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Abstract: The paper brings experimental results and evaluation to modular disturbance
observer based filtered PD and PID controller design based on theoretical results of papers
Huba (2013b,c). The approach is focused on achieving the possibly best filtering properties by
keeping nearly constant dynamics of the setpoint responses. The developed controller applied
to a positional DC motor control is evaluated for different values of the tuning parameter TD
and different filter orders n by using time and shape related performance measures.
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1. INTRODUCTION

Besides the traditional robustness-versus-speed trade off
of different control approaches one is frequently faced
with another trade off related to noise-versus-speed of
transients. Is is important especially in situations with a
dominant role of noise attenuation, e.g. in servo systems
based on incremental position sensors. It is well known
that a measurement, or quantization noise have a negative
influence on the overall control performance. They con-
tribute to an increased equipment wear, heat dissipation,
production costs increase, reduced control precision, un-
desirable acoustic noise, etc. Thus, one may find many pa-
pers dealing with appropriate noise filtration (Åström and
Hägglund, 2006; Hägglund, 2012; Larsson and Hägglund,
2012).

A higher attention to a filter design is paid in the distur-
bance observer based control (Ohishi et al., 1987; Schrijver
and van Dijk, 2002; Radke and Gao, 2006; She et al.,
2011). However, in all up to now known solutions, this
holds just for the disturbance observer loop reconstructing
an equivalent input disturbance that is then used for its
compensation by a counteracting signal applied to the
controller output. In all this publications, the filter design
focusses on the possibly best closed loop robustness and
does not cover filtration properties of the basic controller
used to stabilize the plant. Despite the fact that the effects
of noise exposure can be very similar to impact of a lower
closed loop robustness.

For tasks with the dominant first-order dynamics this
problem has been recently reformulated in papers Huba
(2012a,b, 2013a). The corresponding experimental results
achieved by an application to a DC motor speed control
(Huba and Bélai, 2014b) confirmed a huge performance
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improvement with respect to traditional two-degree-of-
freedom (2DOF) PI control and gave a motivation to deal
with this problem also in a more general setup.

An extension of the underpinning ideas to a modular
design of a disturbance observer based filtered PD and
PID control (FPD and DO-FPID) devoted to plants with a
second order dominant dynamics has been treated in Huba
(2013c,b). Whereas they have been based on analytical and
simulation calculations, this paper reports experimental
verification of the proposed approaches in their application
to a DC motor positional control.

The paper is structured as follows. Section 2 deals briefly
with a pole assignment control of second order plants. An
expected performance and deviations from ideal shapes
of transients at the plant input and output are discussed
in Section 3. Section 4 summarizes basic features of the
filtered PD control (FPD) and disturbance observer based
filtered PID control (DO-FPID) and its optimal tuning
for control loops extended by an unmodelled and filter
dynamics. Section 5 describes application of the proposed
DO-FPID control to a DC motor positional control. The
achieved results are discussed in Section 6 and summarized
summarized in Section 7.

2. A SECOND ORDER PLANT AND ITS CONTROL

Firstly, let us is consider design of FPD and DO-FPID
controllers for a dominant 2nd-order plant dynamics with
the input disturbance di, with x = (y, ẏ)′, ẏ = dy/dt and
y being the plant state, or output

ÿ = Ks(ur + di)− a1ẏ − a0y (1)

Such a plant with parameters Ks, a1 and a0 may be
described by a “pole-zero form“ transfer function

F (s) =

[
Y (s)

Ur(s)

]
di=0

=
Ks

s2 + a1s+ a0
(2)

For stepwise constant setpoint values r, under pole as-
signment control of the plant (2) one can require the
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setpoint-to-output relation characterized by the closed
loop poles α1, α2, or by the corresponding time constants
Tri = −1/αi

Fr(s) =
Y (s)

R(s)
=

1

(Tr1s+ 1)(Tr2s+ 1)
(3)

When considering plant (1) and solving the given problem
for ur one gets a PD controller

ur = KP (r − y)−KDẏ + uc ; uc = a0r/Ks − di
KP =

α1α2 − a0
Ks

; KD = −α1 + α2 + a1
Ks

(4)

Thereby, the feedforward control uc is necessary for keep-
ing the output in a steady state at the required reference
value r under influence of a constant disturbance di.

