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Abstract: Type 1 diabetic patients require adjustments of their basal therapy due to insulin
requirement changes. A very promising automatic approach is based on the so called Run-to-
Run (R2R) strategy, which adjusts the insulin therapy based on the performance measured
during the previous run, usually of 1 day. Previous R2R approaches were based on few blood
glucose measurements. In this paper the use of a subcutaneous-continuous glucose monitoring is
exploited in order to obtain more relevant clinical performance indices such as the percentage of
time spent by the glycaemia below 70 mg/dl, above 180 mg/dl and the mean glucose. Different
priority is given to hypo and hyperglycemia control and in particular the primary goal is to
reduce the time below 70 mg/dl, to reduce the time above 180 mg/dl and to reach the mean
glucose target. In doing so a switching control law is achieved. A procedure for the convergence
analysis of a linear version of the proposed R2R approach is introduced by resorting to the
Lyapunov theory for piecewise affine systems. Performance is studied for both nonlinear and
linear algorithm by means of an extensive in-silico trial performed on 100 adults patients of the
UVA /Padova simulator with a random variation of patient insulin sensitivity. After a week the
time spent below 70 mg/dl (initially equal to 8.3%) was reduced to 1.52% using the nonlinear
R2R and to 1.36% using the linear R2R, the time in range [70-180] mg/dl was increased by

20.2% and 19.8%, respectively.
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1. INTRODUCTION

Type 1 diabetes mellitus (T1DM) is a disease charac-
terized by an elevated blood glucose (BG) levels, called
hyperglycemia (BG > 180 mg/dl), caused by an absolute
deficiency of insulin secretion. In order to avoid prolonged
hyperglycaemia which is associated with a series of long-
term complications, people with T1DM need exogenous
insulin delivery. Intensive treatment with insulin injec-
tions reduces the risk of chronic complications, but can
increase hypoglycemia (BG < 70 mg/dl) risks that can be
very dangerous. The goal for T1IDM patients is therefore
to maintain BG within a strict glucose range ([70-180]
mg/dl), called euglycemic range.

The availability of a new generation of Continuous Glucose
Monitoring (CGM) and subcutaneous insulin infusion al-
lows to improve glycemic control based on the so-called
sensor-augmented insulin-pump therapy (Bergenstal et al.
[2010]), which is a pump based therapy supervised and
adapted by the patient using the continuous measure-
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ments provided by the CGM. The pump therapy (here-
after Conventional Therapy (CT)) is composed by a basal
insulin, which is conceptually a piecewise constant insulin
injection, and an insulin bolus, which is an impulse-like
injection used to compensate the glucose rise due to the
meal.

This paper deals with the automatization of basal adap-
tation based on CGM exploring the use of Run-to-Run
(R2R) approach. The R2R is a learning-type control al-
gorithm (Wang et al. [2009]) introduced in the chemical
process industry where the process variability is high and
the requirements are strict; this algorithm learns informa-
tion about the control quality from the current run and
changes the control variable to apply in the next run, in
order to improve a specific performance index.

A first generation of R2R strategies that use only few daily
BG showed good performance when applied to the glucose
control problem for TIDM patients (Owens et al. [2006],
Palerm et al. [2007a,b, 2008]). In this case, the patterns
of meal intake, glucose measurement, and insulin delivery
repeat themselves in 24 h cycles, so a 24h R2R approach
can be the right choice to manage these uncertainties.
Several versions of the R2R strategy were used to adatpt
day-by-day the basal insulin (Palerm et al. [2008]) or the
meal bolus (Doyle et al. [2001], Zisser et al. [2005], Owens
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et al. [2006], Palerm et al. [2007a,b]) and were successfully
tested both in-silico and in-vivo.

In this paper, the additional information provided by the
CGM is used to explore a new R2R algorithm based on
well accepted performance indices like the percentage of
time spent below 70 mg/dl, the percentage of time spent
above 180 mg/dl and distance of the average glucose from
a target. Priority is given to the reduction of the percent-
age of time spent below 70 mg/dl, so that a switching
control law is derived. A nonlinear and a linear version
of the algorithm are proposed. An algorithm to verify the
convergence of a linear version of the proposed algorithm
is introduced by resorting to the Lyapunov theory for the
piecewise affine (PWA) systems (Gang [2005]). Finally,
the performance of the nonlinear and linear R2R ap-
proaches are compared with the CT that does not consider
basal adaptation on 100 in-silico adults patients of the
UVA /Padova simulator (Dalla Man et al. [2013]) with a
random variation of patient insulin sensitivity.

