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Abstract: This paper presents the design of an indirect adaptive feedback linearization (FBL)-
based control using dynamic neural networks (DNN) for full-car nonlinear electrohydraulic
suspensions. Particle swarm optimization (PSO) algorithm is used in training the DNN to learn
the dynamics of the system. A multi-loop, PSO-optimized proportional-integral-derivative (PID)
control is implemented for the feedback-linearized DNN model to improve system performance.
The proposed control scheme outperformed the passive vehicle suspension system (PVSS) and
the benchmark PSO-optimized PID controller.
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1. INTRODUCTION

Resolving the conflicting nature of performance require-
ments such as ride comfort, handling and road holding
has been a major concern for the design of active vehicle
suspension systems (AVSS) Pedro et al. (2013). AVSS
have significantly resolved this conflict, but the tuning
of controller gains is still a limiting factor in the design
process.

Linear control methods such as PID, H2, H∞, linear
quadratic regulator (LQR), and linear quadratic Gaussian
(LQG) have been incorporated on AVSS. Their application
for realistic nonlinear systems requires a great deal of
intuitive reasoning, experience and rigorous fine tuning.
Heuristic optimization principles such as controlled ran-
dom search (CRS), genetic algorithm (GA), differential
evolution (DE), pattern search (PS) and PSO have been
used to select controller gains for AVSS Pedro et al. (2013).
Vast majority of these have only addressed linear systems
without actuator dynamics Wai et al. (2011); Crews et al.
(2011); Chiou et al. (2012).

A realistic study must incorporate the vehicle lateral and
longitudinal dynamics in order to create a successful con-
trol method. Pedro et al. (2013) applied DE algorithm
to resolve the conflicting performance criteria for full-
car PID-controlled AVSS. Drawbacks of such controllers

involve the generation of high controller gains, chattering,
and poor robustness to parameter variations and uncer-
tainties.

Nonlinear and intelligent adaptive control schemes such
as FBL, sliding mode control (SMC) and backstepping
have been developed to address these drawbacks. SMC
has been successfully applied for nonlinear half-car AVSS
that contain a considerable degree of coupling Yagiz et al.
(2008). Neural control and fuzzy logic control (FLC) have
been applied for a variety of nonlinear quarter-car, half-
car and full-car AVSS with actuator dynamics Eski and
Yildirim (2009); Aldair and Wang (2010); Guclu and Gulez
(2008); Lin et al. (2009); Pekgokgoz et al. (2010); Chiou
et al. (2012). Improved performance and robustness were
observed through their use. Hybrid approaches with both
linear and nonlinear control laws have also been devel-
oped. An indirect adaptive control was also performed
for a quarter-car AVSS using a multilayer perceptron
(MLP) neural network (NN) Pedro and Dahunsi (2011).
Pekgokgoz et al. (2010); Chiou et al. (2012) employed GA
and PSO-based tuning methods for adaptive fuzzy PID-
controllers to improve system performance. Alfi and Fateh
(2011) applied PSO to train a NN for system identification.

DNN have not been extensively applied for intelligent con-
trol of AVSS because the static neural networks have been
reliable up until now. DNN contain recurrent elements
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which are modelled using differential equations. Garces
et al. (2003) presented a practical approach to DNN-based
FBL control for a class of nonlinear SISO and MIMO
systems.

This paper presents a realistic DNN-based hybrid FBL
control for nonlinear electrohydraulic full-car AVSS using
PSO algorithm to optimize the networks weights and con-
troller gains tuning. The paper is organized as follows:
the system model is presented in section 2. Section 3
introduces the AVSS performance specifications followed
by a brief description of the PID controller. PSO algorithm
is also described in this section. Detailed description of
the DNN-based system identification and FBL control
are presented. Section 4 presents simulation results with
discussion and the paper is concluded in section 5.

2. SYSTEM OVERVIEW AND MODELLING

Figure 1 shows the schematic of the full-car system used in
this paper. Four suspension systems placed at each wheel
support the vehicle body Pedro et al. (2013).

Fig. 1. Schematic of the full-car model

Applications of Newton’s second law of motion to the
nonlinear full-car AVSS gives the governing equations in
state-space form as Pedro et al. (2013); Noura et al. (2009):

ẋ = f(x) + g1(x)u1 + g2(x)u2 + g3(x)u3

+g4(x)u4 + w(x), (1)

with the state vector defined as:

x = [x1, x2, . . . , x22]
T

= [ztfr, żtfr, PLfr, xvfr, ztfl, żtfl, PLfl, xvfl, ztrr, żtrr,

PLrr, xvr, ztrl, żtrl, PLrl, xvrl, z, ż, θ, θ̇, α, α̇
]T
, (2)

where ztfr, ztrr, ztfl and ztrl are the front right, rear right,
front left and rear left wheel displacements respectively;
żtfr, żtrr, żtfl, and żtrl are the front right, rear right,
front left and rear left wheel vertical velocities respectively;
PLfr, PLrr, PLfl, and PLrl are the pressure drops across
the front right, rear right, front left and rear left differences
experienced across the hydraulic pistons respectively; xvfr,
xvrr, xvfl, and xvrl are the front right, rear right, front
left and rear left spool-valve displacements respectively;
z and ż are the body vertical displacement and velocity
respectively; θ and θ̇ are the body pitch angular displace-
ment and velocity respectively; and α and α̇ are the body

