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Abstract: The paper develops a methodology to design a practical Multi-sources and Multi-
consumers energy management systems (EMS), applicable in particular to transport systems. A
global EMS optimization problem is formulated underlining generics criterion and constraints.
Remarking that a modularity property is essential to add easily (i.e. without redesigning
the whole problem) new energy consumers (or sources), a new EMS structure is presented,
splitting the problem into two independent sub-problems. In compensation of sub-optimality,
the computing burden is lighten and robustness to energy shortage enhanced. The framework is
introduced through the EMS design of an hybrid vehicle transporting conditioned merchandises.
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1. INTRODUCTION

The development of Hybrid Electric Vehicle (HEV) and
the new generation of Plug-in HEV (PHEV) motivate the
studies, both by car manufacturers and by researchers,
about Energy or Power Management Systems (EMS,
PMS), driving in real-time the energy flows from several
sources (Engine, Batteries, Fuel Cell) to potentially sev-
eral consumers (propulsion, auxiliaries such as the heating
system) embedded in vehicles. Two main categories of
EMS can be distinguished in the literature: ruled-based
and optimization algorithms.

The first category makes use of tools such as fuzzy logic
(Lee et al. [2000]) or deterministic approaches (state ma-
chine) such as the Charge Depletion - Charge Sustain-
ing algorithm (see Banvait et al. [2009], Wirasingha and
Emadi [2011]). These EMS are quite easy to implement,
but lead to sub-optimal fuel consumption. The second
drives the sources to their optimal point, taking advan-
tages of knowledge about the environment (Luu et al.
[2010]). Implemented in real-time, optimization-based
EMS have to cope with the prediction; many solutions
are based on Deterministic or Stochastic Model-Predictive
Control (Ripaccioli et al. [2010]),(Delprat [2002]). Unlike
ruled-based EMS, these strategies can be more complex to
implement.

To the authors knowledge, most of these results have
to deal with several sources (Engine, batteries, fuel cell,
regenerative breaking) but only one consumer (propul-
sion), except interesting results proposed by Kachroudi
et al. [2012] were two energy consumers (propulsion and
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heating system) but one source (Full Electric Vehicle) are
considered.

Our objective here is to provide a methodology to design
an EMS that:
(1) deals with real multi-sources / multi-charges prob-

lems,
(2) has an universal and modular implementation struc-

ture,
(3) is weakly CPU-time consuming

This paper proposes a generic EMS structure based on a
power management unit (called EMS-PM ) in interaction
with decentralized controllers (EMS-client) associated to
each energy consuming channel (named client in this pa-
per) and a general supervisor (EMS-GSI). The EMS-PM
has two distinct objectives: 1/ to distribute the power flow
between the different power demands of the clients thanks
to a rule-based strategy, 2/ to drive the different sources
thanks to a devoted optimization process. These subprob-
lems are adressed separately and optimized at different
sampled time. Local power controllers associated to each
client carry out the power management of the associated
load, and communicate with the main unit through a given
protocol. Controllers are designed once, off-line, and the
rule-based strategy implemented to distribute the power
flow between them is weakly CPU-time consuming. Notice
that several kinds of power energy could be considered and
mixed (mechanical, electrical, . . . ).

The paper is organized as follows; in section 2 the global
optimization problem of energy management is proposed,
and through its decomposition the architecture of the
EMS is introduced. The structured EMS, its constitutive
elements as well as the optimization subproblems are de-
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scribed in section 3. The framework is then applied in
section 4 to the case study of an hybrid delivery truck with
a refrigerating compartment. Finally, some conclusions
and perspectives are discussed in section 5.

2. OPTIMIZING ENERGY MANAGEMENT

Let’s consider a global system made up of nc systems
requesting energy (clients) and ns systems providing en-
ergy (sources and/or storages). The following assumption
is made : (A.1) : All sources share the same energy bus.
A central optimization problem considered (sometimes
implicitly) in the literature dealing with power manage-
ment, consists to :

Find an optimal energy distribution that satisfies
the system missions while minimizing the overall
energy cost. The mission of each subsystem may
be achieved with different levels of satisfaction. The
system is governed either by dynamic and discrete
event equations and constraints.

