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Abstract: In this paper we consider uncertain nonlinear control-affine systems with proba-
bilistic constraints. In particular, we investigate Stochastic Model Predictive Control (SMPC)
strategies for nonlinear systems subject to chance constraints. The resulting non-convex chance
constrained Finite Horizon Optimal Control Problems are computationally intractable in general
and hence must be approximated. We propose an approximation scheme which is based on
randomization and stems from recent theoretical developments on random non-convex programs.
Since numerical solvers for non-convex optimization problems can typically only reach local
optima, our method is designed to provide probabilistic guarantees for any local optimum
inside a set of chosen complexity. Moreover, the proposed method comes with bounds on the
(time) average closed-loop constraint violation when SMPC is applied in a receding horizon
fashion. Our numerical example shows that the number of constraints of the proposed random
non-convex program can be up to ten times smaller than those required by existing methods.

Keywords: scenario approach, randomized methods, non-convex optimization, stochastic
control, predictive control

1. INTRODUCTION

Model Predictive Control (MPC) is a powerful control
design technique for constrained systems [Mayne et al.
2000]. In the presence of uncertainty and/or disturbances,
one possible approach is the robust (i.e. worst-case) MPC
design [Kothare et al. 1996].

Recently, there has been increasing interest in Stochastic
MPC (SMPC) [Cannon et al. 2009, Primbs and Sung
2009, Chatterjee et al. 2011], which presents an alterna-
tive paradigm. An essential feature of SMPC, which also
raises theoretical and computational challenges, is that
the constraints are addressed in a probabilistic sense. The
constraints of the Finite Horizon Optimal Control Problem
(FHOCP) arising at each time step can be interpreted
probabilistically via chance constraints, allowing for a
small constraint violation probability [Shapiro et al. 2009].
Unfortunately, chance constrained optimization problems
are non-convex in general and require the computation of
multi-dimensional integrals. As a consequence, SMPC is
computationally intractable in general.

Randomized MPC (RMPC) [Calafiore and Fagiano 2013,
Schildbach et al. 2014, Zhang et al. 2014] is a novel
methodology to approximate SMPC problems via the
scenario approach whenever the underlying optimization
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problem is convex. Interestingly, the results of the scenario
approach hold for any fixed, but possibly unknown, proba-
bility distribution [Calafiore and Campi 2006]. In RMPC,
the chance constraints in the FHOCP are replaced by a
finite number of hard constraints, each corresponding to
independent realizations of the uncertainty. The number of
drawn scenarios, called sample size, is chosen so that, with
high confidence, the violation probability of the solution of
the sampled FHOCP remains below the desired threshold.

RMPC has been indeed effectively exploited for uncertain
linear systems because feasibility, optimality and sample
complexity of random convex programs are well charac-
terized [Calafiore and Campi 2006, Campi and Garatti
2008, Calafiore 2010]. On the other hand, to the best of
the authors’ knowledge, scenario approaches for random
non-convex programs have not been analyzed to a great
extend, nor randomized methods for the stochastic control
of uncertain nonlinear systems by means of RMPC.

In this paper, we apply recent developments in the field of
random non-convex programs [Grammatico et al. 2014a,b]
to stochastic control of uncertain nonlinear control-affine
systems via Randomized Nonlinear MPC (RNMPC). In
contrast to existing work, and inspired by [Schildbach
et al. 2014], we interpret the constraint violations in
closed-loop as average in time, and not pointwise in time.
Therefore, we show that the proposed RNMPC algorithm
comes with bounds on the (time) average closed-loop
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constraint violations. The algorithm is illustrated on a
tracking problem for a perturbed unicycle model.

Notation

Z[a, b] is the integer interval {a, a+1, ..., b} ⊆ Z, conv(·) the
convex hull, and 1S(·) the indicator function over a set S.
If (∆,F ,P) is a probability space, then E is the associated
expectation and PN the N -fold product measure.

