyapunov function V1 (z1) =
1
2 z2

1. By a proper
choice of the virtual input x2,des, the derivative V̇1 along a
trajectory can be rendered negative definite, this is achieved
e.g. by x2,des = c1z1 + ẋ1,re f , with c1 being a positive tuning
parameter. This allows to augment the error system with the
second error state

z2 = x2,des− x2

resulting in the augmented lyapunov function V2 (z1,z2) =
1
2

(
z2

1 + z2
2
)
. In this step of the procedure, the virtual input is

the actuator force Fa = x3A1− x4A2, and by the choice of

Fa,des = m
((

1− c2
1
)

z1 +(c1 + c2)z2 + ẍ1,re f
)
+Fp

with c2 > 0 the derivative of V2 is rendered negative definite.

At this stage the MISO structure of the system shows – the
actuator force Fa is not a state of the system, but is an algebraic
expression of two individual system states. The desired value
Fa,des can be achieved now by various combinations of x3,des
and x4,des, and the split up is not defined a priori. The question
on how to split up the desired force into pressure values x3,des
and x4,des can be tackled from different perspectives, depending
on the objectives of the system:

• If the main purpose of the system is fast motion and short
travel time, it is assumed that Fa,des shows large transients.
To be able to follow Fa,des it is necessary that a large
portion of Fa,des is due to the pressure with the faster
dynamics. The exact split up ratio is then defined by the
necessary dynamics due to the reference, and the system
dynamics of the individual pressure states.

• If the main purpose of the system is exact tracking of
slow references (relative to possible system dynamics) and
good disturbance rejection, then it is advantageous that the
slow dynamic pressure state is used to provide the main
portion of Fa,des, and that the fast dynamic part is used to
provide fast disturbance rejection.

We assume that the initial conditions of our system and the
reference trajectory imply the first case: large transients in Fa,des
with fast dynamics. For a suitable performance of the closed
loop system it is necessary that Fa,des will be followed as close
as possible, and the split up of the force demand onto the
pressure values should be according to the respective subsystem
dynamics – if one of the two subsystems is significantly faster
than the other, then this should reflect in the demanded pressure
value. A bad split up of Fa,des onto the desired values x3,des
and x4,des would result in one subsystem that may follow the
desired value quite closely, whilst the other subsystem showing
large deviations from the desired value. By this then, the desired
force would not be achieved.

A way to treat the split up problem in the light of the mentioned
effects, is to set up an optimization problem, with
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min
∆x3,∆x4

J (4)

J =
(
Fa,des− x3,desA1 + x4,desA2

)2
+∆xT

3,4R∆x3,4 (5)

where we define

x3,des = x3 +∆x3 (6)
x4,des = x4 +∆x4, (7)

∆x3,4 = (∆x3,∆x4)
T, and R is a diagonal weighting matrix

diag(r11,r22). The purpose of the cost function is to allow to
find a combination of x3,des,x4,des which reflects Fa,des, whilst
minimizing the deviation from the actual values x3,x4. The
weighting matrix R can then be used to take into account the
different dynamics of the subsystems x3 and x4.

The optimization problem can be solved using the necessary
condition for optimality of first order (Bryson and Ho [1975])

∇J = 0[
−2
(
Fa,des−Fa−∆x3A1 +∆x4A2

)
A1 +2r11∆x3

2
(
Fa,des−Fa−∆x3A1 +∆x4A2

)
A2 +2r22∆x4

]
= (0,0)T

yielding following expressions for ∆x3,4

∆x4 =

−2
(

Fa,des−Fa−
2(Fa,des−Fa)A2

1
2r11+2A2

1

)
A2(

2r22 +2A2
2−

4A2
1A2

2
2r11+2A2

1

)
∆x3 =

2
(
Fa,des−Fa +∆x4A2

)
A1(

2r11 +2A2
1

)
by which the optimal split up onto the desired pressure values
is achieved, when substituting into equations (6) and (7).

