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Abstract: The steady advance of computational methods makes model-based optimization an
increasingly attractive method for process improvement. Unfortunately, the available models are
often inaccurate, which results in significant plant-model mismatch. An iterative optimization
method called “modifier adaptation” overcomes this obstacle by incorporating plant information
into the optimization framework. A particular situation is when the plant operates under
feedback control and only a model of the open-loop system is available. This paper extends
modifier adaptation for constrained optimization problems to that particular situation. The
inputs of the controlled plant are the setpoints, whereas the model inputs are the manipulated
variables. Using this open-loop model and process measurements, the proposed algorithm
guarantees both optimality and constraint satisfaction for the controlled plant upon convergence.
A simulated CSTR example with constraints illustrates the method.
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1. INTRODUCTION

Industrial processes have a certain number of degrees of
freedom, the values of which are chosen by operators to
meet safety requirements and operating constraints and to
optimize a performance measure such as product quality
or profit. For this, both experimental process optimiza-
tion (Box and Draper, 1969) and model-based numerical
optimization can be used. The former is guided purely by
experimental plant data, while the latter is based solely
on an (often inaccurate) model. In the framework of real-
time optimization (RTO), several techniques have been
developed to appropriately combine these two radically
different approaches by using experimental data to make
up for inconsistencies between the model and the plant.
A comprehensive overview identifies three main classes
of techniques (Chachuat et al., 2009), namely, repeated
identification and optimization (Jang et al., 1987; Mar-
lin and Hrymak, 1996), modifier adapatation (Tatjewski,
2002; Gao and Engell, 2005; Marchetti et al., 2009), and
optimizing control (Skogestad, 2000; Srinivasan and Bon-
vin, 2007).

Modifier adaptation (MA) uses measurements to imple-
ment input-affine corrections to the cost and constraint
functions in the model-based optimization problem, while
the process model parameters are kept fixed. MA has been
designed to resolve plant-model mismatch, yet the model
must still satisfy two conditions:

(1) have the same set of inputs as the plant,
(2) predict a locally convex cost function at the plant

minimum (François and Bonvin, 2013).

Condition (2) is likely to be satisfied by any reasonable
model and its enforcement is discussed by François and
Bonvin (2013). Costello et al. (2013) proposed a more
general MA formulation that can be applied when Con-
dition (1) does not hold, that is, when the plant and the
model have different sets of inputs. However, the “gen-
eralized modifier-adaptation” algorithm presented in that
paper is only applicable to unconstrained problems. In this
paper, we extend generalized MA to constrained problems
while retaining the attractive property of optimality upon
convergence. The focus is on setpoint optimization for a
closed-loop system for which only an open-loop model is
available, and two alternative versions of the algorithm are
presented.

The paper is organized as follows. After a short review of
MA in Section 2, a controlled plant is given as a motivating
example in Section 3. Section 4 describes the generalized
MA scheme for constrained systems, which is tested in
simulation on a continuous stirred-tank reactor in Section
5. Finally, Section 6 concludes the paper.

2. RTO VIA MODIFIER ADAPTATION

2.1 Problem Formulation

The problem of finding optimal operating conditions for a
process is typically expressed mathematically as:

u∗

p := argmin
u

φp (u)

subject to gp (u) ≤ 0 , (2.1)
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where u is the nu-dimensional vector of inputs, φp the
cost function and gp the ng-dimensional vector of process
constraints. Here, the subscript (·)p indicates a quantity
related to the plant.

The functions φp and gp are usually not known accurately,
as only the models φ and g are available. Consequently,
an approximate solution to the original problem (2.1) is
obtained by solving the following model-based problem:

u∗ := argmin
u

φ (u)

subject to g (u) ≤ 0 . (2.2)

We will assume in this paper that φ and g are continuously
differentiable.

2.2 Standard Modifier Adaptation

With MA, process measurements are used to iteratively
modify the model-based problem (2.2) in such a way that,
upon convergence, the necessary conditions of optimality
(NCO) of the modified problem match those of the plant.
This is made possible by using modifiers that, at each
iteration, are computed as the differences between the
measured and predicted values of the constraints and the
measured and predicted cost and constraint gradients.
This forces the cost and constraints in the model-based
optimization problem to locally match those of the plant.
In its simplest form, the algorithm proceeds as follows:

Standard MA

(1) Initialize the modifier terms: the ng-dimensional
vector of zeroth-order modifiers ǫ1 = 0, the nu-

dimensional vector of first-order cost modifiers λφ
1 =

0, and the (nu × ng) matrix of first-order gradient
modifiers λ

g
1 = 0. Also, choose arbitrarily u∗

0 = 0,
and initialize the iteration counter k = 1.