2. PROBLEM DESCRIPTION

2.1 Stochastic Control Problem

We consider a discrete-time uncertain control affine system

x+ = f(x, δ) + g(x, δ)u, (1)

where x ∈ Rn is the state, u ∈ Rm the control input,
δ ∈ ∆ ⊆ Rd the uncertainty, and f : Rn × Rd → Rn and
g : Rn×Rd → Rn×m are measurable functions. We assume
that δ is a random variable defined on a probability space
(∆,F ,P). Neither the support set ∆, nor the probability
measure P need to be known explicitly. However, we
assume that i.i.d. samples δ(1), δ(2), . . . are available, and
that they are independent in time. Measurability issues are
glossed over in this paper, and we refer to [Grammatico
et al. 2014a] for such technical details.

Let ε ∈ (0, 1) be the admissible average closed-loop con-
straint violation probability, and X ⊂ Rn and U ⊂ Rm
two compact convex sets which contain the origin in their
relative interior. Let x(0) be a fixed initial state, and x(t)
and u(t) the state and input at time t, respectively. Let
κ : Rn → Rm be a feedback control law which, with u(t) :=
κ(x(t)), generates an input sequence

{
u(0), u(1), . . .}, re-

sulting in the closed-loop state sequence
{
x(1), x(2), . . .}.

We are interested in constructing a law κ satisfying the
following property.

Definition 1. A feedback control law κ : Rn → U is called
probabilistically feasible if, for all T > 0, the closed-loop
state sequence generated by κ satisfies

E

[
1

T

T∑
t=1

1X (x(t))

]
≥ 1− ε.

�

Note that for the sake of simplicity, there is a slight abuse
of notation in the above inequality, since the dependence of
x(t) on the random input sequence {δ(0), δ(1), . . . , δ(t−1)}
is not made explicit, and we actually have ET in place of E.
One way of constructing such a probabilistically feasible
control law is by means of Stochastic MPC (SMPC),
where at each time step a chance constrained finite horizon
optimal control problem (ccFHOCP) has to be solved.

2.2 Stochastic MPC

Let δ := (δ0, δ1, . . . , δN−1) ∈ ∆N be a random disturbance
sequence of length N , and u := (u0, u1, ..., uN−1) ∈ UN
the planned input sequence. If x(t) is the current state at
time t, we denote by φ(i;x(t),u, δ) the predicted state at
time t+ i, evolved according to (1) subject to u and δ. Let
` : Rn×Rm → R be a convex stage cost, and `f : Rn → R

be a convex terminal cost. Then, we consider the stochastic
cost function

J(x(t),u, δ) := `f (φ(N ;x(t),u, δ)) (2)

+

N−1∑
i=0

` (φ(i;x(t),u, δ), ui)) .

Since J is a random variable, typical methods to obtain a
deterministic cost function rely on using J(x(t),u,EN [δ])
or EN [J(x(t),u, δ)].

The SMPC algorithm proceeds now in a receding horizon
fashion as follows. At every time step t, it first solves the
following ccFHOCP:

min
u∈UN

EN [J(x(t),u, δ)] (3)

s.t. PN [φ (i;x(t),u, δ) ∈ X] ≥ 1− ε ∀i ∈ Z[1, N ].

Given the optimal planned input u?, SMPC then applies
the input u(t) = κ(x(t)) := u?0. The whole process is then
repeated at time t + 1. We assume that the ccFHOCP in
(3) is feasible at every time instant. Then it will be clear
later on that the control law constructed by certain SMPC
algorithms is probabilistically feasible, see e.g. [Schildbach
et al. 2014, Theorem 15].

In general, the above ccFHOCP problem requires multi-
dimensional integrals and is computationally intractable.
In the following section, we describe three different
randomized algorithms which approximately solve the
ccFHOCP problem in (3), while producing a probabilis-
tically feasible control law κ.

