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Abstract: Construction of robotic controllers has been usually done by the instantiation
of specific architectural designs. The ASys design strategy described in this work addresses
the synthesis of custom robot architectures by means of a requirements-driven application of
universal design patterns. In this paper we present three of these patterns —the Epistemic
Control Loop, the MetaControl and the Deep Model Reflection patterns— that constitute the
core of a pattern language for a new class of adaptive and robust control architectures for
autonomous robots. A reference architecture for self-aware autonomous systems is synthesised
from these patterns and demonstrated in the control of an autonomous mobile robot. The term
“autonomous” gains a deeper significance in this context of reflective, pattern based controllers.

Keywords: Resilience; controller architecture; design patterns; cognitive systems; robot
controllers; reconfiguration; model-based systems; meta-control.

1. INTRODUCTION

Control architectures for autonomous mobile robots have
a long and heterogeneous history (Nilsson, 1969; Brooks,
1986; Lindstrom et al., 2000). In some of these cases, robot
controllers have been built from scratch as ad-hoc solutions
without any underlying systematic software architecture.
The architectural foundation is implicit and the effort is
focused on specific, concrete, needed functionalities and
component technologies to provide them. These elemen-
tary functionalities are then deployed, integrated and op-
erated over a minimal integration platform to generate the
robot control system.

An architecture-centric approach is strongly needed in
robotics. Focusing on architecture means focusing on the
structural properties of systems that constitute the more
pervasive and stable properties of them (Shaw and Garlan,
1996). Controller architecture —the core set of organisa-
tional aspects— most critically determines the capabilities
of robots, resilience in particular. Robot mission-level re-
silience is to be attained by maximising architectural adap-
tivity from a functional perspective (Houkes and Vermaas,
2010). In this vein, the Autonomous Systems research
programme (ASys) tries to leverage a model-based (Miller
and Mukerji, 2003) and architecture-centric process for
autonomous controller construction.

This paper describes some developments in this direction
in the form of reusable design patterns. The paper is
organised as follows: Section 2 describes the use of design
patterns as an architectural strategy; section 3 describes
? We acknowledge the support of the European Commission through
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the three target design patterns; section 4 describes the
reference architecture generated using these patterns; sec-
tion V describes its use in a real robot and sections 6 and
7 contain a roadmap for future work and conclusions.

1.1 The ASys Research Programme

The ASys Programme (Sanz and Rodŕıguez, 2007) is a
long term research effort of very simple but ambitious
purpose: develop domain-neutral technology for building
custom autonomy in any kind of technical system. In this
context, autonomy has a broader meaning that the reg-
ular use of the term in autonomous mobile robots. ASys
pursues the identification of core architectural traits that
enable a system to handle any kind of uncertainty, whether
environmental or internal. It is not just a quest for achiev-
ing robust movement planning technologies in uncertain
environments but robust teleonomy for unreliable systems
in uncertain environments. Adaptation is a key issue in
autonomous robotics to enable the coping with environ-
mental challenges and with internal faults. Architectures
enabling dynamic fault-tolerance are an important aspect
of the work presented in this paper.

The mainstream direction of the ASys Programme comes
from a simple observation: there exists a class of com-
petence that may maximise system autonomy: cognition.
We can observe it when technical systems do overcome
the unexpected beyond what was technically planned and
built into them at design time. It is the idiosyncratic
competence of McGyvers or what is shown in the Apollo
XIII movie. Systems can be more adaptive by making
them exploit design knowledge at run-time. The ASys
strategy is simple: build any-level autonomy systems by
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using cognitive control loops to make systems that can
engineer themselves. A controller of maximal robustness
will be able to redesign itself while fielded.

We try to generalise and downsize engineer’s capabilities
to the level of atomic, resilient subsystems in all kinds
of operational conditions in technical systems (Rodriguez
and Sanz, 2009). Machines that deeply know themselves
—their structure, their functions, their missions— will be
the mission-level robust machines we need for the future,
according to our vision of self-aware machines (Hernández
et al., 2009).

1.2 ASys Design Principles

This research into general artificial autonomy is driven
by some fundamental design principles that structure the
research and development of our technologies (Sanz et al.,
2007). Three of them are of special importance to the work
described in this paper:

• Model-based control: Cognition is the core compe-
tence to develop into robots; a cognitive control loop
is based on the exploitation of explicit models of the
system under control.

• Metacontrol: Teleological robustness —the stub-
born prosecution of mission goals— is achieved by
means of control loops handling disturbances. When
these can happen in the controller itself we need
metacontrollers deal with them.