(2) Solve the modified model-based optimization problem
(P0)

u∗

k := argmin
u

φm,k(u) (2.3)

subject to gm,k(u) ≤ 0, (2.4)

with the modified cost and constraints

φm,k(u) := φ(u) + (λφ
k)

T (u− u∗

k−1), (2.5)

gm,k(u) := g(u) + ǫk + (λg
k)

T (u− u∗

k−1). (2.6)

The subscript (·)m indicates a quantity that has been
modified.

(3) Apply the input u∗

k to the plant to obtain φp(u
∗

k) and
gp(u

∗

k).

(4) Evaluate/estimate the plant gradients
∂φp

∂u (u∗

k) and
∂gp

∂u (u∗

k). These gradient terms must be estimated
using measurements collected at successive operating
points close to u∗

k, for example using finite differences,
or with more elaborate methods (Marchetti et al.,
2010; Bunin et al., 2013).

(5) Calculate the modifiers for the next iteration:

ǫk+1 := gp(u
∗

k)− g(u∗

k), (2.7)

(λφ
k+1)

T :=
∂φp

∂u
(u∗

k)−
∂φ

∂u
(u∗

k), (2.8)

(λg
k+1)

T :=
∂gp

∂u
(u∗

k)−
∂g

∂u
(u∗

k). (2.9)

(6) Set k := k + 1 and return to Step (2).

The main advantage of this approach is that, if the
MA scheme converges, then it will do so to the (local)
plant optimum, provided the process model is adequate
(Marchetti et al., 2009; François and Bonvin, 2013).

3. MOTIVATING EXAMPLE: CONTROLLED PLANT

Open-Loop

 PlantController

Open-Loop

Model

φ(u), g(u)

c(u)
u

cs

Φp(cs), Gp(cs)
u

c

Fig. 1. Controlled plant to be optimized and, for compar-
ison, the plant model that is available.

As discussed in the previous section, standard MA is based
on the model having the same inputs as the plant. Depend-
ing on the available model, we argue that many controlled
plants will not satisfy this criterion, in particular when the
controller is not perfectly known. 1 Furthermore, closed-
loop systems, where only the open-loop plant has been
modeled, will not satisfy this criterion.

As an example, consider the controlled plant shown in
Figure 1. A plant model will allow the computation of the
optimal inputs u∗. However, since the plant is operated
in closed loop, there is no direct way of manipulating u
to enforce optimality. Although the model can be used
to predict the optimal values of the controlled variables
c(u∗), the resulting plant inputs will typically differ from
u∗ due to imperfect control and plant-model mismatch. It
follows that the predicted optimal performance will not be
achieved.

In standard MA, the open-loop plant inputs are perturbed
to estimate the gradients of the plant cost and constraints.
This eventually leads to obtaining the optimal open-loop
plant inputs u∗

p. For closed-loop systems, we are interested
in determining the optimal setpoints c∗s, since optimality
of the closed-loop system is sought. Furthermore, the plant
gradients can be inferred with respect to these setpoints
(and not u). Fortunately, the fact that the model can
predict the controlled variables, and thus also the setpoints
required to achieve a certain performance, provides the
link to the closed-loop plant. Two approaches exist for
applying modifier adaptation in this case:

(1) “Model the closed-loop plant” such that the setpoints
become the degrees of freedom, as shown in Figure 2.
This may be achieved by modeling the steady-state
behavior of the controller with a law of the form:

u = Fc (c(u), cs) . (3.1)

For a given cs, these nu equations can be solved
for u, allowing φ(u) and g(u) to be calculated.

1 See Costello et al. (2013) for an industrial example of an 80 MW
urban waste-incineration plant that does not. Often in industrial
settings, little information is available about the industrial control
systems that have been installed by a third-party.
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Closed-Loop

Model

cs
u(cs)

Φ(cs) := φ(u(cs)),

G(cs) := g(u(cs))

Fig. 2. Closed-loop model obtained by computing an ideal
feedforward controller and associating it with the
open-loop model.