2. RUN-TO-RUN STRATEGY

The general idea behind a R2R approach is to update, at
each run, the controlled variable in order to improve as
much as possible a performance index.

In clinical practice the common index of a good glycemic
control is the glycated hemoglobin (HbAlc): higher values
of HbAlc indicate a poor control of blood glucose levels
(Rohlfing et al. [2002], Davidson [2004], Heisler et al.
[2005]). This parameter is measured in laboratory and used
primarily to identify the average plasma glucose concen-
tration over prolonged periods of time (months). For these
reasons it can not be used in a R2R context where the run
has typically a duration of one day.

The first R2R approaches for T1IDM used a few BG finger-
stick measurements (see e.g. Doyle et al. [2001], Zisser et al.
[2005], Owens et al. [2006], Palerm et al. [2007a,b, 2008]).
However, the introduction of CGM sensors that measure
countinuosly the subcutaneous glucose concentration, and
the necessity to evaluate also short period trials, has mo-
tivated the definition of short period performance indices,
that are now well accepted in clinical research to evaluate
control quality. The main ones are the percentage of time
spent in range, the percentage of time spent below the
range, the percentage of time spent above the range and
the average BG.

In this work these performance indices are exploited in
the R2R algorithm. The major concern of a T1DM pa-
tient is to avoid hypoglycaemia, hence the updating law
was primarily designed to lead to 0 the percentage of
time spent below 70 mg/dl. Once this primary goal is
achieved, a secondary updating law is designed to reduce
the percentage of time spent above 180 mg/dl and to lead
the average BG to the desired target. Note that if this
secondary law is too aggressive an oscillatory behavior can
be obtained. This must be avoided with a suitable tuning
of the algorithm.

2.1 New algorithm

In the R2R algorithm proposed in this work, the run period
is set equal to 24h which corresponds with the circadian
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the basal insulin b.

rhythmicity of the patient’s variations.

At run k, the updating law is defined as follows
blk+1)=

if Tb(k) >

b(k)(1 — k1 Ty (k)
Gm(k) = Gr GT) if T, (k)

0
b(k) <1 + koT, (k) + k3 —— e 0
T

(1)
where b is the basal insulin, the variable updated by the
algorithm, the constants ky, ko, k3 are the R2R gains,
Gr is the glycemic target and T3, T,, G,, are the R2R
performance indices. In particular, Tp is the percentage of
time spent below 70 mg/dl, T, is the percentage of time
spent above 180 mg/dl and G,, is average subcutaneous
glucose concentration. The variation of the basal insulin,
at each run, is proportional to the basal rate applied at
the previous run and to the performance indices computed
during the last interval. Hence, the resulting system is a
switching nonlinear system driven by the value of Ty.

2.2 Stability analisys

Due to the switching structure of the updating law (1), the
classic stability analysis of R2R algorithms (see Francois
et al. [2003], Owens et al. [2006]) can not be applied. In
order to study the stability properties, it is helpful to note
that the signal Tj, T, and G,,, depend on the value of the
basal rate. In particular, performing an in-silico test with
the UVA /Padova simulator (Dalla Man et al. [2013]) on
100 virtual patients, it has been noted that the following
PWA models can well describe these relations (see Fig. 1):

kb(b(k) — Bb) if b(k) > Bb

To(k) = { 0 otherwise (2)
o= {00 O o

(4)
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where the parameters ky, by, kq, ba, kg and G¢ have to be
identified for each single patient.

In order to identify these models, several experiments with
different basal values in the interval [bI"", b"%*] with a fix
step db; have been performed taking constant all the other
external quantities that can affect the performance indices.
Each index has been computed for every basal value and
used to identify a piecewise linear model through a linear
interpolation (see Fig. 1).

However, by including the identified linear functions (2),
(3), (4) in (1), the study of the stability of the system
remains difficult in view of the nonlinearity of (1).