3. RANDOMIZED MPC

One way to approximate (3) is by sampling the uncer-
tainty sequence δ, and replacing the chance constraints
and objective function with a finite number of uncertainty
realizations. This method is known as Randomized MPC
(RMPC) or Scenario-based MPC [Calafiore and Fagiano
2013, Schildbach et al. 2014, Zhang et al. 2014]. A vari-
ation thereof, which uses a combination of robust and
randomized methods, is described in [Zhang et al. 2013a].
These methods are based on the scenario approach intro-
duced in [Calafiore and Campi 2006, Campi and Garatti
2008, Calafiore 2010]. The scenario approach is a way to
approximate chance constraints whenever the underlying
problem is convex, i.e. the cost and the constraints are
convex functions for any fixed uncertainty.

We first review the general RMPC setup: let (S0, S1, S2)
be non-negative integers, and assume that (S0 + S1 +
S2) full-horizon samples are drawn independently accord-
ing to PN . We define three sets of multisamples ω0 :=
{δ(1), . . . , δ(S0)}, ω1 := {δ(S0+1), . . . , δ(S0+S1)}, and ω2 :=
{δ(S0+S1+1), . . . , δ(S0+S1+S2)}. The collection ω0 is used to
empirically approximate the cost function J ; the samples
ω1 are used to enforce the state constraint for the first
predicted step i = 1; and finally, the samples in ω2 are
used to enforce the constraints for the remaining predicted
stages i = 2, 3, . . . , N .

Consider the following sampled counterpart of (3):
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RMPC[ω0,ω1,ω2] :
(4)

min
u∈UN

∑
δ(j)∈ω0

J(x(t),u, δ(j))

s.t. φ(1;x(t),u, δ(k)) ∈ X ∀δ(k) ∈ ω1,

φ(i;x(t),u, δ(l)) ∈ X ∀i ∈ Z[2, N ], ∀δ(l) ∈ ω2.

In the SMPC framework, the RMPC problem in (4) must
be solved at each time step with an updated initial state
x(t). For the receding horizon approach to run adequately
in closed-loop, we postulate the following assumption
which holds throughout this paper, adopted from [Schild-
bach et al. 2014, Assumption 5].

Assumption 1. (Recursive feasibility). At every time in-
stance t, the RMPC problem in (4) admits a feasible
solution for every realization of (ω0,ω1,ω2) almost surely.

The main challenge in RMPC is to find the sample sizes S0,
S1, and S2 such that the closed-loop violation probability
is below a desired level ε. We next discuss three different
methods to solve RMPC in (4).

3.1 Randomized Linear MPC

One method to deal with the ccFHOCP in (3) is to
linearize the dynamics and solve a linearized version of
(4), see e.g. [Zhang et al. 2013b] for such an application.
The nonlinear dynamics in (1) are approximated around
some fixed x̄ by A(x̄, δ)(x − x̄) + B(x̄, δ)u, rendering the
RMPC problem in (4) convex. In this case, the standard
scenario approach for convex programs can be applied.

More precisely, let φlin(i;x(t),u, δ) be the predicted state
of the linearized dynamics, and Jlin(x(t),u, δ) the cor-
responding cost. Then we can consider the Randomized
Linear MPC (RLMPC):

RLMPC[ω0,ω1,ω2] :
(5)

min
u∈UN

∑
δ(j)∈ω0

Jlin(x(t),u, δ(j))

s.t. φlin(1;x(t),u, δ(k)) ∈ X ∀δ(k) ∈ ω1,

φlin(i;x(t),u, δ(l)) ∈ X ∀i ∈ Z[2, N ], ∀δ(l) ∈ ω2.

Consider now Algorithm 1.

Algorithm 1 Randomized Linear MPC (RLMPC)

Require: ε ∈ (0, 1); S0, S2 ∈ Z[1,∞).
1: Let

S1 :=
⌈m
ε
− 1
⌉
.

2: Extract S0 + S1 + S2 i.i.d. samples according to PN .
3: Compute the optimal point for RLMPC in (5).
4: Apply the first control input u(t) = κ(x(t)) := u?0.

It follows from [Schildbach et al. 2014, Theorem 15] that
the control law κ constructed by Algorithm 1 (RLMPC)
is probabilistically feasible.