Alternatively, an ideal controller can be assumed,
which ensures:

c(u)− cs = 0. (3.2)

These nc equations can be solved for u if nu = nc,
where nc is the number of controlled variables. Even
if one of the above approaches can be applied (which
is not always the case), it is likely to result in a
closed-loop model that is difficult to evaluate, as it
will involve solving a system of nu equations. Large
computation times can be problematic for online
optimization.

(2) The second approach uses “generalized modifier
adaptation”, which considers the case where the plant
and the model have different inputs (Costello et al.,
2013). This allows MA to be applied, without any
knowledge of the control system. Furthermore, it
can be proved that generalized modifier adaptation
reaches the optimal plant setpoints upon convergence.

We will explore the latter option in this paper. In fact,
we will argue that it is far simpler and has no disad-
vantages compared to the former option. While Costello
et al. (2013) developed the generalized modifier-adaptation
theory for the unconstrained case, we will now extend it
to constrained optimization problems.

4. GENERALIZED MODIFIER ADAPTATION

We show next how standard MA can be altered to optimize
a controlled plant on the basis of the open-loop plant
model. Clearly, the controlled plant and the open-loop
model have different sets of inputs, the setpoints cs and
the manipulated inputs u, respectively. The aim is to avoid
having to model the closed-loop system, with a controller
that may not be fully known. As will be shown, this is
completely unnecessary! Generalized modifier adaptation
can be applied as follows (see Figures 1 and 2):

(1) The plant cost function Φp(cs) := φp

(

u(cs)
)

and con-

straint functions Gp(cs) := gp

(

u(cs)
)

are expressed
in terms of the nc setpoints cs.

(2) The model cost function φ(u) and constraint func-
tions g(u) have nu inputs u, with nu ≥ nc.

(3) A model c(u) expressing the mapping from u to c is
available.

We will introduce two algorithms, each one with a dif-
ferent way of computing the gradient modifiers from the

measured/estimated gradients of the controlled plant,
∂Φp

∂cs
,

and the gradients computed from the open-loop model,
∂φ
∂u . Since these gradients are computed with respect to
different variables, they cannot be compared directly. The
first algorithm (Method A) computes the modifiers in the

space of the setpoints cs. For this, the model gradients ∂φ
∂c

are computed by inverting the relationship ∂c
∂u . The second

algorithm (Method B) computes the modifiers in the space
of the inputs u by expressing the experimental gradients
∂Φp

∂c in terms of the inputs u. We present each algorithm
and prove optimality and constraint satisfaction upon con-
vergence. The two methods are then compared, and the
effect of filtering on convergence is briefly discussed.

4.1 Method A

The procedure is as follows:

(1) Initialize the modifier terms: the ng-dimensional
vector of zeroth-order modifiers ǫ1 = 0, the nc-
dimensional vector of first-order cost modifiers λΦ

1 =
0, and the (nc × ng) matrix of first-order gradient

modifiers λG
1 = 0. Also, choose arbitrarily c∗s,0 = 0,

and initialize the iteration counter k = 1.
(2) Solve the modified model-based optimization problem

(P1):

u∗

k := argmin
u

φ̃m,k(u), (4.1)

subject to g̃m,k(u) ≤ 0, (4.2)

with

φ̃m,k(u) := φ(u) + (λΦ
k )

T (c(u) − cs,k−1), (4.3)

g̃m,k(u) := g(u) + ǫk + (λG
k )

T (c(u) − cs,k−1). (4.4)

(3) Apply the setpoints cs,k := c(u∗

k) to the plant to
obtain Φp(cs,k) and Gp(cs,k).

(4) Evaluate/estimate the plant gradients:
∂Φp

∂cs
(cs,k) and

∂Gp

∂cs
(cs,k).

(5) Calculate the modifiers for the next iteration:

ǫk+1 := Gp(cs,k)− g(u∗

k), (4.5)

(λΦ
k+1)

T :=
∂Φp

∂cs
(cs,k)−

∂φ

∂u
(u∗

k)

(

∂c

∂u
(u∗

k)

)+

, (4.6)

(λG
k+1)

T :=
∂Gp

∂cs
(cs,k)−

∂g

∂u
(u∗

k)

(

∂c

∂u
(u∗

k)

)+

, (4.7)

with (·)+ indicating the Moore-Penrose pseudo-
inverse.

(6) Set k := k + 1 and return to Step (2).

We claim next that all fixed points of this iterative
procedure satisfy the plant NCO.