While the optimization problem we set up shows a way how
to split up the desired force, the choice of the weighting gains
is strongly influencing the performance. Each weighting gain
r11 and r22 should therefore reflect the system dynamics of
the associated pressure state (in an indirect proportional way)
very well, to assure a suitable split up of the desired force. By
fixing the weighting gains to constant values, changes in the
dynamics of the system are not reflected in the optimal split up,
which may lead to deterioration of the performance. A way to
circumvent this problem would be to introduce state dependent
weighting gains, and while this is feasible from a mathematical
point of view, this can lead to a demanding task when these
parameters have to be tuned for the practical application, and
makes it a less favorable solution.

Another approach can be taken by assuming that by the back-
stepping procedure (or any other control method) it can be
assured for each subsystem ẋ3, ẋ4 that the step response per-
formance is of first order, more specifically that

ẋ3 = k1
(
x3,des− x3

)
(8)

ẋ4 = k2
(
x4,des− x4

)
(9)

for any x3,des ∈
[
−x3,des,x3,des

]
, x4,des ∈

[
−x4,des,x4,des

]
, x3,des >

0, x4,des > 0 with positive constants k1,k2. The split up problem
may then be viewed as a minimum time problem. By defining
the desired values x3,des,x4,des as a degree of freedom, we search
for the optimal trajectories, which allows to follow a step in
the desired force (stepping to a constant value Fa,des > 0) in
minimum time:

min
x3,des,x4,des

t f∫
t0

1d t

s.t. (8), (9)
x3
(
t f
)

A1− x4
(
t f
)

A2 = Fa,des

x3 (t0)A1− x4 (t0)A2 < Fa,des ≤ x3,desA1 + x4,desA2

Setting up the Hamiltonian H = 1 + λ1k1
(
x3,des− x3

)
A1 −

λ2k2
(
x4,des− x4

)
A2, the stationary condition ∂H

∂u = 0 does
not reveal any information about the optimal desired values
u∗ =

(
x∗3,des,x

∗
4,des

)
T. With Pontryagin’s minimum principle

(Pontryagin et al. [1962]) it can be shown that the time optimal
desired values are bang-bang signals, with the switching time
depending on the adjoint states λ1,λ2

x∗3,des =

{
x3,des λ1 < 0

−x3,des λ1 > 0
, x∗4,des =

{
x4,des λ2 > 0

−x4,des λ2 < 0

with

λ̇1 =−
∂H

∂x3
= λ1k1A1 (10)

λ̇2 =−
∂H

∂x4
=−λ2k2A2 (11)

With the terminal cost function being Φ(x3,x4) = 0 it follows
that λ

(
t f
)
= (0,0)T, and that the first change of sign of

λ1,λ2 appears at t = t f . The adjoint equations (10), (11) reveal
then that λ1 (t0) < 0 and λ2 (t0) > 0, by which the optimal
desired values are defined for the interval

[
t0, t f

[
. Note that the

optimization problem does not give any information about the
optimal input for t > t f . This can be achieved by introducing
the additional constraint Fa (t) = Fa,des,∀t > t f . This constraint
is fulfilled by x3 (t) = x3

(
t f
)
,x4 (t) = x4

(
t f
)
,∀t > t f , from

which the following optimal desired values sequence can be
determined:

x∗3,des (t) =

{
x3
(
t f
)

t > t f

x3,des t < t f
, x∗4,des (t) =

{
x4
(
t f
)

t > t f

x4,des t < t f
.

The time optimal solution gives the best performance in track-
ing a step in the desired force that is achieveable under the given
assumptions. The practical implementation of this solution is
difficult though, by two reasons. First, the demanded force will
not be a step signal, but a continously changing signal, and
second even if the required force signal is constant, determining
the exact switching time t f online (by monitoring the actual
force) and determining the correct desired pressure values, to
hold the current force, is difficult. Both – the continuously
changing demanded force and deviations in the determined
switching time and in pressure end values – will lead to a high
frequency switching signal in the desired value, switching from
the maximal to the minimal values and vice versa.