Remark 1. Out of the three sample sizes S0, S1, S2, only S1

is required to take some minimum value when constructing
a probabilistically feasible policy. The variables S0 and S2

are allowed to take any values and can be viewed as tuning
variables. However, as illustrated in Section 5.1, we show

that the choice of S2 indeed influences the closed-loop cost.
�

3.2 Randomized Nonlinear MPC

The performance of the controller based on the RLMPC
algorithm greatly depends on the accuracy of the lineariza-
tion step. In full generality, however, the linearization
process is not appropriate. Examples are the discrete non-
holonomic integrator, which is not controllable if linearized
around the origin, or the unicycle model presented in
Section 5. For such systems, the nonlinear dynamics in
(1) must be kept, at the cost that a non-convex RMPC
problem must be solved. One way to determine the appro-
priate sample sizes is based on the sampling method for
random non-convex optimization problems as described in
[Grammatico et al. 2014a,b] and presented next.

Let M ≥ m + 1 be an integer, and consider M different
vectors c1, c2, ..., cM ∈ Rm. Extract S1 + S2 + S3 samples
for ω0, ω1, and ω2. For each ci, i ∈ Z[1,M ], consider the
following ith auxiliary scenario program SPi:

SPi[ω1] : (6)
min
v∈U

c>i v

s.t. f(x(t), δ(k)) + g(x(t), δ(k))v ∈ X ∀δ(k) ∈ ω1,

where ω1 is ω1 with each element restricted to its first

uncertainty component, i.e. ω1 :=
{
δ

(S0+1)
0 , . . . , δ

(S0+S1)
0

}
.

Given υ?i being the optimizer of SPi[ω1], we define

UM (ω1) := conv ({υ?1 , . . . , υ?M}) ⊆ U. (7)

The set UM (ω1) has the property that, loosely speaking,
any optimizer belonging to it is probabilistically feasible.
Precisely, consider the following approximation of RMPC
in (4), called Randomized Nonlinear MPC (RNMPC):

RNMPC[ω0,ω1,ω2] :
(8)


min
u∈UN

∑
δ(j)∈ω0

J(x(t),u, δ(j))

s.t. u0 ∈ UM (ω1),

φ(i;x(t),u, δ(l)) ∈ X ∀i ∈ Z[2, N ], ∀δ(l) ∈ ω2.

Let the integer ζ ≤ m be the so-called Helly’s dimension
of SPi[ω1] in (6) [Calafiore 2010, Definition 3.1], which
can always be upper bounded by m. Moreover, we define

Φ(ν, ζ, S) :=
∑ζ−1
i=0

(
S
i

)
νi(1 − ν)S−i. In view of (6)–(8),

consider now Algorithm 2.

Algorithm 2 Randomized Nonlinear MPC (RNMPC)

Require: : ε ∈ (0, 1); S0, S2 ∈ Z[1,∞);
M ∈ Z[m+ 1,∞); c1, . . . , cM ∈ Rm.

1: Compute the smallest integer S1 such that∫ 1

0

min

{
1,

(
M

m+ 1

)
Φ (ν, (m+ 1)ζ, S1)

}
dν ≤ ε (9)

2: Extract S0 + S1 + S2 i.i.d. samples according to PN .
3: For all i ∈ Z[1,M ], solve SPi[ω1] in (6) and construct

UM (ω1) as in (7).
4: Compute a feasible point (e.g. local minimum) for

RNMPC in (8).
5: Apply the first control input u(t) = κ(x(t)) := u?0.
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We then have the following result whose proof is given in
the Appendix.

Theorem 1. The control law κ generated by Algorithm 2
(RNMPC) is probabilistically feasible. �

Similar to Algorithm 1 (RLMPC), S0 and S1 can be
treated as tuning variables in Algorithm 2. Moreover, the
user defined integer M determines how “complex” the set
UM (ω1), see Section 4.