Theorem 4.1. [Optimality for Method A]
If Method A converges, it will do so to a point satisfying
the plant first-order necessary conditions of optimality.

Proof: We consider the iterative scheme upon convergence,
i.e. limk→∞ uk = u∞. We will first derive relationships
between φ̃m,k and g̃m,k and the plant cost and constraints
Φp and Gp.

2 Upon convergence, one has:

(λΦ
∞
)T =

∂Φp

∂cs
−

∂φ

∂u

(

∂c

∂u

)+

. (4.8)

The gradient of the cost function φ̃m,∞ in Problem (P1)
is
2 The function arguments will be dropped in the following derivation
as all variables are evaluated at the stationary point corresponding
to u∞.
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∂φ̃m,∞

∂u
=

∂φ

∂u
+ (λΦ

∞
)T

∂c

∂u
, (4.9)

which, using (4.8), gives:

∂φ̃m,∞

∂u
=

∂φ

∂u
+

(

∂Φp

∂cs
−

∂φ

∂u

(

∂c

∂u

)+
)

∂c

∂u
. (4.10)

Multiplying both sides of this equation by
(

∂c
∂u

)+ ∂c
∂u and

using the identity
(

∂c
∂u

)+ ∂c
∂u =

(

(

∂c
∂u

)+ ∂c
∂u

)2

yields:

∂φ̃m,∞

∂u

(

(

∂c

∂u

)+
∂c

∂u

)

=
∂Φp

∂cs

∂c

∂u

(

∂c

∂u

)+
∂c

∂u
(4.11)

=
∂Φp

∂cs

∂c

∂u
. (4.12)

The same argument can be used to show that

∂g̃m,∞

∂u

(

(

∂c

∂u

)+
∂c

∂u

)

=
∂Gp

∂cs

∂c

∂u
. (4.13)

From the definition of ǫ given in (4.5), one can write:

g̃m,∞(u∗

∞
)= g(u∗

∞
) +Gp(cs,∞)− g(u∗

∞
)

= Gp(cs,∞). (4.14)

Now, since by definition u∗

∞
is a KKT point for Problem

(P1), ∃ µ ≥ 0 such that

∂φ̃m,∞

∂u
+ µT

∂g̃m,∞

∂u
= 0 . (4.15)

It follows from equations (4.12) and (4.13) and assuming
rank

(

∂c
∂u

)

= nc that

∂Φp

∂cs
+ µT ∂Gp

∂cs
= 0 . (4.16)

The KKT conditions state that µT g̃m,∞ = 0. As we have
shown that g̃m,∞ = Gp, it follows that

µT Gp = 0 . (4.17)

Hence, cs,∞ is also a KKT point for the plant. Hence, if
the scheme converges, it converges to a point satisfying the
plant NCO.

4.2 Method B

This is an alternative, equally intuitive, way of adapting
the standard MA to our problem. The procedure is as
follows:

(1) Initialize the modifier terms: the ng-dimensional
vector of zeroth-order modifiers ǫ1 = 0, the nu-

dimensional vector of first-order cost modifiers λφ
1 =

0, and the (nu × ng) matrix of first-order gradient
modifiers λ

g
1 = 0. Also, choose arbitrarily u∗

0 = 0,
and initialize the iteration counter k = 1.

(2) Solve the modified model-based optimization problem
(P2):

u∗

k := argmin
u

φm,k(u), (4.18)

subject to gm,k(u) ≤ 0, (4.19)

with

φm,k(u) := φ(u) + (λφ
k)

T (u− u∗

k−1), (4.20)

gm,k(u) := g(u) + ǫk + (λg
k)

T (u− u∗

k−1). (4.21)

(3) Apply the setpoints cs,k := c(u∗

k) to the plant to
obtain Φp(cs,k) and Gp(cs,k).

(4) Evaluate/estimate the plant gradients:
∂Φp

∂cs
(cs,k) and

∂Gp

∂cs
(cs,k).

(5) Calculate the modifiers for the next iteration:

ǫk+1 := Gp(cs,k)− g(u∗

k), (4.22)

(λφ
k+1)

T :=
∂Φp

∂cs
(cs,k)

∂c

∂u
(u∗

k)

−
∂φ

∂u
(u∗

k)

(

∂c

∂u
(u∗

k)

)+
∂c

∂u
(u∗

k), (4.23)

(λg
k+1)

T :=
∂Gp

∂cs
(cs,k)

∂c

∂u
(u∗

k)

−
∂g

∂u
(u∗

k)

(

∂c

∂u
(u∗

k)

)+
∂c

∂u
(u∗

k). (4.24)

(6) Set k := k + 1 and return to Step (2).