A closed loop with the extended PD-controller (4) remains
stable, when its poles remain negative, i.e.

KPKs + a0 > 0; KDKs + a1 > 0 (5)

For stable and marginally stable plants (ai ≥ 0) this
holds for any KPKs > 0, KDKs > 0 and stability will
be satisfied for any 0 < Tri <∞. For unstable plants with
a0 < 0 and Tr1 = Tr2 = Tr it must hold

Tr <
√
−1/a0 = Tp (6)

i.e. the controller gain KP cannot be arbitrarily decreased
(the closed loop time constant Tr cannot be arbitrarily
increased), just to a value fulfilling (6).

The paper deals with the problem that in tuning con-
trollers for real plants, due to a nonmodelled loop dy-
namics, intentionally used filters, as well as due to the
always present measurement and quantization noise, a
control designer has to look for some optimal controller
gains KP ,KD, or the task may be expressed as looking for
”optimal” closed loop poles α1, α2.

3. EXPECTED CONTROL PERFORMANCE

For the plant output changes, the optimal closed loop
performance is frequently specified by nearly monotonic
(MO) transients corresponding to setpoint step changes
(Huba, 2012c, 2013d,a). According to the plant dynamics
inversion, the corresponding input has to yield ”two-
pulses” and will be denoted as a 2P input. At the plant
output, ideal disturbance responses may be characterized
by ”one-pule” shapes.

Measures for evaluating deviations of a signal u(t) from
these ideal shapes may be proposed by modifying the Total
Variance (TV) measure (Skogestad, 2003)

TV =

∫ ∞
0

∣∣∣∣dudt
∣∣∣∣ dt ≈∑

i

|ui+1 − ui| (7)

For evaluating deviations from strictly MO plant output
setpoint response ys(t) with the initial value ys,0 and the
final value ys,∞ it is the TV0(ys) criterion

TV0(ys) =
∑
i

|ys,i+1 − ys,i| − |ys,∞ − ys,0| (8)

TV0(ys) = 0 just for strictly MO response, else TV0(ys) >
0.

For disturbance responses yd(t) with a 1P output shape
having one extreme point yd,m /∈ (yd,0, yd,∞) the TV1
criterion may be defined as

Fig. 1. FPD (with cI = 0) and DO-FPID control (cI = 1)
using equal filtration of all channels of the state
observer (SO) and of the disturbance observer (DO);
δ-quantization noise

TV1(yd) =
∑
d,i

|yd,i+1 − yd,i| − |2yd,m − yd,∞ − yd,0)| (9)

Again, TV1(yd) = 0 just for strictly 1P response, else
for output signals with superimposed higher harmonics
TV1(yd) > 0.

Integral deviations from an ideal 2P input shape with two
extreme points um1, um2 may be characterized by

TV 2(u) =
∑
i

|ui+1 − ui| − |2um1 − 2um2 + u∞ − u0|

(10)
Again, for ideal 2P control functions u(t), TV 2(u) = 0.

The speed of the transients at the plant output is usually
quantified by the IAE (Integral of Absolute Error)

IAE =

∫ ∞
0

|e(t)| dt (11)

4. DO-FPD AND DO-FPID TUNING

4.1 Extended loop dynamics

To deal with the implementation and filtration problem,
the 2nd order plant approximation (1) will now be ex-
tended by filters Fn(s) used in all controller channels
(Fig. 1) to

Sn (s) =
Kse

−Tds

(s2 + a1s+ a0) (Tns+ 1)
n ; Fn (s) =

1

(Tns+ 1)
n

0 < Tn << Tp =
√

1/ |a0|; n = 1, 2, ...
(12)

In a limit for n → ∞ it was shown to be equivalent to a
dead time TD

SD (s) =
Kse

−TDs

s2 + a1s+ a0
; 0 < TD << Tp =

√
1/ |a0| (13)

what allows to simplify the overall treatment. Critical and
optimal tuning of such a configuration with a0 = 0 have
been analyzed in Huba (2013c,b, 2014).