On the contrary, several stability results are available for
PWA systems (Johansson [1998],Gang [2005]). Hence, in
order to obtain a R2R algorithm whose convergence can
be verified, the following linear R2R law is proposed:

b(k+1) =

b(k) — bk Ty (k) 0
b(k) + b ( koTu(k) + kg(Gm(k)_GT)) it Ty(k) =0’
with b(0) = b

) (5)
where b is the initial basal therapy of the patient.
In Section 3 an in-silico comparison of the control perfor-
mance achieved with the nonlinear R2R (1) and the linear
one (5) is reported.
Combining the identified linear functions (2), (3), (4) with
(5), the system can be written as

b(k+1) =
(1 — kbky)b(k) + k1 bkyby if b(k) € 5
(1 + kobk, + k‘"’é’kc> b(k)—
T i
 kb(Ge kG if b(k) € 5
—yblighy — 2R E T T
_ Gr _
14 Rabka ) oy RabGo+GT) 4oy ¢ g,
GT GT
(6)

where S; = {b: b >§b}, Sy={b:b< by Ab < b} and
Sz = {b: b, <b < by} Note that if b, > b, zone S3 is
empty, which means that it is not possible to reach the
100% of time in target.

The convergence of the R2R algorithm (6) can now be
proven using the results reported in Gang [2005], where
a method based on a piecewise Lyapunov function is used
to test the stability of a discrete time PWA system.

In order to fulfill the hypotheses required to apply the
stability results reported in Gang [2005] (the equilibrium
must be on the boundary of the region), the region Ss
must be splitted in two regions (Ss, Sy) and system (6)
can be rewritten in the following way:

x(t+1) = Ax(t) + ar, for z € S

l=12,....m (7)
where
Ge + G
2(t) = b(k) — bugs beg = 2GTET iy,
ka _
_ = ksbk
Ay =1— kibky, Ay =1+ kobky + —n
_ Gr
A3:A4:1+ kakG7
Gr

a; = kll;kb(l;b - beq)a _
- - ksb
ag = kobka(beg — ba) + Gi(kgbeq ~Gg — Gr),
T
az = Q4 — 0.
{St}hieq1,2,3,43 € R denotes a partition of the state space
into four closed interval, in particular Sy = {z : z > b, —
begt, So={x: 2 <bp—beg Az < by —beq}, S3 :_{J: -
beq < z < 0}and Sy = {z : 0 < 2 < by — beg}
Hence, it is possible to formulate the following stability
theorem, where Ly = {3,4} is the set of indices for
subspaces that contain the origin, L; = {1,2} the set of
indices for the subspaces that do not contain the origin,
Q={l,jlz(t) € Si,z(t+1) € S;,j #1} and

_ A _
A= [Ol Cil], E =[E ¢

QP P

_ _Bb+beq _ Z)b_beq _ _ 0
61—|: O :|7e2_|:ba_beq 763_64_ 0
Theorem 1. (Gang [2005]) Consider the piecewise linear
system (7). If there exist symmetric matrices P}, [ € Lo,
P, l € Ly, U, W; and @Qy; such that U;, W; and @;; have
nonnegative entries and the following LMIs are satisfied:

0< P —EI'UE, 1€l (8)
ATPA — P+ EfWE <0, 1€ L (9)
0< P —-EI'UE, lcl (10)
ATPA — P +E/WE <0, lel (11)
AlPjA — P+ EFQiE <0, L,jeQnLy (12)
Al PjA — P+ EFQiE <0, ,j€eQnL; (13)
iTH. i _ B E > L,jeq,
AT PA - P+ Ef QuE <0, 2 Lijer, (9
TH i B . - 1,jeQ,
Al'PjA - P+ B QuE <0, | é Lojecr, (19

where P; = [1 0]TP;[1 0] for j € Lo in (14) and
P =[1 0Pl 0], for I € Ly in (15), then the origin of
the piecewise linear system is exponentially stable, that is,
x(t) tends to the origin exponentially for every trajectory
in the state space. O

If the region S3, Sy do not exist, the b., has to be
recomputed as equilibrium of Ss and the sets of indices
changes in Ly = {2}, L1 = {1}, with m = 2.

Note that the convergence of the system depends on
the R2R gains ki, ko, k3. The Multi-Parametric Toolbox
(MPT), introduced in Kvasnica et al. [2004], allows to find
these Lyapunov functions for PWA systems and ensure its
stability. Hence given ki, ko and k3 it is possible to verify
the stability of the associated linear R2R algorithm.