In most cases, it may be formalized by Problem Pglob
where the decision variables are:
• the controlled sources power signals
• the consumers power signals; this signals can be reg-

ulated (in particular by changing ad hoc the control
command parameters or references; cf. Bond Graph
(e.g. (Borutzky [2010]))

Problem Pglob

arg min
Pc
1 ,...,P

c
nc

Ps
1 ,...,P

s
ns

=
nc∑
i=1

S̄i(P
c
i ) +

ns∑
j=1

(
Ecsj(P

s
j ) +Acsj(P

s
j )
)

Subject to :
the system dynamics
Limited sources capacity (e.g. SOCs)
nc∑
i=1

P ci =
ns∑
j=1

P sj implies by (A.1)

∀j ∈ J1, . . . , nsK, P sj ∈
[
Pminj ;Pmaxj

]
The criterion is composed of two parts. One is associated
to the clients and their dissatisfaction level S̄i(P

c
i ) with P ci

the power profile applied to consumer i. The other, repre-
sents the sources and regroups the energy cost, Ecsj(P

s
j ),

and the additional costs (e.g. comfort, gas emission,. . . ),
Acsj(P

s
j ), when the power P sj is drained from the source j.

In real time, solving the control problem satisfying both
objectives could lead to a heavy computation burden.

According to the authors, defining a single (global) optimal
problem is not convenient to deal with most practical
problems. It doesn’t match the modular property that
makes possible to add a new energy elements (source or
consumer), without redefining and solving again the whole
problem and reprogramming the whole EMS.

Moreover, during their mission, most of the systems are
considered autonomous. This means that they have to
deal with limited energy resources. Miss-sizing or strong
disturbance may involve the system to run out of energy
before the mission ends. In order to prevent the mission to

fail, energy needs can be decreased by reducing consumers
performance. Therefore, the problem is not anymore only
focused on the dynamics optimization. In the context of
multiple energy consumers, the EMS has to select which
one(s) will have to operate in a degraded mode.

Motivated by these remarks, a structured EMS is pro-
posed here and depicted in Figure 1. The classic EMS
is dispatched according to the elements energy properties
(consuming or supplying). Each part corresponds to a sub-
problem of problem Pglob. The framework matches indus-
trial representation based on Systemic Modeling (Eriksson
[1997]) and deploys, in particular, in (Sherpa Engineering).
Moreover, the dynamics regulation problem could be syn-
thesized offline while the energy supply problem must be
solved in real-time by the entity called Power Manager
(PM).

Fig. 1. EMS Decomposition

3. A PRACTICAL POWER MANAGEMENT
FRAMEWORK

The proposed framework relies on a specific EMS parti-
tioning based on three entities : a Power Manager (PM),
a general supervisor and clients (see Figure 1). The gen-
eral supervisor aims to communicate mission events and
GSI-strategies (defined in section 3.2). Due to its close
similarity with user interface, this elements is named EMS-
General Supervisor Interface (EMS-GSI). Clients and PM
will be explained in the next parts. Communication Chan-
nels (CC) are illustrated by double arrows while double
lines represent the multi-energy link.

3.1 The clients

A client regroups organs and local control which are
aiming to a specific purpose (mission). For example, a car
powertrain has to respond to a mobility mission. These
elements and their control could be gathered under the
label mobility client. Figure 2 gives a macroscopic view of
what we called a client, through its inputs and outputs. It
is made up of the following elements :
• the EMS-client : it implements different strategies to

achieve the assigned mission , for different amount
of energy. The possible strategies are defined by
considering a set of admissible configurations.
• the configurations set ; each configuration matches

a specific power request over time, all admissible
although corresponding to different levels of sub-
optimality; the request is assumed to be generated
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in real-time, although prepared off-line; using various
controllers (e.g. LQ controllers with distinct weights),
or to select different references.
• the operative systems (with their local closed-loop)

Fig. 2. The Client’s system architecture

Requests are generated at the sample time ∆TPM which
differs from the local regulator sample time. Thanks to this
property, profiles can be updated at low sample time while
the operative systems are driven at a quicker frequency.