Let us firstly consider a plant delay Td → 0. Then, for
both Fn(s) and TD located in the feedback one gets the
input-to-output transfer functions
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Frn (s) =
Y (s)

R (s)
=

=
(KPKs + a0) (Tns+ 1)n

(s2 + a1s+ a0)(Tns+ 1)n +Ks(KP +KDs)

Fin (s) =
Y (s)

Di (s)
=

=
Ks((Tns+ 1)n − 1)

(s2 + a1s+ a0)(Tns+ 1)n +Ks(KP +KDs)

(14)

FrD (s) =
Y (s)

R (s)
=

(KPKs + a0) eTDs

(s2 + a1s+ a0)eTDs +Ks(KP +KDs)

FiD (s) =
Y (s)

Di (s)
=

Ks(e
TDs − 1)

(s2 + a1s+ a0)eTDs +Ks(KP +KDs)
(15)

It is important to note (Huba, 2013b) that both setpoint-
to-output responses Frn (s) and FrD (s) and thus also the
corresponding characteristic polynomials are the same for
the FPD and DO-FPID control.

4.2 Normalized loop parameters

By introducing parameters

KPn = KPKsT
2
n ; KDn = KDKsTn

A0n = a0T
2
n ; A1n = a1Tn ; p = Tns

KPD = KPKsT
2
D ; KDD = KDKsTD

A0d = a0T
2
d ; A1d = a1Td ; p = Tds

(16)

they may be normalized to

A (p) = (p2 +A1np+A0n)(p+ 1)n +KDnp+KPn

A (p) = (p2 +A1Dp+A0D)ep +KDDp+KPD

(17)

4.3 Optimal loop tuning

Since, in the nominal case, the FPID and DO-FPID
characteristic polynomials are equal, an optimal controller
tuning based on the closed loop poles may be for both
the FPD and DO-FPID control the same. The triple real
dominant pole (TRDP) method represents one of the first
methods used for an analytical controller tuning (see e.g.
Oldenbourg and Sartorius (1944, 1951)). This method

requires to fulfill identities A (po) = 0, Ȧ (po) = 0 and

Ä (po) = 0. Although a corresponding solution exist for
any a0, a1, for the sake of simplicity it was shown just for
the double integrator (a0 = a1 = 0), when

pon = −
2−

√
2n/(n+ 1)

(n+ 2)
; N = n(n+ 1)

KoPn = 2
n+ (5n+ 2)

√
2N − 7N

(n+ 2)2(N +
√

2N)

(
N +

√
2N

(n+ 1)(n+ 2)

)n
KoDn =

√
2N − n

N +
√

2N

(
N +

√
2N

(n+ 1)(n+ 2)

)n
(18)

For the limit case with dead time one gets

poD = −2 +
√

2

KoPD = 2e−2+
√
2(5
√

2− 7)

KoDD = 2e−2+
√
2(
√

2− 1)

(19)

As shown in Huba (2014), this tuning approximates well
also the dynamics of considered positional motor control.

4.4 IAE closed loop values

In the case of MO setpoint and 1P disturbance responses,
when the control error does not change its sign, one may
derive the IAE values corresponding to unit input steps of
particular inputs by Laplace transform as

IAEsn =
a1 +KsKDn −KPnKsnTn

KPnKs + a0

IAEin =
KsnTn

KsKPn + a0

IAEsD =
a1 +KsKDD −KPDKsTD

KPDKs + a0

IAEiD =
TDKs

KPDKs + a0

(20)

4.5 so - Equivalence of loop delays

Similarly as in tuning controllers for the 1st order plants
(Huba, 2013a), in tuning the FPD and DO-FPID con-
trollers one may get a closed loop performance nearly
invariant against the filter order n by requiring a fixed
dominant closed loop pole position in the complex s plane,
which may be expressed by means of (18) and (19) as

son = pon/Tn = soD = poD/TD (21)

what corresponds to a closed loop equivalence among the
time constants Tn and TD

Tn =
2(n+ 1)−R

(2−
√

2)(n+ 1)(n+ 2)
TD ; R =

√
2n(n+ 1) (22)

Thereby TD may be used as a tuning parameter influencing
primarily the speed of transients and the filter parameters
(the order n and the time constant Tn) for modifying the
noise attenuation.