3. IN-SILICO RESULTS

The main goal of this section is to find a tuning for
the R2R algorithm guaranteeing the stability and good
performance for any possible patient. In order to obtain
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these results the widely accepted UVA /Padova simulator
(Dalla Man et al. [2013]) equipped with a population of 100
adults in-silico patients is used. The gains of the algorithm
have been fixed for all the patients to k; = 0.15, ko = 0.175
and k3 = 0.005, and Gr = 115 mg/dl for both the linear
and nonlinear algorithms. A deeply analysis of the quality
of this choice has been performed on the entire in-silico
population that is characterized by an intra-individual
variability which well describe the one of real patients. The
analysis has been conducted both in term of stability and
of performance. After the indentification of the individual
values of the parameters ky, by, k4, by, kg and Gg for
each in-silico patient was completed, the stability of the
algorithm for each in-silico patient has been successfully
verified using the MPT. The basal interval used to collect
data was defined taking b{)’i”" = 0.25by;, by, *" = 2bp; and
0bp; = 0.25by;, where by; is the basal insulin provided by
the simulator of the i-th patient.

The control performance were evaluated on a 15day sce-
nario, simulated on the virtual population with a fixed
25% random (=) variation of insulin sensitivity, in order to
represent possible uncertainties on individual insulin sensi-
tivity and the day-by-day changes of insulin requirements.
The protocol involves 3 meals a day at 7:00, 12:00 and
18:00 of 50g, 60g and 80g of carbohydrates, respectively.
The protocol includes also a 16g administration, called
hypo treatment (ht), if the BG falls below 65 mg/dl. The
administration can be repeated only if 30 minutes have
elapsed from the previous one. The CGM sensor is affected
by the error noise described in Toffanin et al. [2013] which
describes the total measurement error, including wearing
issues in addition to noise and drift usually considered.
The simulations have been realized following the CT, the
nonlinear R2R strategy (R2Rp;) (1) or the linear R2R
strategy (R2Rp) (5). The results are reported in Table 1
in term of Mean and Standard Deviation (SD) of BG,
the percentage of time spent in euglycemic range [70-180]
mg/dl (T.), the percentage of time spent in tight range [80-
140] mg/dl (T%.), the percentage of time spent above 180
mg/dl (T,), the percentage of time spent below 70 mg/dl
(T}), the percentage of time spent below 50 mg/dl (T},),
and the average number of hypo treatments per patient
(#£ht) occurred during the considered run. All these indices
are computed globally (G), during the night (N, 23:00-
8:00), and as an average relative to all post prandial (3h)
periods (PP) of the specified day. In order to evaluate
the statistical significance of the results, the p-value are
computed for the comparisons between CT and R2Ry;
and between R2Rpy; and R2R .

Table 1 shows the comparison between Day 2 and Day
8, i.e. the first day in which the R2R algorithms have an
effect and the results after a week using these algorithms.
Since u(0) = @, for k = 1 R2Rx; and R2R, coincide (see
Day 2 in Table 1). In one step, the R2R algorithm reduced
the times spent above 180 mg/dl by 15%, below 70 mg/dl
by 48.6% and below 50 mg/dl by 73.8% with a moderate
increase of average BG (0.2 mg/dl). The time in range
and tight range were increased by 8.4% and 11%. The
#ht, initially 3.51, were reduced by 55.6% with the R2R n;
and by 84% with R2R . All these results are statistically
significant (p-value < 0.001).

After a week the time spent below 70 mg/dl, initially equal
to 8.3%, was reduced to 1.52% (p-value < 0.001) by the

Table 1. Simulation results obtained with the
CT, R2Ry;, and R2R, strategies.
@ pvalue < .001, ® p-value < .01, ¢ p-value

< .05
Day 2 Day 8

G N PP G N PP
Mean _CT [131.887104.17 159.03 131.86° 104.19° 158.96
(me/d] R2Ry;| 132.02 104.38 159.22| 124.36 96.04 151.64
R2R;, | 132.02 104.38 159.22|125.15% 96.78 152.48

D CT [30.85% 9.04 26.18| 30.82 9.05 26.15
(me/d] R2Rpn;| 30.57 9.42 25.68| 31.19 9.44 26.58
R2Ry | 30.57 9.42 25.68|31.18° 942 26.49
CT [75.96% 84.85 64.7 | 75.98% 85.18% 64.45%