Example 1 Let’s consider a room receiving energy from
photo-voltaic panels and a set of batteries. The room and
heaters inside will be called comfort client. One reference
signal defines one configuration. A set of configurations
may be defined through the use of different temperature
references and/or controllers. Let’s add the light control
to our problem. All artificial light sources and their local
controllers are gathered into the luminous comfort client.
Identically, the configurations set can be composed of
different luminous intensity levels.

3.2 The Power Manager (PM)

In the PM (cf. Figure 3) , two tasks are realized : 1)
arbitrate energy requests between clients, 2) manage the
energy supplying channels. For that reason, the power
management will be separated in two problems consisting
on one side in energy supplying optimization and on the
other side in inter-client energy optimization.

Fig. 3. The PM’s system architecture

The energy supplying elements box stands for the symbol-
izes systems (and their local controllers) which are acting
as energy sources.

a) Inter-client Optimization

Consider a problem with nc clients. Each client i is
assumed to propose Ng

i configurations (admissible power
demand profiles sampled at ∆TPM ) to the PM. For every

client i, power profiles P ji are sorting by their energy

levels (i.e. Eji ) in descending order. The configuration
corresponding to the highest cost E1

i is called nominal
power profile. Others profiles are expressed as deviation
signals from the nominal :

δP ji = P 1
i − P

j
i (1)

The following claim is assumed.

(A.2) : For every client i, the dissatisfaction level is
directly linked to the deviation power signal :

S̄i(P
j
i ) = fi(δP

j
i ) (2)

Proposition 1. The inter-client optimization sub-problem
Pic can be simplified by defining function fi as :

fi(δP
j
i ) = δEji (3)

Where δEji is the energy deviation value for client i defined
by (4) with tf the estimated final time of the mission.
These values are grouped in the set Ci.

δEji =

∫ tf

t

δP ji (τ)dτ (4)

This proposition is a suggestion from the author allowing
to write the criterion with positive signals consistent with
energy variables. The sub-problem, extracted from Pglob
and associated to the clients can be finally formulated as :

Problem Pic

arg min
δE1∈C1,··· ,δEnc∈Cnc

nc∑
i=1

αiδEi

subject to :
nc∑
i=1

Eci ∈ Estot

nc∑
i=1

P ci = P ctot ∈
[
Pmintot ;Pmaxtot

]
Where αi describes priorities between clients and will be
tagged as a GSI-strategy implied by the EMS-GSI. For
example, a car strategy could be comfort or performance
whether the highest importance is given to the passenger
compartment or the mobility.
Estot, P

max
tot and Pmintot are respectively the amount of en-

ergy, the maximum power and the minimum power avail-
able from the sources channels (i.e. without any distinction
between the different sources).

b) Energy supplying optimization

In this paper, a source refers to any element, including
its local controller, which has been designed in the pur-
pose of providing or storing energy. They can be distin-
guished according to their capacity, controllability (ability
to be controlled) and reversibility. Figure 4 depicts the
sources repartition. Commonly, limited reversible sources
are named storage element. Their energy capacity is de-
nominated State of Charge (SOC).
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Fig. 4. Example of sources repartition; the ∗ indicates
uncontrollable sources

As soon as there is more than one source, the energy
optimization problem is over-actuated. Hence, the energy
supplying problem is double. On one hand, the EMS-
PM must satisfy the resources allocation problem between
the redundant actuators. And on the other hand, it must
guaranty power demands from clients.