• Break the run-time divide: There are design mod-
els that engineers use to build a technical artefact
and run-time models that reflective systems may use
during their operation. Using the same models for
both will break the design/run-time divide and lever-
age the full potential of model-driven development at
run-time.

These principles are further developed in section 3, where
we explain how we have reified them in the three patterns
that are the core content of this paper. The final objective
of this work is the provision of generalised adaptation
mechanisms by means of run-time reflection in advanced,
real-time cognitive architectures.

2. A PATTERN-BASED STRATEGY

The ASys strategy for increasing autonomy is the exploita-
tion of reusable assets over architectures defined by means
of design patterns (Sanz and Zalewski, 2003). This paper
describes the construction and use of three patterns —
assets in the Asset Base— and their use in the improve-
ment of a robot controller.

A design pattern (Gamma et al., 1995) is a reusable solu-
tion to a recurring problem. Design patterns are usually
not complete designs for whole systems but partial designs
that offer a solution template of problem solving strategies
that may be instantiated for concrete problems.

The final objective of this line of work is the creation of a
generative pattern language to support the construction of
intelligent integrated controllers for autonomous systems.

Below we briefly describe the different sections of the
pattern schema (Sanz et al., 2003) that has been used in
this paper:

• Name: The name of the pattern.
• Aliases: Other names for the pattern.
• Example: A real use case of the pattern.
• Context : Contextual information regarding the po-

tential application of the pattern.
• Problem: The problem that the pattern tries to solve.
• Solution: The solution that the pattern provides.
• Structure: An architectural description of the pattern

using roles and relations between roles.
• Dynamics: How system activity happens as sequences

of role activations.
• Related patterns: Other patterns related with this.
• References: Bibliographic references.

3. THREE PATTERNS

The focus of this paper are three design patterns that reify
some of the ASys principles for the design of autonomous
systems (see Table 1). These patterns have been integrated
in the OM Reference Architecture for the development of
robust controllers for autonomous robots (see Section 4).

The context section is identical for the three patterns:

Context Development of robust control architectures for
autonomous systems; in the current drive toward increased
complexity and interconnection and with a need of aug-
mented dependability.

Table 1. Three ASys Design Patterns

Acronym Name Content

ECL Epistemic
Control
Loop

To exploit world knowledge in the
performance of situated action.

MC MetaControl A controller that has another con-
troller as control domain.

DMR
Deep Model
Reflection

To use the system engineering
model as self-representation.

The next three sections describe the three patterns using
the schema presented in section 2.

3.1 The Epistemic Control Loop Pattern

Name Epistemic Control Loop (ECL).

Aliases RCS node, PEIS loop, OODA loop.

Example The navigation control system of an autonomous
mobile robot.

Problem Sometimes controllers are required to implement
a closed-loop strategy using an explicit model of the
plant —the controlled system, e.g. the mobile robot—,
with the possibility to also incorporate feed-forward action
or predictive control, by providing design scalability to
seamlessly incorporate different algorithms in the same
control process.

Solution The Epistemic Control Loop pattern defines a
loop that exploits world knowledge —i.e. a model of the
plant— in the performance of situated action (see Figure
1). This loop is a variant of Feedback loop pattern in clas-
sical control (Sanz and Zalewski, 2003), but in which the
sensory input is used to update an explicit representation
of the plant, i.e. the Model, through a Perception process.
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Cyber
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Fig. 1. The Epistemic Control Loop Pattern structure.
Thin arrows show structural connections between
roles; the arrow head indicates the direction of the
data-flow. Thicker dashed arrows show the basic flow
of information that leads to action generation.

This model contains both the instantaneous state of the
plant and more permanent general knowledge about it. It
is the explicitness of this last static knowledge what dif-
ferentiates the ECL from other control patterns. In many
other cases, the static knowledge —i.e. the plant model—,
which is application-dependent, is assumed static, being
embedded into the controller together with the control
algorithm, so it is not possible to change or incorporate
an element to the control schema without entirely re-
implementing it.

Structure The ECL pattern proposes an structural sepa-
ration of controller roles. The Perception process in ECL
consists of the processing of the available input form
the Sensors to update the estimation of the plant state
contained in the Model. The Evaluation process evaluates
the estimated state in relation with the current Goal of
the loop —a generalisation of the error signal of classical
feedback control. The Control is responsible for generating
proper action by using the evaluation result, the infor-
mation about possible actions contained in the Model,
and action-generation knowledge, for example planning
methods. The action is then sent to the Actuators that
execute it. The Think process include additional reasoning
activities operating on the Model, e.g. to improve the
state estimation, together with any operations that involve
the manipulation of knowledge, such as consolidation or
prediction. All application specific knowledge is contained
in the Model. It is accessed and manipulated by the rest
of the processes through standard interfaces. This can
be implemented using the Database Management System
pattern, for example.