4.6 Control of loops with mixed delays

The above treated situations considered just the limit
situations with either TD = 0, Tn 6= 0, or TD 6= 0, Tn = 0.
Thereby, TD has been considered as an equivalent limit
case corresponding to Tn for n→∞. In practice, one has
usually to treat mixed situations, when a loop contains
not only a filter dynamics Fn(s), but also a dead time Td
representing e.g. an nonmodelled plant dynamics. Analysis
carried out in Huba (2013a) showed that for Td << TD the
controller tuning may be simplified by using the values
KoPD,KoDD (19), whereas the filter time constants are
calculated according to (22) with TD substituded for TD

TD = TD − Td (23)

5. ILLUSTRATIVE EXAMPLE

Since a DO-FPID control has been shown in Huba
(2013c,b) to be much more noise sensitive than a FPD
control, this comparative experiment deals just with the
worse situation with a DO-FPID positional control of HSM
150 DC motor. The identified plant parameters are:

J = 0.00012 [kgm2]; moment of inertia

B = 0.00016 Nm.s.rad−1; viscous friction

TGM = 0.00025 [s]; torque generator time constant

∆ φ = 6.283/10000; [rad]; position resolution
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Fig. 2. Setpoint responses: IAE(ys), TV0(ys) and TV2(us)
versus n for three different values TD = {3, 5, 10}ms

When considering the plant model (1) one gets Ks =
1/J = 8333.3, a1 = B/J = 1.3333 and a0 = 0. All internal
delays (including the torque generator time constant TGM ,
the electrical time constant and the sampling period Ts =
0.25ms) will be approximated by the dead time Td =
TGM + Ts = 0.5ms.

For a chosen n, the equivalent dead time allocated to
filtration (23) is used instead of TD in calculating the filter
time constant Tn according to (22). The remaining FPID,
or DO-FPID controller parameters KP and KD are set for
TD according to (19).

Dependences of the simulated and really measured IAE,
TV0(ys), TV1(yd) and TV2(u) values (for the setpoint and
disturbance steps) on n are shown in Figs 2-3. Examples of
transient responses for two different n are shown in Fig. 4.
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Fig. 3. Disturbance responses: IAE(yd), TV1(yd) and
TV2(ud) versus n for the values TD = {3, 5, 10}ms

6. DISCUSSION

The IAE curves in Figs 2-3 fully confirm that the equiva-
lence of loop delays (22) allows to tune the control loop for
a different noise attenuation by changing n without influ-
encing significantly dynamics of the setpoint and distur-
bance responses. This holds despite the fact that the used
equivalence of the loop delays has been derived for a double
integrator, i.e. by neglecting the plant coefficient a1 6= 0
(Huba, 2014). Thereby, in terms of TV2(us), the noise
impact may be significantly reduced (nearly 10 times), but
not so strongly as indicated by the simulation results. By
shortening Ts this improvement factor increases. Discrep-
ancy between the simulated and really measured setpoint
responses could be explained by an additional noise source
from the moment generator (PWM, commutator effect).
The much larger differences appearing for the disturbance
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Fig. 4. Setpoint and disturbance step responses of the servo
output (above) and input for two different values
n = 2 and n = 5, Ts = 0.5ms

responses are obviously caused by a noise produced by
the second motor used as a load torque generator. These
differences increase by weakening the primary motor con-
trol. This noise impact contributes also to increased IAE
values of real responses. For a more detailed study, one
should identify these up to now nonmodelled noise sources
and thus to increase a matching between the simulation
and real time control.