The energy supplying problem is equivalent to control the
sources in a way that the total energy cost is minimized
and all the sources constraints are satisfied :

Problem Pes

arg min
Ps
1
,...,Ps

ns

(
ns∑
j=1

(
Ecsj(P

s
j ) +Acsj(P

s
j )
))

subject to :
ns∑
j=1

P sj = P ctot implies by (A.1)

∀j ∈ J1, . . . , nsK, P sj ∈
[
Pminj ;Pmaxj

]
Sources dynamics
Limited sources capacity (e.g. SOCs)

Where Ecsj(P
s
j ) and Acsj(P

s
j ) correspond respectively to

the energy cost and the additional cost when the power
P sj is drained from the source j.

Remark : The inter-client optimization as a part of the
EMS-PM, provides the estimated total power request P ctot
over the future time-horizon τp. Therefore, the Pes problem
can be efficiently solved thanks to predictive or preview
control strategy as MPC (Wang [2009]) or H2-preview
results (Saleh et al. [2010] ).

4. ILLUSTRATION

The previous framework has been applied in order to
design the EMS for a hybrid refrigerating truck. The
selected powertrain architecture is serial and the energy
supplying chain is composed of an Internal Combustion
Engine (ICE) coupled with a generator (notated shortly
ICE-G) and a battery (see Figure 4). The propulsion
is achieved through an electrical machine (MEL). The
thermally insulated compartment is cooled using a heat
pump (HP). The simplify powerline is represented by
Figure 5 and the algebraic relation :

P sbat = P cmob + P cref − P sgen (5)

The mission considered is a pick-up and delivery problem.
It could be literally expressed by :

Fig. 5. Simplified energy Network

Supplied by a certain amount of energy, the vehicle
must ride a known itinerary. Along its journey, the
vehicle will stop to delivery. The refrigerated goods
shall not overpass a specific temperature. The mis-
sion is achieved if the vehicle reaches its destination
while the goods temperature has been maintained all
over the journey.

Let’s design an EMS for this hybrid refrigerating truck
by using the proposed framework. In subsection 4.1 all
the offline works is described; definition of the two clients
(mobility and refrigerating compartment), their models
and their configuration sets (profiles). Models of the two
sources are also provided. The design of the real-time op-
timization solvers constituting the EMS-PM is addressed
in subsection 4.2. The driver is assumed to respect as best
as he can the proposed action.

4.1 EMS-clients settings

a) The Mobility Client: This client is associated to the
subsystem Vehicle and the actuator MEL (cf. Figure 5).
The vehicle model relies on the first principle of the
dynamic. Only the longitudinal dynamic is modeled, as
follows

M
dv

dt
= Ftract − λv2 (6)

With λ the aerodynamic friction coefficient, v the vehi-
cle speed and M the total mass (i.e. vehicle and load
included). See Table 3 for parameters values.

The MEL is limited to 75kW during the driving phase.
During the braking phase, 45% of the energy can be recov-
ered by the regenerative flow up to 55kW. Dynamics are
neglected leading to characterize the model of the system
by the single gain Kmel.

P cmob = KmelFtractv (7)

P cmob stands for the mobility power request.

To simplify the illustrative example, the vehicle is consid-
ered to be automatically driven (neither a driver model
nor an eco-driving interface are necessary). The longitudi-
nal speed is so regulated according to the nominal speed
profile depicted in Figure 6, taking also into account the
traffic slow down. The nominal mission profile was built on
one side from the New European Driving Cycle (NEDC)
speed profile, and on the other side, from the break time
occurring to load and unload the merchandise.
Since break-times are important in our problem, indexing
the reference signal over the time variable t is not relevant.
Indeed, the reference has to be robust to traffic variations
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Fig. 6. NEDC speed profile and break-time

and delays.
Hence, the position variable x is used instead of the time.

Finally, notice that the NEDC speed profile is taken into
consideration only from 17.5km, to focus on the final and
the most interesting part of the mission.