Dynamics The ECL defines a cyclic operation in which
each cycle follows the perceive-reason-act sequence, al-
though the Model serves as a decoupling element that
prevents the blocking of the operation caused by a failure
in any of the steps.

Related Patterns The ECL pattern is rooted on well
established control patterns: feedback, model-based pre-

Control
System

Plant

Domain 
Subsystem

application goal

Metacontrol 
Subsystem

requirements

reconfiguration

actionsensing

monitoring

Fig. 2. The structure proposed by the MetaControl Pat-
tern.

dictive control or model-based robot control (van den Hof
et al., 2009).

References The RCS node (Albus and Barbera, 2005) de-
fines similar functions as the ECL. The PEIS loop (Saffiotti
et al., 2008) also considers the aggregation of distributed
control components with different functionalities. Boyd’s
OODA Loop (Osinga, 2007) is a concept originally ap-
plied to the military operations process that is now also
applied to understand commercial operations and learning
processes.

3.2 The MetaControl Pattern

Name MetaControl (MC).

Aliases Meta Architecture (HUMANOBS project).

Problem The MetaControl pattern addresses the problem
of designing a control system that is self-aware and self-
managing, i.e. it understands its mission, in the sense of
detecting when its behaviour drifts; it understands itself,
meaning that it can reason about how its own state realises
a certain functional design in order to fulfil its mission;
and it can reconfigure itself when required to maintain its
behaviour convergent towards its mission fulfilment.

Solution MC proposes a separation of the control system
into two subsystems (see Figure 2): the Domain Subsys-
tem, which is the traditional control subsystem responsible
for achieving the domain goal given to the system —e.g.
move the mobile robot to a certain location—; and the
Metacontrol Subsystem, which is a control system whose
plant is in turn the Domain Subsystem, and whose goal is
the system’s mission requirements.

Structure The two subsystems in which the control sys-
tem is to be divided operate in different domains. The Do-
main Subsystem operates in the application domain, and
could be patterned after any arbitrary control architec-
ture, for example the navigation architecture proposed in
(Marder-Eppstein et al., 2010). The pattern just imposes
the following requirements on the Domain Subsystem: i)
its implementation has to provide a monitoring infrastruc-
ture, providing data at run-time about the elements real-
ising the controller, ii) some redundancy, not necessarily
physical but analytical, in the sense of having alternative
designs to realise some functions (Blanke et al., 2006), and
iii) the implementation platform shall include mechanisms
for reconfiguration to exploit that redundancy.
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References The issue of metacontrol is also discussed
related to reconfiguration of control systems in (de la Mata
and Rodŕıguez, 2010), and in supervisory control in fault-
tolerant systems (Blanke et al., 2006).

3.3 The Deep Model Reflection Pattern

Name Deep Model Reflection (DMR).

Problem This pattern addresses the problem of how to
use the engineering model of a control system as a self-
representation, so the system can exploit it at run-time to
adapt its configuration in order to maintain its operation
converging to its goal.

System
Engineering

Run-time
System

Engineering 
Model

Run-time 
Model

Design 
Language 

(DL)

Functional 
Metamodel

(FM)

conforms to conforms to
transformation

DL2FM

Fig. 3. The roles involved in the Deep Model Reflection
Pattern.

Solution Develop a metamodel capable of explicitly cap-
turing both i) the static engineering knowledge about
the system’s architecture and functional design, and ii)
the instantaneous state of realisation of that design. This
Functional Metamodel has to be machine readable to be
usable by a model-based controller. A mapping from the
languages used to design the system to this metamodel
is necessary, in order to generate the run-tim model of
the system from the engineering model of it. Automatic
generation is possible if both conform to a formal meta-
model, and a transformation between both metamodels
exists (Figure 3).

References Metamodelling is a core topic in the domain
of software modelling (Kühne, 2006). Functional modelling
has been addressed in many disciplines, for example in the
control of industrial processes (Lind, 1994).

4. THE OM ARCHITECTURE

The three patterns presented provide partial solutions to
the problem of designing robust control architectures for
autonomous systems. They have been used in the construc-
tion of a more complete architecture, the Operative Mind
Reference Architecture (OM) (Hernández, 2013), reified in
the form of reusable software.