T, (%) R2Rn;| 82.33 88.5 70.51| 91.37 95.78 82.29
R2Ry | 82.33 885 70.51(91.06° 96.12 81.36
CT [49.04® 70.3 31.39| 49 70.34° 31.247

Tir (%) R2Ry;| 54.42 75.63 33.62| 61.86 81.35 34.41
R2R; | 54.42 75.63 33.62| 62.19 83.85 34.03
CT [15.76% 0.86 32.1 |15.76% 0.85¢ 32.11°¢

Ta (%) R2Rp;| 13.38  0.64 29.16| 7.11  0.02 174
R2R; | 13.38 064 29.16| 7.57* 0.02 18.41

CT | 828% 14.29 3.20 | 8.27% 13.96° 3.44°¢

Ty (%) R2Rpy;| 4.29 10.87 0.33 | 1.52 42  0.31
R2R; | 429 1087 033 | 1.38 385 0.23

CT | 3.55° 412 1.77 | 3.5% 4190 1.68°

T, (%) R2Ryi| 0.94 251  0.07 0 0 0

R2R; | 094 251 0.07 0 0 0

CT [ 351 18 06 | 35% 1.76° 06

#ht R2RN;| 1.56 1.25 0.05 | 0.38 0.34 0.04
R2R; | 056 1.25 0.05| 0.31 027 0.04

R2Ry; and to 1.36% by the R2R [, the increase of the time
in range achieved by these algorithms is equal to 20.2% (p-
value < 0.001) and 19.8%, respectively. Also the time in
tight range was increased, for R2Ry; by 26.2% (p-value
< 0.001) and for R2Ry, by 26.8%. The average BG was
decreased by 5.7% (p-value < 0.001) and by 5.1%, respec-
tively, while SD remained almost the same. The #ht (equal
to 3.5) were reduced by 89.1% with R2Rx; and by 91.1%
with R2R . After 2 weeks no further improvements were
achieved (see Table 2). Note that in general the differences
between R2R; and R2R [, are not statistically significant,
and when statistically significant the differences are very
limited.

The performance was evaluated also using the Control
Variability Grid Analysis (CVGA) introduced in Magni
et al. [2008] and improved in (Soru et al. [2012]). A single
point represents the couple of minimum and maximum BG
values reached by the virtual patient during the considered
day. In Fig. 2 the CVGAs relative to Day 2 (a) and 8
(b) confirm the good performance of the R2R algorithms
already observed in Table 1. Note that on Day 2, two
patients using the R2R approach fall in the D zone so
that they reach a BG minimum lower than with CT, but
the percentage of time spent under 70 mg/dl is negligible
and overall the performance indices are improved. On Day
8 91% of the patients are in A and B zones and 0 in D.
On Day 15 the performance are slightly improved: zone
A decreases the number of patients by 2, C by 4 and B
increases by 6 with the R2R y;, while with the R2R, zone
A decreases by 2, B increases by 3 and D goes to 0.

In Fig. 3 are represented the mean + standard deviation
of the glucose profiles of Day 2 (a) and Day 8 (b), re-
spectively. The same conclusions can be hold: after 1 step
of R2R (Day 2) the post-prandial below basal excursions,
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Table 2. Simulation results obtained with the
CT, R2Ry;, and R2R, strategies.
@ pvalue < .001, ® p-value < .01, ¢ p-value
< .05

Day 8

Day 15

G

N

PP

G

N

PP

Mean
[mg/dl]

cT
R2RpN;
R2Rj,

131.86°
124.36
125.15%

104.19% 158.96

96.04
96.78

151.64
152.48

131.93¢
122.84
123.29¢

104.25¢
94.15
94.76

159.04¢
150.26
150.66

SD
[mg/dl]

CT
R2RpN;
R2Ry,

30.82
31.19
31.18%

9.05
9.44
9.42

26.15
26.58
26.49

30.83¢
31.42
31.33b

9.05
9.65
9.54

26.16
26.68
26.62

T (%)

cT
R2Rp;
R2Ry,

75.98¢
91.37
91.06¢

85.18¢
95.78
96.12

64.45%
82.29
81.36

75.95%
92.8
92.73b

84.8¢
97.89
98.1

64.69¢
84.49
84.11

Ter (%)