The client is set to generate two different power pro-
files according to configurations in table 1. As it has
been introduced in section 3.2, the energy deviation val-
ues are grouped in the set Cmob. The aggressive and
smooth control of the vehicle are obtained thanks to two
PI controllers, respectively tunes as (P=250,I=0.5), and
(P=100,I=0.2).

Table 1. The Mobility Configurations

Configuration Description maximum power

P 1
mob Aggressive control and

high power limit
Pmelmax = 75kW

P 2
mob Smooth control and

low power limit
Pmelmax = 55kW

The Figure 7 is an example of the two configurations
communicated to the EMS-PM at the position xi =
1750m. With P 2

mob, the truck will run with a slower speed,
allowing to save energy.

Fig. 7. Mobility profiles P 1
mob and P 2

mob at xi

b) The Refrigerating Compartment: The physical model (8)
is inspired by an example in (Maciejowski [1989]). It rep-
resents the heat energy transfer in a room containing a
heat pump. The outdoor temperature is considered as a

constant disturbance. Heat accumulation in the walls are
neglected as well as heat pump dynamics.

dT

dt
(t) = Kclosed(T (t)− Text) +

1

cv
Php (8)

With Php the heat pump power, cv the room heat capacity.
Kclosed(T (t)− Text) stands for the heat exchange through
the wall . When the vehicle stops, the doors are briefly
opened. The additional lose is taking into account by
switching Kclosed to Kopen as Kopen >> Kclosed (see
Table 3).

The refrigerating power demand is noted P cref and equals:

P cref = KhpPhp (9)

The heat pump power is adjusted to maintain a reference
merchandise temperature Tc, thanks to a simple Propor-
tional controller (P=200). This one could be modified ac-
cording to the Table 2. The energy deviation set associated
to this client is Cref .

Table 2. The Refrigerating Compartment Con-
figurations

Configuration Description Reference

P 1
ref Recommended temper-

ature
Tc = 4◦C

P 2
ref Maximum allowed

temperature
Tc = 6◦C

4.2 EMS-PM settings

a) Sources Models: The battery is characterized by its
state of charge Soc. This value is continuously estimated
by formula (10), with Qn the nominal capacity, Vbat the
nominal voltage and P sbat the outgoing power (see Table 3).

Soc(t) =
1

QnVbat

∫ t

0

(P sbat) dt (10)

P sbat < 0 means the battery is depleting.

The ICE-G is simply modeled by an efficiency cartography,
leading to write :

FC(t) = ηgen(P sgen(t)) · P sgen(t) (11)

Where P sgen and ηgen are respectively the power supplied
by the ICE-G and the associated efficiency.
The fuel consumption FC(t) is expressed in [g/s].

b) Inter-client Optimization: In this illustration, only
one GSI-strategy is applied (cf. Figure 1 and section 3.2).
The refrigerating client is prioritized over the mobility.

Problem Pic

arg min
δEmob∈Cmob
δEref∈Cref

(αδEmob + βδEcon)

subject to :
the GSI-strategy : (α, β) = {1, 10}
Ecmob + Ecref < Estot
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The amount of energy remaining at instant t in the limited
source is :

Estot = Soc(t) ∗Qn ∗ Vbat + FC(t) ∗ PCI ∗ η̂gen (12)

FC(t) and Soc(t) are signals provided by sources (cf. next
section). PCI is the Lower Heating Value.

c) Energy Supplying Optimization: The Pes problem is
set as :

Problem Pes

arg min
Ps
gen,P

s
bat

(
Ecsgen(P sgen) + Ecsbat(P

s
bat)
)

subject to :
(5) (due to (A1))
(10) and (11)
Soc(t) ∈ [0.2; 0.8]
FC(t) < FTi

FC(t) and Soc(t) describe the fuel consumed by the ICE-
G (11) and the battery state of charge (10) at instant t.
FTi is the initial fuel volume in the tank. Energy costs are:

Ecgen = Pgen Ecbat = Soc(t)− Socref

The estimated future ICE efficiency η̂gen is computed
using the cartography and P ctot, the total amount of power
requested by clients.