Algorithm 2 (RNMPC), together with Theorem 1, can
be viewed as an extension of the RLMPC algorithm to
the class of uncertain nonlinear control-affine systems.
The key difference between Algorithm 2 (RNMPC) and
Algorithm 1 (RLMPC), however, is that the probabilistic
guarantees in RLMPC hold for the global optimizer,
whereas in RNMPC any feasible solution comes with
the guarantees. Even though the latter property renders
the solution somewhat more conservative, it is of great
practical importance. This is because in general one cannot
hope to solve for the global optimum in a non-convex
optimization problem, but only for a local optimum.

3.3 Randomized MPC via Statistical Learning Theory

The third method we look at is called RMPC-SLT. It is
similar to the RNMPC method described in the previous
section, but solves the non-convex RMPC problem in (4)
directly. It is based on the Vapnik-Chervonenkis (VC)
theory of statistical learning, see e.g. [Alamo et al. 2009].
More precisely, let us define

Ψξ(ν, S) := min

{
1,

(
2eS

ξ

)ξ
21−νS/2

}
, (10)

where ξ ∈ Z[1,∞) is an upper bound on the so-called
VC-dimension [Alamo et al. 2009, Definition 6]. Then the
following theorem states the minimum sample size S1 such
that the resulting control law is probabilistically feasible.

Theorem 2. Assume that ξ is an upper bound for the VC-
dimension associated to (4). Let u(t) = κ(x(t)) := u?0 be
the control law given by any feasible solution of RMPC in
(4). If S1 satisfies ∫ 1

0

Ψξ(ν, S1)dν ≤ ε,

then the resulting control law κ is probabilistically feasible.
�

Typically, RMPC-SLT comes with a much larger sample
size than Algorithm 2 (RNMPC). This not only results
in a more conservative control law, but also makes it
computationally demanding to even find a local minimum,
see also the case study in Section 5.

4. DISCUSSION

4.1 Choice of M in RNMPC

From Algorithm 2 it can be seen that any choice of M ≥
m + 1 results in a probabilistically feasible controller κ,
provided S1 is chosen according to (9). Roughly speaking,
M determines the complexity of the polyhedron UM in
(7), which is defined by the M optimizers u?1, . . . , u

?
M .

Although a large M results in a large admissible search
space UM for RNMPC in (8), it should be kept in mind
that the sample size S1 also increases with M because of
(9). The dependence of S1 on M is illustrated in Figure 1
for the case ζ = m = 2, and it can be actually shown that
S1 depends on M as ∼ ln(M) [Grammatico et al. 2014a].
For M fixed, the issue of choosing the costs c1, . . . , cM
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M=100

Fig. 1. Bound on the closed-loop violation probability for
RNMPC with ζ = m = 2 as a function of S1.

arises. Roughly speaking, they should be chosen such that
UM is as big as possible. One way of doing that is by letting
the vectors ci point into directions uniformly distributed
on a hypersphere in dimension m. Since the dependence on
M is logarithmic, it can be chosen relatively large without
having an adverse impact on S1.

4.2 Comparison between the three RMPC Algorithms

RLMPC is a standard approach for many multi-stage
optimal control problems with linear dynamics. This is
because the resulting optimization problem is convex and
the sample size in Algorithm 1 is much lower compared
to RNMPC and RMPC-SLT, see [Zhang et al. 2013b] for
an example where RLMPC is applied. In cases where the
RLMPC algorithm does not perform as desired, one is
left with the choice between the RNMPC algorithm and
RMPC-SLT. The latter is only applicable to problems for
which a finite upper bound on the VC-dimension can be
found. In contrast, our methodology RNMPC is applicable
to all RMPC problems of the form (5).

Let now ξ be such an upper bound for the VC-dimension.
Figure 2 depicts the required sample sizes for some re-
alistic values of ξ. The corresponding sample sizes are
much higher than those of RNMPC, rendering the (non-
convex) RMPC problem in (4) computationally demand-
ing to solve. Morever, it is in general difficult to estimate
ξ, making the RMPC-SLT approach not applicable in
general.