CT
R2R
R2Rp

49¢
61.86
62.19

70.34¢
81.35
83.85

31.24°
34.41
34.03

49.06¢
63.3
63.45

70.35
80.53
82.16

31.4¢
35.46
34.96

To (%)

cT
R2RpN;
R2Rj,

15.76¢
7.11
7.57%

0.85¢
0.02
0.02

32.11¢
17.4
18.41

15.76¢
6.46
6.61¢

0.85¢
0.04
0.04

32.1°
15.4
15.79

Ty (%)

cT
R2RpN;
R2Rj,

8.27¢
1.52
1.38

13.96°
4.2
3.85

3.44°¢
0.31
0.23

8.3
0.74
0.67

14.35¢
2.07
1.86

3.20
0.11
0.1

Ty (%)

CcT
R2Rp;
R2R;,

3.50
0
0

4.19°
0
0

1.68°
0
0

3.4°
0
0

4.07°
0
0

1.73%
0
0

#ht

CT
R2Rni
R2Rp

3.5¢
0.38
0.31

1.76°
0.34
0.27

0.6
0.04
0.04

3.43¢
0.14
0.08

1.71¢
0.13
0.07

0.59¢
0.01
0

Maximum BG

Fig.

CT: A=10 B=54 C=31 D=5
R2RN|: A=14 B=52 C=33 D=1

RZRL : A=14 B=56 C=29 D=1

300

<110

>110 <50

90 70
Minimum BG

(b)

2. CVGA representing the results obtained using CT
(blue square), R2Ry; (magenta circle), and R2Rj,
(orange diamond) on Day 2 (a) and Day 8 (b) with
the insulin sensitivity variation scenario. Each point
represents the coordinates (z is a function of the min-
imum glucose value and y a function of the maximum
value) associated with a single patient.

detected after lunch and dinner, are reduced (Fig. 3a);
after 1 week (Day 8) the standard deviation computed
on 100 patients is largely reduced (Fig. 3b) as well as
the minimum and maximum BG, confirming the CVGA
results of Fig. 2b.

4. CONCLUSION

A new switching R2R strategy using the percentage of time
spent below 70 mg/dl, above 180 mg/dl and distance of the
average glucose from a target to update the basal insulin
is proposed. This approach, differently from closed-loop
artificial pancreas, does not require a real-time closed-loop
connection avoiding all the related technological and safety
issues. With respect to the previous R2R approaches, that
use only few BG measurements, the use of a CGM allows
an automatic adjustment based on a richer information.
Algorithm convergence has been proven for a linear version
by studying the stability of the associated piecewise affine
System.

The performance studied on an extensive in-silico trial
performed on 100 adults patients of the UVA /Padova
simulator with a random variation of patient insulin sen-
sitivity, is very promising already after one week. The
hypoglycemia phenomena experienced with the CT are
completely avoided by using the R2R and the hyper-
glycemia is reduced as well. The R2R algorithm shows
good performance and stability in both its forms on the
entire diabetic population.

Hence the proposed R2R algorithm could be safely used in
real patients thanks to the well accepted capability of the
UVA /Padova simulator to represent real population. From
a methodological point of view the next step is to apply
the R2R approach also to adapt the insulin boluses moving
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Fig. 3. The figure shows for CT (blue), R2Ry; (magenta),
and R2Ry (orange) the mean (dots) and the vari-
ability (+ standard deviation) of the glucose profiles
obtained in 100 virtual patients on Day 2 (a) and
Day 8 (b) with the insulin sensitivity variation sce-
nario. N, night; PP, postprandial period.

from a scalar problem to a multivariable one that however
significantly increases the complexity of the problem in
view of the interaction between basal and insulin boluses.

ACKNOWLEDGEMENTS
Thanks to Federico Di Palma for the valuable comments.

REFERENCES

R.M. Bergenstal, W.V. Tamborlane, A. Ahmann, J.B.
Buse, G. Dailey, S.N. Davis, C. Joyce, T. Peoples,
B.A. Perkins, J.B. Welsh, B. John et. al. Effectiveness
of sensor-augmented insulin-pump therapy in type 1
diabetes. New England Journal of Medicine, 363(4):
311-320, 2010.

Y. Wang, F. Gao and F.J. Doyle III. Survey on itera-
tive learning control, repetitive control, and run-to-run
control. Journal of Process Control, 19(10):1589-1600,
2009.