4.3 Results

The hybrid refrigerating truck is simulated using parame-
ters in table 3. Results focus on the last mission event (i.e.
between the position xi = 1750m to xf = 8.104m). At the
position xi, the battery state of charge is initiated at 80%
and the reference state of charge Socref = 70%. The fuel
tank is filled with 10 litres. The PM and the clients run at
the sample time ∆TPM = 200s.

Table 3. Hybrid refrigerating truck simulation
parameters

Parameters Description Value

M total weight 3432 [kg]
λ aerodynamic friction coefficient 0.603
Kmel Gain of the MEL model 0.01
Kclosed Gain of the closed door model 2
Kopen Gain of the open door model 5
cv room heat capacity 0.0017
Khp Gain of the heat pump model 0.1
Qn the nominal capacity 302400 [A.s]
Vbat the nominal voltage 220 [V]
PCI Lower Heating Value 44.8

The main results are pointed out in the Figure 8 . At the
distance xs1 = 23km, the EMS-PM causes the mobility
client to switch from the highest energy cost configuration
P 1
mob to the lower one P 2

mob at xs2 = 31km.
In this configuration, the client saves energy and is able
to switch back to the configuration P 2

mob. In the mean
time, the refrigerating client is maintained to its highest
configuration P 1

ref , allowing to guaranty its maximum
satisfaction. This results were expecting due to the GSI-
strategy chosen.

Fig. 8. Configurations Switching

Fig. 9. Mobility Client Results

Figures 9 and 10 permit to verify that the both objectives
(i.e. to reach the final destination and to maintain the
temperature around a reference) are achieved.

Fig. 10. Refrigerating Client Results

In Figure 10 the several peaks match with the break events
when the doors of the fridge compartment are opened. The
steady state error at the end could be improved thanks to
a more evolved temperature controller.

The different energy consumed by the sources (Soc(t) and
FC(t)) are displayed in the Figure 11. Sources end the
cycle with an energy stock nearly null but still positive
(thanks to the configuration switching). The reference
state of charge (i.e. 70%) can not be hold at the end due
to the high power requests (cf. Fig. 12).
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Fig. 11. Energy Consumption : Soc and FC

Fig. 12. ICE and Clients power comparison

5. CONCLUSION

The paper introduced a methodology, to design practi-
cal Multi-souces and Multi-consumers energy management
systems (EMS), applicable in particular to transport sys-
tems. After having proposed a global optimization problem
to encapsulate the general EMS synthesis problem, the
paper presented a general framework for practical design,
satisfying the modularity principle. The notion of clients
and power sources have been defined, and the associated
notions and systems: missions, admissible power profiles
sorted and regrouped in a configurations set. The modu-
larity principle allows an independent design of the client
local controllers and the EMS, making possible to change
or add a new client, without having to redesign the whole
system.

The global PMS optimization problem was then recon-
sidered and split into two sub-problems : the inter-client
optimization problem and the energy supplying ones. The
first one involves what is called the client dissatisfaction in-
dex, while the second is the consumed energy cost. Indeed,
the degrees of freedom are twofold : one is to manage at
best the energy sources so as to minimize the global energy
cost, and the second is, when necessary, to limit the energy
attributed to some clients. Both problems were rigorously
formalized, leading to a tractable implementation. This
was illustrated through the EMS design of an hybrid
vehicle transporting conditioned merchandises.

All advantages from the proposed framework have not
been exploited yet. For example, the Pes problem can
use predictive control command (e.g. H2 preview Saleh
et al. [2010] or MPC Wang [2009]) to enhance the sources
optimization. Also, the sub-optimality can be reduced by
increasing the number of configuration, in particular for

the mobility client.
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