roll angular displacement and velocity respectively. The
system outputs are defined as:

yfr = hfr(x) = x1 − (x17 − lf sinx19 + (af/2) sinx21) ,(3)

yfl = hfl(x) = x5 − (x17 − lf sinx19 − (af/2) sinx21) , (4)

yrr = hrr(x) = x9 − (x17 + lf sinx19 + (af/2) sinx21) ,(5)

yrl = hrl(x) = x13 − (x17 + lf sinx19 − (af/2) sinx21) .(6)

System matrices f and g and disturbance input matrix w
are:

f(x) = [ f1(x) f2(x) . . . . . . . . . f22(x) ]
T
, (7)

g1(x) = [ 0 . . . g4(x) . . . . . . . . . 0 ]
T
, (8)

g2(x) = [ 0 . . . . . . g8(x) . . . . . . 0 ]
T
, (9)

g3(x) = [ 0 . . . . . . . . . g12(x) . . . 0 ]
T
, (10)

g4(x) = [ 0 . . . . . . . . . . . . g16(x) 0 ]
T
, (11)

w(x) = [ 0 w2(x) . . . w10(x) . . . w14(x) . . . ]
T
. (12)

The elements of the input matrices g1(x), g2(x), g3(x)
and g4(x) are of the form:

g4(x) = Kvfr/τfr, g8(x) = Kvfl/τfl, (13)

g12(x) = Kvrr/τrr, and g16(x) = Kvrl/τrl. (14)

Disturbance matrix w(x) terms are:

w2(x) = (ktfrwfr + btfrẇfr) /mufr, (15)

w6(x)) = (ktflwfl + btfrẇfl) /mufl, (16)

w10(x) = (ktrrwrr + btrrẇrr) /murr, (17)

w14(x) = (ktrlwrl + btrlẇrl) /murl. (18)

This form is required to examine if the system is input-
output feedback linearizable. The effectiveness of the pro-
posed controller is tested by exposing the vehicle to a
deterministic road bump with varying height. The road
profile at each wheel and the values of the system param-
eters used in this study are the same as given in Pedro
et al. (2013).

3. CONTROLLER IMPLEMENTATION

The chosen specifications are based on constraints of the
physical model and are also aimed at improving ride
comfort, road holding and vehicle handling from that of
the PVSS. The performance index is Pedro et al. (2013):

J = J1 + J2 + J3 + J4 + J5

=
1
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where J1 addresses ride comfort and vehicle handling with
the maximum permitted heave acceleration z̈max, pitch
acceleration θ̈max, and roll acceleration α̈max. J2, J3, J4
and J5 pertain to tyre dynamic load, suspension travel,
control input voltage and actuation force respectively with
(Fktij + Fbtij)max, yijmax

, Faijmax
and uijmax

signifying
the maximum allowable limits in each of these aspects.

3.1 PID Controller Design

PID control is the most widely used controller for AVSS
applications. It serves as a good benchmark of comparison
for the proposed intelligent controller. The PID controller
architecture proposed in this study is the same as in Pedro
et al. (2013). Controller gains are selected with Ziegler-
Nichols method, after which fine tuning is conducted with
the objective of minimizing the performance index J . The
performance index achieved through this process is 3.2,
which is substantially superior to that of the PVSS.

3.2 Particle Swarm Optimization Algorithm

We create an F -dimensional space, where F is the number
of problem variables being optimized. These correspond
to the DNN parameters for system identification and the
controller gains in controller optimization. Each problem
variable represents a specific dimension. A set of problem
variables called a ”particle” is placed within this F -
dimensional space, where its position in each dimension
corresponds to the magnitude of its problem variable in
its associating dimension. Firstly, random sets of particles
are generated in a bounded space chosen through intuitive
knowledge. The performance of the particle is defined
according to its performance index J . In each iteration
each particle is set to move at a random degree to the
best particle in the space Gbest as well as to their best
individually recorded best position Pbest. This algorithm
may be summarized as follows Alfi and Fateh (2011);
Kennedy and Eberhart (1999); Chiou et al. (2012):

1 Generate a population set of particles (x0,x1, ..,xN).
2 Compute global best particle in the population.
3 Check stopping criterion, proceed to step 7 if stopping

criterion is met, otherwise continue to next step.
4 Compute the positions of each particle x(t+ 1) with

the relations

x(t+ 1) = x(t) + V(t+ 1) (20)

where x holding the position of each particle, t + 1
refers to the next iteration, V is the velocity matrix
which computes the degree to which each particle
moves in the search space. It is determined as follows:

V(t+ 1) =w1V(t) + w2rand1(1, F )(Pbest − x(t))

+w3rand2(1, F )(Gbest − x(t)) (21)

where Gbest is the set of problem variables that
produced the best results thus far, Pbest is a matrix
constraining the individual best positions of each
particle, (Pbest−x(t)) is called the local search vector
and (Gbest − x(t)) is the global search vector, w1

is the inertia weight, w2 and w3 are the learning
rates, rand1(1, F ) and rand2(1, F ) are uniformly
distributed random numbers between 0 and 1.