Although both optimization approaches have their drawbacks
from an implementation/application point of view, they show
some insights into the problem. In both approaches the impor-
tance of the subsystem dynamics to the optimal split up ratio
becomes obvious, and from the time optimal formulation it
can be concluded, that a higher than necessary demand on the
individual states may be necessary for some time to improve the
rise time in the step response. This motivates a more practical
approach to the split up problem: As the main objective is
to make the faster subsystem providing the bigger part of the
desired force, the desired value of each of the pressure states is
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Fig. 2. Step responses of the transfer functions, for different
ratios k2/k1 = 1 (black), 2 (grey), 10 (light gray).

set up, as if the full desired force would needed to be provided
by the respective pressure state, while the other would be kept
constant at the current value. This yields for the desired pressure
values

x3,des =
Fa,des + x4A2

A1
(12)

x4,des =
x3A1−Fa,des

A2
(13)

and by that, the demand on x3 depends on the dynamics of x4
(if x4 is closer to x4,des then the demand on x3 is reduced) and
vice versa.

Recalling the assumption that a control exists that provides a
closed loop behaviour of each subsystem of the form

x3 (s)
x3,des (s)

=
1

s
k1
+1

(14)

x4 (s)
x4,des (s)

=
1

s
k2
+1

(15)

where ·(s) denotes a laplace transformed quantity L {·(t)}, we
can analyze the behaviour of the desired quantities in depen-
dency of the (closed loop) dynamics of the subsystems. Substi-
tuting (14) and (15) into (12) respectively (13) and rearranging
yields following transfer function, from the input Fa,des to the
output Fa,des = A1x3,des (s)−A2x4,des (s):

Fa,des (s)
Fa,des (s)

=
A1x3,des (s)−A2x4,des (s)

Fa,des (s)

=
1− 1

s/k2+1

1− 1
s/k1+1

1
s/k2+1

−
1

s/k1+1 −1

1− 1
s/k1+1

1
s/k2+1

This transfer function represents the response of the combi-
nation of the desired pressure values to a change in the de-
sired force value. The step response of this transfer function
is shown in Figure 2, where also the (scaled) step responses
of the individual desired values (A1x3,des, A2x4,des) are shown,
for different ratios of k2/k1 ∈ {1,2,10}. This figure shows that
in the transient phase the desired pressure values represent an
equivalent desired force value that is up to two times the desired
force, and it also shows that when the real pressure states of
the system approaches the desired value (by the first order
dynamics in (14),(15)) the desired pressure values approaches
in the same dynamics the desired force value. Additionally

this figure shows that the split-up ratio between the desired
pressures relates to the ratio between the pressure subsystem
dynamics – for the ratio of k2/k1 = 10 the desired pressure are
split-up according to x3,des/− x4,des = 1/10.

4. BACKSTEPPING CONTROL

Having defined the desired value for the states x3 and x4, we
proceed with the backstepping design method. Looking at the
system structure we can identify two different subsystems: the
subsystem associated with the state x3 is the first branch of the
model, while the subsystem associated with x4 can be seen as
a second branch. The branches show either the strict (x3) or
the pure (x4) feedback structure, when considered solitary, and
allow the backstepping method to be applied to each of them.
The interconnections between the branches can be considered
in the design as measured disturbances.

Starting with the first branch we define the deviation
z31 = x3,des− x3 (16)

as subsequent error state, with the augmented lyapunov func-
tion V31 (z1,z2,z31) =

1
2

(
z2

1 + z2
2 + z2

31
)
. The state x3 can be ex-

pressed as
x3 = x3,des− z3

which we can substitute in ż2 resulting in the derivative of the
lyapunov function

V̇31 = z1ż1 + z2ż2 + z31ż31

=−c1z2
1− c2z2

2 + z31

(
1
m

A1z2 + ż31

)
which needs to be rendered negative definite by a proper design
of ż31. E.g. rendering ż31 = −c31z2

31−
1
m A1z2, with a positive

design constant c31, would fulfill this requirement. The input to
this first branch appears in

ż31 = ẋ3,des + ẋ3

and depending on the actual value of u2 the main input to drive
ż31 will be either u2 itself for any u2 > sAP or the virtual input x5
for any u2 < −sAT . In the following we will consider the case
u2 > sAP, the other case can then be treated analogously. Due to
the interconnection to the second branch via the desired value
x3,des = x3,des (x4) the input u2 also enters via ẋ3,des which has
to be considered. It is then possible to find an expression for
u2 such that ż31 = −c31z2

31−
1
m A1z2 and the derivative of the

lyapunov function is

V̇31 =−c1z2
1− c2z2

2− c31z2
31

by which the system is asymptotically stable.