OM offers a set of interrelated engineering assets for the
development of specific control architectures (see Fig. 4):

MetaInterface: The application of the MetaControl pat-
tern to our reference architecture has resulted in an inter-
face that specifies the contract between the Domain and
Metacontrol Subsystems’ implementations.

Metacontroller: The Metacontroller realises the Meta-
Control pattern, using the ECL pattern to specify the
Metacontrol subsystem. It defines an structure of two

Metacontroller : Metacontrol Subsystem

Running control application : Domain Subsystem : Plant

requirements : Goal

: Plant
ComponentsECL
: Controller

FunctionalECL
: Controller

Model

P C

T

E

P C

T E

Engineering
Model

MetaInterface

: reconfiguration
: monitoring

: acting
desired configuration
: Goal

: sensing
configuration
: estimated state

Function & 
Structure 

Metamodel : 
Functional 
Metamodel

conforms to

Fig. 4. The interplay of the main elements of the OM Ar-
chitecture Model in the operation of a metacontroller.
The roles that each element plays are written in italics
after colon marks.

nested ECL loops: ComponentsECL realises a servo-
control loop of the configuration of the Domain Subsystem,
to which it is connected for sensing and acting through
the MetaInterface. The ComponentsECL goal is to keep
a certain desired configuration, given by the action of
the outer loop, the FunctionalECL, whose sensory input
is the current configuration as estimated by the Compo-
nentsECL and its goal is the system specification. The
FunctionalECL evaluates the observed configuration by
determining how well it realises the functions designed to
address the application requirements —i.e. the mission—
, which is the goal of the FunctionalECL loop, and acts
by producing a reconfiguration when necessary. Both ECL
loops rely on a shared model which captures the engineer-
ing knowledge about the domain subsystem.

Function & Structure Metamodel: For the knowledge
that the OM Metacontroller exploits for control purposes
—i.e. its Model— we have applied the DMR pattern. We
have used an ontological approach to modelling (Bermejo-
Alonso, 2010), compiling all the necessary concepts re-
quired for the explicit representation of the structural —
components and their connections— and the functional
—teleology of the system— aspects of a system, to later
formalise it in the Function & Structure Metamodel. The
metamodel has been specified in UML, and a Platform
Specific Model (PSM) has been implemented in Java.

5. ENHANCING A MOBILE ROBOT CONTROLLER

The OM Reference Architecture has been used to build
the control architecture of a patrolling mobile robot ca-
pable of robustly perform standard navigation tasks. This
application was selected because it involved heterogeneous
components, both hardware and software, and had a suf-
ficient level of complexity to prove the ASys/OM gener-
ality. The basic use case consists of the robot (a Pioneer
2AT8 platform instrumented with a SICK LMS200 laser
sensor, a Kinect and a compass) navigating through an
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indoor office environment to sequentially visit a number
of given waypoints. Two scenarios were envisaged to test
the benefits of the application of the OM Architecture in
terms of robustness and autonomy: i) a temporary failure
of the laser driver, ii) a permanent fault in the laser sensor.
In both cases the system should be able to detect it and
reconfigure its organisation to adapt to the current state
of affairs, in order to maintain the mission.

The software selected to implement the domain control
system is ROS (Quigley et al., 2009) for several reasons:
i) its middleware infrastructure provides with mechanisms
for monitoring and reconfiguration as prescribed by the
MetaControl pattern, ii) its computation model of nodes
that publish and subscribe to message channels or topics
fits in a component-based architecture model, being thus
modellable with our Function & Structure Metamodel;
and iii) there are open source ROS implementations of
components for navigation of mobile robots available.

For the Domain Subsystem of the control architecture we
have used the ROS navigation stack (Marder-Eppstein
et al., 2010), which we have tuned for our Pioneer mobile
platform, and complemented with other available ROS
packages for the robot Kinect and Laser sensors, and
additional ROS necessary for the patrolling mission.

The metacontroller is implemented using the OMJava
package. It provides a domain independent and multi-
platform implementation of the OM Architectural Model,
including a complete implementation of the Function &
Structure Metamodel, the OM Metacontroller, and a Java
specification of the MetaInterface.

The application development included the implementation
of: i) a Java library which provides an implementation of
OM Metacontroller (OMJava), ii) a ROS PSM of the OM
Architecture (OMrosjava), which includes ready-to-deploy
OM-based metacontrol assets for any robot application
implemented with ROS.

Thanks to the architectural model-based approach, to
implement the concrete testbed it was only necessary to
generate the application model according to the Function
& Structure Metamodel, in order to provide the Meta-
controller with explicit knowledge about the system: i)
its mission —core functionality required—, ii) its struc-
ture —its components and their properties—, and iii) its
functional design —available design solutions that realise
the core functionality through certain configurations of its
structure.