The idea is to correct the gradients of the model cost
and constraints only in those directions that locally
influence ∂c

∂u . To this end, the post multiplication by
(

∂c
∂u (u

∗

k)
)+ ∂c

∂u (u
∗

k) removes any components of ∂φ
∂u (u

∗

k) and
∂g
∂u (u

∗

k) in the null space of ∂c
∂u(u

∗

k). The advantage with
respect to Method A is that the modified cost and con-
straint functions in Step (2) do not contain the nonlinear
term c(u), which could make the optimization problem
harder to solve. Just as for Method A, it can be shown
that all fixed points of this iterative procedure satisfy the
plant NCO.

Theorem 4.2. [Optimality for Method B]
If Method B converges, it will do so to a point satisfying
the plant first-order necessary conditions of optimality.

Proof: Based on the definition of (λφ)T , it follows upon
convergence that

∂φm,∞

∂u
=

∂φ

∂u
+

(

∂Φp

∂cs
−

∂φ

∂u

(

∂c

∂u

)+
)

∂c

∂u
, (4.25)

which is exactly the same as for Method A in equation
(4.10). From here onwards, the proof is the same as for
Method A.

4.3 Comparison between Methods A and B

The optimization problems to be solved numerically at
each iteration are different in Methods A and B. The
optimization problem in Method A may be harder to solve,
as the cost function contains the nonlinear term c(u). Yet,
the two methods can be expected to behave similarly, as
stated in the following proposition.

Proposition 4.1. [First-order equivalence between Meth-
ods A and B]
Consider the Methods A and B of Eqns (4.1-4.5) and
Eqns (4.18-4.22), respectively. The first-order modifier
terms in Method B are first-order approximations of those
in Method A.

Proof: A Taylor-series expansion of the modifier term for
the cost function in Problem (P1), with cs,k−1 = c(u∗

k−1),
gives:

(λΦ
k )

T (c(u) − cs,k−1) =(λΦ
k )

T

(

∂c

∂u
(u∗

k−1)

)

(u− u∗

k−1)

+O
(

(u− u∗

k−1)
2
)

. (4.26)
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From the definition of λ̃
Φ
in (4.6), one can write:

(λΦ
k )

T

(

∂c

∂u
(u∗

k−1)

)

=
∂Φp

∂cs
(cs,k−1)

∂c

∂u
(u∗

k−1)

−
∂φ

∂u
(u∗

k−1)

(

∂c

∂u
(u∗

k−1)

)+
∂c

∂u
(u∗

k−1).(4.27)

Comparing the right-hand sides of (4.27) and (4.23) gives:

(λΦ
k )

T

(

∂c

∂u
(u∗

k−1)

)

= (λφ
k)

T . (4.28)

Hence, the modifiers in Method B are actually first-order
approximations of those in Method A.

4.4 Filtering

One important aspect regards the filtering of the modifiers.
The algorithms given above might not always converge.
One way to improve the convergence characteristics is to
use first-order, low-pass exponential filtering, as suggested
by Marchetti et al. (2009), to obtain the filtered modifiers

λ̄
Φ
k , λ̄

G
k and ǭk (here we describe the procedure for Method

A, but it is identical for Method B). An additional step
must be added after Step (5):

(5a) Filter the modifiers:

λ̄
Φ
k+1 = (Inc

−KΦ)λ̄
Φ
k +KΦ λΦ

k+1, (4.29)

λ̄
G
k+1 = (Inc

−KG)λ̄
G
k +KG λ

G
k+1, (4.30)

ǭk+1 = (Ing
−Kǫ)ǭk +Kǫ ǫk+1. (4.31)

The filtered modifiers are then used to compute the
modified cost and constraint functions in Step (2) of the
next iteration:

φ̃m,k(u) := φ(u) + (λ̄
Φ
k )

T (c(u) − cs,k−1), (4.32)

g̃m,k(u) := g(u) + ǭk + (λ̄
G
k )

T (c(u) − cs,k−1). (4.33)

For the exponential filters to be stable and have non-
oscillatory responses, the matrices,KΦ,KG andKǫ should
be chosen with real, positive eigenvalues in the interval
(0, 1]. The choice of the filter matrices is discussed in detail
in Marchetti et al. (2009). As can be expected, with more
filtering, the method is more likely to converge, but it
will do so more slowly. These filter matrices are typically
chosen through tuning.