Regarding the choice of an optimal filter order n the
measured results do not offer a simple interpretation. In
each case it is obvious that, when working with a minimal
filter order n = 2 required for a proper inversion of the
plant dynamics, one gets a relatively high noise impact.
This may be significantly reduced by n > 2. To get a
deeper insight into the loop properties, a loop sensitivity
analysis Åström and Hägglund (2006) might be helpful.
For a noise attenuation evaluated at the control output,
from the ”gang of four”, the noise-to-control frequency
gains are important. For Td << TD, when Fd(s) =
exp(−Tds) ≈ 1/(1 + Tds), one gets

C(s) = KP +KDs;Fm(s) = Ks/(s
2 + a1ms)

SF (s) = Fn(s)/(1− Fn(s)Fd(s))

L(s) = C(s)SF (s)Fd(s)F (s)

(
1 +

1

C(s)Fm(s)

)
Fδun(s) =

Ur(s)

δ(s)
=
C(s)SF (s)

1 + L(s)

(
1 +

1

C(s)Fm(s)

) (24)

Fig. 5 shows that for the minimal DO order n = 2 the high
frequency measurement noise amplification is the highest
and for ω → ∞ it converges to a |Fδu2(∞)| > 0. For
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Fig. 5. DO-FPID: Noise-to-control frequency gains (24) for
n = 2÷ 8, a1m = 0 and TD = 5ms

n > 2 it already holds |Fδun(∞)| = 0 and the measurement
noise attenuation at high frequencies improves. However,
increasing resonant peaks at middle frequencies occur.
This indicates that an increase of n will improve the
overall filtration just to some degree. Though, since a noise
is also generated by the torque generator imperfections
(PWM, commutator issues, etc.) that are not covered by
the model used, without an experiment it is not evident, up
to which moment the trend of improved quantization noise
filtering holds, or at which values of n and TD one may
get minimal TV2(u) values corresponding to the setpoint
and disturbance steps. Nevertheless, for a practical use, in
majority of situations the default values n = 3− 5 may be
considered.

Since the noise impact of other alternative solutions, as
e.g. different cascaded, or PID controllers (Žabiňski and
Trybus, 2010; Kim, 2009; Huba and Bélai, 2014a) is
slightly worse than for the DO-FPID controller with n = 2,
this structure shows its basic advantage in possibility to
achieve a much better noise attenuation.

In the case of general second order systems, the DO-
FPID tuning based on TRDP has disadvantage of complex
formulas (Huba, 2014). On the other side, it is well known
that many practicall approaches use the possibility to
approximate a complex plant dynamics by the double
integrator models (Fliess and Join, 2008; Han, 2009).

As it was already discussed in Huba (2013b), when speci-
fying a final bound on particular shape related deviations,
by the numerical performance portrait method one may
achieve an improved control performance compared to the
TRDP approach. By this method, an optimal equivalence
of the loop delays derivation discussed in Sec. 4.5 could
be accomplished fully numerically. But then one looses
advantages of an analytical design (Skogestad, 2003).

7. CONCLUSIONS

The carried out experiments fully confirm expectation that
by using DO-FPID control one may significantly reduce
influence of a measurement and quantization noise. Since
this conclusion seems to be in a contrast to the analysis in
Sariyildiz and Ohnishi (2013), to get a deeper insight into
this problem, a more detailed sensitivity loop analysis, or
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Fig. 6. DO-FPID: Implementation scheme

an analysis by the performance portrait method should be
carried out and confronted with these experimental results.
Recently, results of this paper have been augmented by a
comparison with several traditional PID control structures
(Huba and Bélai, 2014a) and extended to a case of con-
strained control (Huba and Bélai, 2014c).

REFERENCES
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Republic.

Huba, M. and Bélai, I. (2014a). Comparison of Two
Approaches to a Positional Servo Control. In 15th
Int. Carpathian Control Conference - ICCC. Velké
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