5. STOCHASTIC CONTROL OF THE
DISCRETE-TIME UNICYCLE

In this section, we consider a case study of the system

ẋ = cos(θ)v, ẏ = sin(θ)v, θ̇ = w, (11)

which is the continuous model of a unicycle [M’Closkey
and Murray 1994]. The states (x, y) represent the Carte-
sian position of the center of mass of the car, whereas θ
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Fig. 2. Upper bound on the closed-loop violation proba-
bility for RNMPC-LST as a function of S1.

is the angle of the car with respect to the x axis. The
controlled inputs v ∈ R and w ∈ R are the forward and
angular velocities, respectively.

The unicycle in (11) is not straightforward to stabilize
to the origin because it is a nonholonomic system and
violates Brockett’s necessary condition for stabilization
via continuous feedback [Brockett 1983]. Since MPC can
automatically generate a discontinuous control law, it
is a natural candidate for nonholonomic systems. We
next study a tracking problem where we investigate the
influence of S2 on the empirical closed-loop cost and
violation probability.

5.1 Tracking a Circle

It is intuitively clear that the exact choice of S2 for all three
algorithms will influence the closed-loop cost, which is
investigated next. We thus define (x1, x2, x3) := (x, y, θ),
(u1, u2) := (v, w), let δ = (δ1, δ2) ∈ R2, and discretize
(11) with Euler step τ = 0.1. The system dynamics then
read as

x+
1 = x1 + τ (cos(x3)u1 + δ1)

x+
2 = x2 + τ (sin(x3)u1 + δ2)

x+
3 = x3 + τu2,

where (δ1, δ2) are uniformly distributed on [−0.4, 0.4]2.
The input constraints are |u1| ≤ 2, |u2| ≤ π/τ . We
consider the constraint set

X := {(x1, x2, x3) ∈ R3 | ‖(x1, x2)‖2 ≤ 10}.
Let {x?(t) := (10 cos θ(t), 10 sin θ(t), θ(t) + π/2)}t≥0

denote the sequence of states to be tracked, for a sequence
{θ(t) ∈ [0, 2π]}t≥0, which generates a circle for an unper-
turbed unicycle.

The control objective is to follow {x?(1), x?(2), . . .} while
exiting X less than 40% of the time. The cost functions are

`(x, u) = ‖Q(x− x?)‖1 + ‖Ru‖1, `f (x) = ‖Qf (x− x?)‖1
with Q = I, Qf = 10Q, and R = 0.1I. We use J(x(t),u,0)
as cost and x(0) = (9.9, 0, π/2) as initial condition.
For the predefined bound on the closed-loop violation
probability of 40%, we obtain the sample size S1 = 29
from Algorithm 2 (RNMPC) 1 . It can be verified that

1 S1 is obtained by setting ζ = 1 and ε = 20% in (9). We set ε = 20%

0 10 20 30 40 50
240
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250
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260

265

270

275

280

285

290

Ĵ

S2

Fig. 3. Empirical closed-loop cost.

the required sample size for RMPC-SLT is 285, which is
almost ten times the sample size required by RNMPC.
Thus, RMPC-SLT is not considered here.

To assess the influence of S2 on the closed-loop cost for
RNMPC, we simulate the described system for different
values of S2 ranging from 1 to 50, where for each value of
S2 ten runs are conducted. Figure 3 depicts the empirical
closed-loop cost as a function of S2, for fixed S1 = 29.
It can be observed that for S2 = 1, 2, . . . , 30, the cost
decreases monotonically. For S2 > 30, the cost starts
to increase again, producing overall a plot with a clear
global minimum. This can be justified as follows: each
time the unicycle leaves X, it has to spend additional
time and effort to enter X again (instead of tracking the
circle), thus generating additional cost. Therefore, it is
beneficial not to exit X too often, explaining the decrease
in cost for S2 = 1, 2, . . . , 30. On the other hand, if S2 is
increased further, the solution becomes more robust (and
conservative). Therefore, the car tends to always stay away
from the boundary of X, which causes the cost to increase.