The application-independent OM processes exploit the
aforementioned application-specfic knowledge in the two
scenarios envisaged:

Scenario 1: the Metacontroller detects the failure of the
laser driver and repairs the component it by re-launching
the software process. Only the ComponentsECL inter-
venes, since the solution is achieved at the structure level.

Scenario 2: this time it is not enough to relaunch the
laser driver because the error is due to a permanent
fault in the laser device. the ComponentECL detects this
and the situation scales to the FunctionalECL loop. The
functional failure caused by the unavailability of the laser
driver is assessed, and an alternative configuration that

fulfils the functionality required to maintain the mission
is generated. This configuration makes use of the Kinect
sensor instead of the laser. The new configuration is
commanded to the ComponentsECL, which reconfigures
the navigation systems accordingly. In summary, the robot
redesigns at runtime its control architecture using available
components.

6. FUTURE WORK

Our current pattern language contains only a small num-
ber of patterns centred on core ASys issues. It is necessary
to complete it with more common, practical patterns to
achieve a full generative pattern language.

The current implementation of the ICe —the Integrated
Control Environment— is just a collection of engineering
resources atop the Rational Software Development Plat-
form. Our current effort is to use the Eclipse RCP to
create a specific IDE for the ASys engineering process.
There is an ongoing work in the automation of some of
the transformation processes. For example, concerning the
current implementation of the OM Architecture Model,
the automatic transformation from the engineering design
language to our Function & Structure metamodel is still
under development. The MDD transformations necessary
to complete the ICe toolchain are still in early stages.

The Functions & Structure metamodel now only models
basic structural aspects of control systems. It is necessary
to incorporate behavioural aspects to our current meta-
model so the Metacontrol will be able to handle function-
centric, dynamical issues in the Domain Subsystem. It is
necessary to improve the metamodel by including the full
ECL and OASys (Bermejo-Alonso, 2010) concepts to fur-
ther specify functionality. An specially important ongoing
work is the self-closure of the MC pattern: the application
of the MetaControl pattern to the Metacontrol Subsystem,
so it becomes also part of the subsystem it controls.

The ambition of ASys is of universality; and hence there
is a need for domain generalisation, i.e. the extension
of theoretical concepts and technological assets to other
domains. Current efforts are centred around autonomous
robots and continuous process control systems (Rodriguez
and Sanz, 2009), but other technological domains are un-
der consideration —e.g. utilities, telecoms or maintenance
systems. Even more, while the patterns described in this
paper are technological designs for autonomous artefacts,
their content may find strong biological roots in animal
cognition (Hernández et al., 2011). In this sense, the ASys
research programme may have impact not only in how en-
gineers build autonomous robots, but also in how cognitive
scientists understand the mind (Sanz, 2010).

7. CONCLUSIONS

This work shows a pattern-based approach to the con-
struction of sophisticated, self-aware control systems in
the domain of autonomous systems. The three patterns —
Epistemic Control Loop (ECL), MetaControl (MC), and
Deep Model Reflection (DMR)— offer valid reusable de-
sign assets for the implementation of custom architectures.

The development of the testbed robotics application
demonstrated the benefits of following a pattern-based
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approach in the implementation of a resilient control ar-
chitecture.

The patterns, as instantiated in the OM Architecture, were
easily applicable thanks to the availability of a domain
neutral implementation (OMjava). From it, the production
of the ROS platform-specific model was straightforward,
and only slightly hampered by the lack of a formal Plat-
form Definition Model for ROS. Considering strictly only
the development of the testbed application, the addition
of our reference architecture produced only a minor extra-
effort when compared with a standard development of the
control architecture for the mobile robot.

The pattern-based, model-centric approach to the con-
struction of autonomous controllers proposed by ASys
can offer possibilities —both for engineering and run-
time operation— that go well beyond current capabilities
of intelligent autonomous robots. In this direction, the
application of our OM Architecture, rooted on the three
design patterns described in the paper, has provided the
robot with deep run-time adaptivity based on a functional
understanding, hence demonstrating enhanced robust au-
tonomy through cognitive self-awareness.

Remember that the ASys programme seeks robust teleon-
omy for unreliable systems in uncertain environments. The
model-based, self-aware adaptivity approach supported by
these patterns departs from conventional robust control
approaches, offering a more open-ended pathway for uni-
versal system adaptation.
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Automática, Universidad Politécnica de Madrid.
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