The second branch introduces a second system, with the same
primary error states z1,z2 augmented by

z32 = x4,des− x4

which leads by similar steps as above to
V̇32 = z1ż1 + z2ż2 + z32ż32

=−c1z2
1− c2z2

2 + z32

(
− 1

m
A2z2 + ż32

)
which can be rendered negative definite by rendering ż32 to
−c32z32 +

1
m A2z2 with c32 > 0. In this case (and for u2 > sAP)

the input u1 does not appear in ż32, but we set x5 as our virtual
input. Through the interconnection to the first branch via ẋ4,des
u2 appears again in the expression ż32, but as it is already set to
fulfill the requirements of the first branch, we treat it here as a
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measured disturbance. As the virtual input x5 is an argument
of the signed square root, we need to make a distinction of
cases to get the sign of x5,des right. To do this we first determine
the value the signed square root needs to have to assure that
ż32 = −c32z32 +

1
m A2z2. We denote this desired value for the

signed square expression
√̂

x5− x4des. Depending on the sign of
this value we need to set x5,des to

x5,des =


(√̂

x5− x4des

)2
+ x4

√̂
x5− x4des ≥ 0

−
(√̂

x5− x4des

)2
+ x4 else

The last error state that is introduced is the deviation from the
desired value of x5

z4 = x5,des− x5 (17)

with the augmented lyapunov function V4 =
1
2

(
z2

1 + z2
2 + z2

32 + z2
4
)

for the complete error system. Substituting x5 = x5,des−z4 in ż32
yields:
ż32 =−ẋ4,des

− E
V02−A2x1

(
+A2x2 +σ (u2− sAP)QN

√̂
x5,des− z4− x4

pN

)
We can then upper bound the signed square root term by

sgnγ

√̂
x5,des− z4− x4

pN
≤

sgnγ

(√̂
x5,des− x4

pN
+ c5

sgnz4 + sgnγ

2
·

√
|z4|
pN

)
for any γ ∈ R and c5 ≥ 1.5. Setting γ = z32 this yields for the
derivative of the lyapunov function

V̇4 = z1ż1 + z2ż2 + z32ż32 + z4ż4

≤−c1z2
1− c2z2

2− c32z2
32 + z4ż4−Γ(z4)z32

where Γ(z4) is

Γ(z4) =
E

V02−A2x1
σ (u2− sAP)QNc5

sgnz4 + sgnz32

2
·

√
|z4|
pN

.

In ż4 the input u1 appears and we can design therefore its value
to the following expression

ż4 =−c4z4−
Γ(z4)

2

4z4
(18)

where we use |z4|= z4 sgnz4 and get for the expression

Γ(z4)
2

4z4
=

=

(
E

V02−A2x1
σ (u2− sAP)QNc5

sgnz4 + sgnz32

2

)2

· sgnz4

4pN

The resulting derivative of the lyapunov function is then

V̇4 ≤−c1z2
1− c2z2

2− c32z2
32−Γ(z4)z32−

Γ(z4)
2

4
− c4z2

4

=−c1z2
1− c2z2

2− c̃32z2
32−

(
z32 +

Γ(z4)

2

)2

− c4z2
4

and negative definite with c32 = c̃32 +1, c̃32 > 0, c4 > 0 .