5. SIMULATED EXAMPLE

The method is illustrated on the Williams-Otto reactor
(Williams and Otto, 1960). We will use the model from
Roberts (1979), which has become a standard test problem
for real-time optimization techniques (Marchetti et al.,
2010). The plant (here simulated reality) is an ideal con-
tinuous stirred-tank reactor with the following reactions:

A+B
k1

→ C, k1 = k10e
−E1/(RT ), (5.1)

C +B
k2

→ P + E, k2 = k20e
−E2/(RT ), (5.2)

C + P
k3

→ G, k3 = k30e
−E3/(RT ). (5.3)

We choose the (open-loop) plant inputs to be u =
[FA, FB, T ]

T , that is, the feed rates of A and B, and
the reactor temperature. However, the degrees of free-
dom of the controlled plant are the controller setpoints
cs = [XA,s, FB,s]

T for the mass fraction of A in the reactor

and the feed rate of B. The desired products are P and E
and the reactor mass holdup is 2105 kg.

A (rather poor) controller adjusts FA, FB and T in the
following manner:

• FB = FB,s + 2, that is, with an offset in FB.

• FA = FB

2.4 , that is, FA is proportional to FB.
• T is manipulated so as to meet the setpoint XA,s,
however there is a large steady-state offset:

XA = 1.5XA,s . (5.4)

The block diagram of the controlled CSTR is shown in
Figure 3.

Open-Loop

 CSTRController

cs = [XA,s, FB,s]
T

XA, FB

Fig. 3. The controlled CSTR.

The plant model is a two-reaction approximation of the
simulated reality:

A+ 2B
k∗

1

→ P + E, k∗1 = k∗10e
−E∗

1
/(RT ), (5.5)

A+B + P
k∗

2

→ G, k∗2 = k∗20e
−E∗

2
/(RT ), (5.6)

with the parameters k∗10, k
∗

20, E
∗

1 and E∗

2 . Three different
nominal models will be considered depending on the values
taken by the parameters E∗

1 and E∗

2 , the parameters
k∗10 and k∗20 being fixed. The material balance equations
for both the plant and its model are given in Costello
et al. (2013). From the implementation point of view, the
controller is considered to be unknown. In particular, no
knowledge is available regarding the manner in which FA

is manipulated.

The profit function to be maximized is

Profit =1143.38XP (FA + FB) + 25.92XE(FA + FB)

−76.23FA − 114.34FB, (5.7)

where XP and XE are the mass fractions of the products
P and E. There are two operational constraints:

XA ≤ 0.09, (5.8)

XG ≤ 0.6 . (5.9)

The cost and constraint functions Φp(cs), Gp(cs), φ(u)
and g(u) are constructed by combining the above profit
and constraint functions with the plant and model equa-
tions, respectively. Table 1 gives the numerical values of
the plant parameters and the fixed model parameters. The
input-output representations of the open-loop model and
the controlled CSTR are shown in Figure 4. The model
can be used to approximately compute (a) the values of
the controlled variables c, and thus the setpoints for the
controlled reactor that would lead to particular inputs u,
and (b) the resulting cost and constraint values.

Figures 5-8 show the performance of Methods A and B
with three different nominal models as given in Table 2.
Optimization is initialized at the solution of the nominal
model and proceeds, mostly in the infeasible region, to-
ward the plant optimum. The three trajectories labeled
I, II and III correspond to the use of the three models
in Table 2. Diagonal filter matrices, with eigenvalues of
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Open-Loop

Model

Closed-Loop

Plant

φ(u), g(u)

cs = [XA,s, FB,s]
T

Φp(cs), Gp(cs)

c(u) = [XA, FB ]
T

Fig. 4. Open-loop model and controlled CSTR.