The above results demonstrate that S2 indeed influences
the closed-loop cost, as one would expect. The amount of
impact depends on the individual applications, and should
be determined individually for each system. This opens
the more general question whether an optimal choice of
S2 exists, which minimizes the closed-loop cost. This issue
is subject to future research.

6. CONCLUSION

We have considered the stochastic control problem for non-
linear control-affine systems subject to chance constraints.
We applied randomization as a tool to effectively approx-
imate the corresponding non-convex chance constrained
Finite Horizon Optimal Control Problem. As shown in
the numerical example, the proposed Algorithm, referred
to as RNMPC (Algorithm 2), requires in certain cases a
much smaller sample size than existing methods. When the
RNMPC algorithm is implemented in receding horizon,
we have shown that the resulting control law is proba-
bilistically feasible with bounds on the average closed-loop
constraint violation.

because once the unicycle is outside X, it takes two steps to return
into X, effectively doubling ε.
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Appendix A. PROOFS

Proof of Theorem 1

Step 1: First Stage Violation Probability Fix an initial
state x and consider any u ∈ UN . We define the first stage

violation probability V (x,u) as

V (x,u) := PN [φ(1;x,u, δ) 6∈ X].

For S := S0 + S1 + S2, we prove the following statement.

Lemma 1. Under Assumption 1 it holds for any feasible
u? = u?(ω0,ω1,ω2) of RNMPC in (8) that

PSN [V (x,u?) > ν] ≤
(

M

m+ 1

)
Φ(ν, (m+ 1)ζ, S1).

�
Proof 1. For any u?, we first compute its conditional
probability PSN [V (x,u?)|ω0,ω2]. To do this, consider

S̃P[ω1|ω0,ω2] : (A.1){
min
u∈UN

J̃(x,u|ω0,ω2)

s.t. u0 ∈ UM (ω1),

where we define

J̃(x,u|ω0,ω2) :=
∑

δ(j)∈ω0

J(x,u, δ(j)) +

∑
δ(l)∈ω2

N∑
i=2

χ
[
φ(i;x,u, δ(l)) ∈ X

]
,

where χ[S] = 0 if the statement S is true, and ∞ other-

wise. We notice that for fixed (ω0,ω2), S̃P[ω1|ω0,ω2] in
(A.1) can be interpreted as an optimization problem with
random convex constraint u0 ∈ UM (ω1) and deterministic

non-convex cost J̃ . Hence it follows from [Grammatico
et al. 2014a] that

PSN [V (x,u?) > ν | ω0,ω2] ≤
(

M

m+ 1

)
Φ(ν, (m+1)ζ, S1).

Namely, S1 enters the probabilistic guarantees because the
corresponding samples ω1 are used to constrain the first
stage violation probability. The proof of Lemma 1 then
follows by integrating over (ω0,ω2) ∈ ∆(S0+S2)N :

PSN [V (x,u?) > ν]

=

∫
∆(S0+S2)N

PSN [V (x,u?) > ν | ω0,ω2] dP(S0+S2)N

≤
∫

∆(S0+S2)N

(
M

m+ 1

)
Φ(ν, (m+ 1)ζ, S1) dP(S0+S2)N

=

(
M

m+ 1

)
Φ(ν, (m+ 1)ζ, S1).

�

Step 2: Expected Violation Probability Given Lemma 1,
it follows from [Campi and Calafiore 2009] that, for all
x and u?, the expected first stage violation probability
ESN [V (x,u?)] can be upper bounded by the integral on
the left-hand-side of (9), where the term min{1, ·} is due to
the fact that the probability of any event is no more than 1.
The proof can now be concluded by following the steps of
[Schildbach et al. 2014, Proof of Theorem 15], which shows
that the average closed-loop violation probability is upper
bounded by the expected first stage violation probability.

Proof of Theorem 2

The proof follows the lines of that of Theorem 1, with the
only difference that for all u?

PSN [V (x,u?) > ν | ω0,ω2] ≤
(

2eS1

ξ

)ξ
21−νS1/2,

see e.g. [Alamo et al. 2009] and the references therein. The
remainder of the proof is omitted in the interest of space.
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