5. SIMULATION RESULTS

The designed backstepping controller is implemented in sim-
ulation with the parameters of the hydraulic plant set to the

Fig. 3. The top figure shows the reference and the cylinder
position and the bottom figure shows the tracking error.

values in table 1 and with the hydraulic cylinder acting against a
spring with the unloaded position at xs0 = 0.25m and a stiffness
factor of ks = 105 N/m. Additionally to the nominal plant the
simulated plant models friction with FR = sgnv(krv+FR0), and
the (first order) dynamics of the underlying closed loops for the
pump rotational speed and the valve position. Because of that
the determined control inputs u1,u2 will not become applied
directly to the plant, but the values ũ1, ũ2 – which are underlying
the following dynamics:

˙̃u1 = kp (u1− ũ1) , ˙̃u2 = kv (u2− ũ2)

The parameters kp,kv are as well available in table 1 as the
friction parameters and the control parameters. Besides the
dynamics of the servo-pump system the servo drive is limited in
simulation to a max rev-speed of u1,max = 25Hz and the power
of the servo is limited to 500 W.

The tracking performance of the system is shown in Figure 3:
The initial position is set to the unloaded spring position, the
pressure states of the hydraulic system are set to atmospheric
pressure; the initial position of the reference starts at the fully
moved out position of the cylinder, resulting in a large initial
error that is rejected as fast as possible, by applying full pump
speed, that is only limited by the maximum rotational speed
and by the maximum power, and full valve opening as shown
in Figure 4. Note that in this initial phase, we almost recover
the minimum time solution proposed in section 3 – though we
do not see the bang-bang behaviour in the desired quantities,
the effect of the desired pressure values on the system inputs
results in this bang-bang behaviour in the inputs for the initial
step, only limited by the input dynamics and saturations.

The effect of the split-up strategy shows in the initial phase
in Figure 5 too, where the pressure states and their desired
values are shown (scaled by the according cylinder areas). The
desired force cannot be achieved instantly because of the large
initial error and the necessary pressure to achieve the force.
Because of that the desired value of x3 is initially large, as well
as the desired value of x4 which is far in the negative values.
The negative values cannot be achieved by x4 due to system
limitations, but the pressure x3 is approaching its desired value.
Following our discussion from section 3, this can be interpreted
as x4 having very poor dynamics in following its reference, with
the effect of the demand on x3 being adjusted with the same
dynamics (it is basically kept constant), while x3 approaches its
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Fig. 4. Pump rotation speed (top) and valve opening (bottom).

Fig. 5. Pressure values x3 (top), x4 (bottom) and their refer-
ences, scaled by the according cylinder areas.

Table 1. Parameter values

Parameter Value Unit Parameter Value Unit
A1 19.64 cm2 A2 16.49 cm2

V01 0.02 dm3 V02 0.762 dm3

m 10 kg E 1.4 ·109 Pa
pT 105 Pa pN 5 ·105 Pa
sAP 0.1 – sBP 0.15 –
sAT 0.19 – sBT 0.2 –
V0P 0.075 dm3 QN 0.53 dm3/s
VS 0.019 dm3/rev. ηv 0.95 –
kr 103 N/m/s2 FR0 102 N
kv 100 – kp 10 –
c1 102 – c2 102 –
c31 5 ·104 – c32 5 ·104 –
c4 5 ·104 – c5 1.5 –

reference, by which the demand on x4 gets relaxed, until the
point where both x3 and x4 meet their respective requirements.
Note that this shows, that the split-up strategy adapts the desired
values to the dynamics of the subsystems, and is even able to
cope with saturations in the pressure values, without the need
of having any information about the subsystem dynamics and
possible saturations in the first place.

6. CONCLUSION AND OUTLOOK

In this work a solution to the multi input problem is proposed,
which is motivated by the results of casting the problem into an
optimization problem. The proposed solution is used to develop
a tracking control, applying the backstepping design method,
and the suitability of the approach is shown in simulation,
where the advantage of the method, the implicit consideration
of the subsystem dynamics, shows. It could also be seen,
that this also includes very poor dynamics, as they appear
when one subsystem gets saturated. Future work can now be
developed in two directions: First the designed control scheme
can be expanded by using adaptive methods, by including
friction estimators and/or load force estimators. The second
direction may concentrate on the split-up strategy, which is
per se not limited to the hydraulic control problem, and on the
applicability of the strategy to different problem settings.
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