Table 1. Values of the plant parameters and the
two fixed model parameters (the other model
parameters are variable as shown in Table 2 to

generate the investigation cases I-III).

parameter unit value
k10 s−1 1.660× 106

k20 s−1 7.212× 108

k30 s−1 2.675× 1012

E1 kJmol−1 5.5427 × 104

E2 kJmol−1 6.9280 × 104

E3 kJmol−1 9.2377 × 104

k∗
10

s−1 6.7157 × 104

k∗
20

s−1 1.0341 × 105

0.2 were used. Both algorithms converge rapidly to the
optimal solution for the plant, where the constraint on
XA is active (XA = 0.09, which results in XA,s = 0.06).
Figure 7 shows that this constraint is not satisfied prior to
convergence. Indeed, while generalized modifier adapta-
tion guarantees constraint satisfaction upon convergence,
it may violate constraints in the process of converging.
The main observation to be made is that both algorithms
behave very similarly. This is to be expected, as we proved
in Section 4.3 that Method B is a linearized version of
Method A. Hence, either algorithm can be used, bearing
in mind that Method B may be computationally easier.

Another key issue in the implementation of this scheme is
the evaluation of the plant gradients. The finite-difference
method is used in this work; at the kth iteration, three
different values of cs are applied to the plant, cs,k, cs,k +
[∆XA,s, 0]

T and cs,k + [0,∆FB,s]
T , where ∆XA,s and

∆FB,s are small perturbations. The gradient is then com-
puted as:

(∂Φp

∂cs

)T

(cs,k) =

[

Φp(cs,k+[∆XA,0]T )−Φp(cs,k)
∆XA

Φp(cs,k+[0,∆FB]T )−Φp(cs,k)
∆FB

]

. (5.10)

As gradient estimation is not the focus of this paper,
our simulations assume no measurement noise. In the
presence of measurement noise, more advanced schemes
should be used (Marchetti et al., 2010; Bunin et al.,
2013). Furthermore, since these advanced methods rely on
successive operating points, there is no need to perturb
the system around the next iterate.

Table 2. Values of the variable model parame-
ters for three different cases

Case E∗

1
(kJmol−1) E∗

2
(kJmol−1)

I 7900 12500
II 8100 12500
III 8100 12300
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Fig. 5. Evolution of the setpoints during the first 20
iterations of the generalized MA scheme for Cases I-
III. Solid = Method A, Dashed = Method B. The
contour lines represent the plant profit. The shaded
region is infeasible for the plant due to the constraint
on XA. Black dot = plant optimum.
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Fig. 6. The profit as a function of the iteration number
k. Blue/red/green = Cases I/II/III. Solid = Method
A, Dashed = Method B. Note that, at each iteration,
the plant is evaluated at 3 slightly different operating
points in order to estimate the gradient according to
(5.10).

6. CONCLUSIONS

Like many other process optimization techniques, modifier
adaptation relies on a model of the process. It is typically
assumed that the model and the plant have the same
inputs. However, this assumption does not hold in general
for controlled plants as was illustrated by the industrial
example of an incineration plant. Adapting the closed-loop
model such that its inputs and the inputs of the controlled
plant are the same may not be feasible when the plant
model is complex or the control system is not fully known.
Generalized MA avoids remodeling the system, and this
at no extra computational cost. It follows that a broader
class of process optimization problems can be tackled,
including problems where the plant has an unmodeled
control structure.

This work has extended generalized modifier adaptation
to constrained optimization problems, proving optimality
and constraint satisfaction upon convergence. A simulated
CSTR example has shown that the proposed approach
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Fig. 7. The constraint on XA as a function of the iteration
number k. Blue/red/green = Cases I/II/III. Solid =
Method A, Dashed = Method B. The dotted line
indicates Gp,1 = 0.
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Fig. 8. The constraint on XG as a function of the iteration
number k. Blue/red/green = Cases I/II/III. Solid =
Method A, Dashed = Method B.

can satisfy operational constraints and ensure optimality
upon convergence. This can be achieved despite significant
control error and both structural and parametric plant-
model mismatch. Two methods with similar properties
have been presented. If computation time is not an issue,
we recommend Method A as its unconstrained version was
shown to be closely related to standard MA with a very
logical choice of cost function (Costello et al., 2013). On
the other hand, the structure of the optimization problem
to be solved online in Method B is favorable in terms of
computation time. As shown in this paper, Method B is
a first-order approximation to Method A, with the same
properties upon convergence. For the simulated example
shown in this paper, there is negligible difference between
the two methods.

Even if a feasible operating point is guaranteed to be
reached upon convergence, the iterates may follow an
infeasible path, as seen in the simulated example. One
can combine modifier adaptation with on-line control to
enforce constraint satisfaction at all times (Marchetti
et al., 2011). More work in that direction is needed.
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