C. Owens, H. Zisser, L. Jovanovi¢, B. Srinivasan, D.
Bonvin and F.J. Doyle III. Run-to-run control of blood
glucose concentrations for people with type 1 diabetes
mellitus. Biomedical Engineering, IEEE Transactions
on, 53(6):996-1005, 2006.

C.C. Palerm, H. Zisser, W. Bevier, L. Jovanovi¢ and F.J.
Doyle III. Prandial Insulin Dosing Using Run-to-Run
Control Application of clinical data and medical exper-
tise to define a suitable performance metric. Diabetes
Care, 30(5):1131-1136, 2007.

2075

C.C. Palerm, H. Zisser, L. Jovanovi¢ and F.J. Doyle III.
A run-to-run framework for prandial insulin dosing:
handling real-life uncertainty. International Journal of
Robust and Nonlinear Control, 17(13):1194-1213, 2007.

C.C. Palerm and H. Zisser, L. Jovanovi¢ and F.J. Doyle
III. A run-to-run control strategy to adjust basal insulin
infusion rates in type 1 diabetes. Journal of Process
Control, 18(3):258-265, 2008.

F.J. Doyle III, B. Srinivasan and D. Bonvin. Run-to-run
control strategy for diabetes management. Engineering
in Medicine and Biology Society, 2001. Proceedings of
the 23rd Annual International Conference of the IEEE,
4:3159-3162, 2001.

H. Zisser, L. Jovanovi¢, F.J. Doyle III, P. Ospina and
C. Owens. Run-to-run control of meal-related insulin
dosing. Diabetes technology & therapeutics, 7(1):48-57,
2005.

F. Gang Stability analysis of piecewise discrete-time linear
systems. Automatic Control, IEEE Transactions on,
47(7):1108-1112, 2002.

C. Dalla Man, F. Micheletto, D. Lv, M. Breton, B.P.
Kovatchev, and C. Cobelli. The UVA/Padova Type
1 Diabetes Simulator: New Features. J Diabetes Sci
Technol, 8(1):26-34, 2014.

C.L. Rohlfing, H.M. Wiedmeyer, R.R. Little, J.D. Eng-
land, A. Tennill and D.E. Goldstein. Defining the re-
lationship between plasma glucose and HbAlc analysis
of glucose profiles and HbAlc in the Diabetes Control
and Complications Trial. Diabetes care, 25(2):275-278,
2002.

J.A. Davidson. Treatment of the patient with dia-
betes: importance of maintaining target HbAlc levels.
Current Medical Research and Opinion®, 20(12):1919—
1927, 2004.

M. Heisler, J.D. Piette, M. Spencer, E. Kieffer and S.
Vijan. The relationship between knowledge of recent
HbA1c values and diabetes care understanding and self-
management. Diabetes care, 28(4):816-822, 2005.

G. Francois and B. Srinivasan and D. Bonvin. Convergence
analysis of run-to-run control for a class of nonlinear sys-
tems. American Control Conference, 2003. Proceedings
of the 2003, 4:3032-3037, 2003.

M. Johansson and A. Rantzer. Computation of piecewise
quadratic Lyapunov functions for hybrid systems. Au-
tomatic Control, IEEE Transactions on, 43(4):555-559,
1998.

M. Kvasnica, P. Grieder, M. Baoti¢ and M. Morari. Multi-
parametric toolbox (MPT). Hybrid systems: computa-
tion and control, Springer:448-462, 2004.

C. Toffanin, M. Messori, F. Di Palma, G. De Nicolao, C.
Cobelli, and L. Magni. Artificial Pancreas: MPC design
from clinical experience. J Diabetes Sci Technol, 7(6):
1470-1483, 2013.

L. Magni, D.M. Raimondo, C. Dalla Man, M. Breton,
S. Patek, G. De Nicolao, C. Cobelli, B.P. Kovatchev.
Evaluating the efficacy of closed-loop glucose regulation
via control-variability grid analysis. J Diabetes Sci
Technol, 2(4):630-635, 2008.

P. Soru, G. De Nicolao, C. Toffanin, C. Dalla Man, C.
Cobelli, L. Magni, and on behalf of the AP@Qhome
consortium. MPC based Artificial Pancreas: strategies
for individualization and meal compensation. Annual
Review in Control, 36:118-128, 2012.