5 Update personal best and global best particles using
Chiou et al. (2012):

A(t+ 1) =

{
xi(t+ 1) if f(xi(t+ 1)) < f(A(t))
A(t) if f(xi(t+ 1)) ≥ f(A(t))

(22)

B(t+ 1) = arg min
A

f(A(t+ 1)), (23)

where f(. . .) denotes the respective performance in-
dex J of the various particles, A and B represent
Pbesti and Gbesti respectively.

6 Return to step 3.
7 The optimal solution is chosen to be the global best

particle.

3.3 DNN-Based Feedback Linearization Control

Figure 2 shows the architecture of the proposed control
scheme (DNNFBL+PSO). It is an indirect adaptive con-
troller where the system dynamics are learnt using DNN
which are trained offline with PSO algorithm. FBL is later
applied to the DNN models to create a linear decoupled
relationship between υij and yij . The controller gains are
computed with a separate PSO algorithm which minimizes
the performance index, Eq. (19).

Fig. 2. Schematic of the proposed full-car indirect adaptive
intelligent controller

3.4 NN-Based Nonlinear System Identification

The system identification involves using four independent
DNN models to learn the plant dynamics at each wheel for
the operating frequency range (0.5Hz, 80Hz) European
Commission (2002); Dahunsi et al. (2010). A white band
limited (WBL) noise covering this range is chosen as the in-
put data for the system identification process. These WBL
noise inputs are constrained to ±10V . The output data
arising from these inputs is also constrained to ±0.1m.
Additionally, the input data at the various suspension
systems must be significantly different in order to account
for the coupling within the system. The properties of the
WBL input data at each wheel are as follows: ufr: seed
strength of 23341, noise power of 0.1; urr: seed strength
of 22641, noise power of 0.07; ufl: seed strength of 22641,
noise power of 0.08; and url: seed strength of 22641, noise
power of 0.05. A uniform sampling time of 0.001s is used
for the input at each wheel.
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Each of the DNN models is described as follows:

ẋij =−βijx + Wijσ(xij) + g1ij (x)ufr + g2ij (x)ufl

+g3ij (x)urr + g4ij (x)url + γ1ij (x)yfr(t− 1)

+γ2ij (x)yfl(t− 1) + γ3ij (x)yrr(t− 1)

+γ4ij (x)yrl(t− 1), (24)

ŷij = ĥij(x) =

nn∑
L=1

wijLxij1 , (25)

with xij denoting outputs from each neuron, β is the
matrix of time constants of each neuron, σ(x) is the acti-
vation function, which is the hyperbolic tangent function
specifically chosen to ensure stability Garces et al. (2003),
Wij is the interconnecting weighting matrix of outputs,
uij is the previous control inputs, gkij is the weighting
matrix of inputs, yij(t − 1) is the delayed actual system
outputs fed into the DNN, and γkij

are their respective
weightings. wij is the weightings for the second layer, nn
is the number of neurons in the hidden layer. The following
may be defined to simplify the FBL law to be applied to
the DNN later:

ẋij = fij + g1ij (x)ufr + g2ij (x)ufl + g3ij (x)urr

+g4ij (x)urlγ1ij (x)yfr(t− 1) + γ2ij (x)yfl(t− 1)

+γ3ij (x)yrr(t− 1) + γ4ij (x)yrl(t− 1), (26)

where:

fij = −βijxij + Wijσ(x). (27)

The properties of each DNN is chosen using pruning
method Norgaard et al. (2000). Basically, the DNN config-
uration is altered until satisfactory topology and structure
similar to the actual system output is attained for the DNN
predicted output ŷij . Numerical experiments for various
number of hidden layer neurons reveal that 13 neurons
give satisfactory results.

The performance index of each DNN is the mean squared
error (MSE) between the predicted and the actual system
outputs:

Jij = MSE =
1

2M

M∑
i=0

(yij − ŷij)2, (28)

where M is the number of samples in the input-output
data set. The DNN is trained using PSO algorithm. The
settings of the PSO algorithm used for the selection
of the networks weightings are: population size, N =
100; maximum number of iterations, kmax = 50; and
optimization parameters, w1 = 0.5, w2 = w3 = 2. The
convergence history of the MSE for each suspension system
is shown in Figure 3. The training and validation results for
the rear right suspension system are presented in Figures
4 and 5 respectively.

3.5 AVSS DNN-Based Input-Output Feedback Linearization

The FBL law will be applied to the DNN models. The
system outputs are defined as follows:

ŷfr = ĥfr(x), ŷfl = ĥfl(x), ŷrr = ĥrr(x), ŷrl = ĥrl(x)(29)

Fig. 3. Convergence of MSE through PSO-based DNN
learning

Fig. 4. DNN identification tracking of rear right suspension
system

Fig. 5. DNN validation tracking of rear right suspension
system

The first time derivatives of each of these outputs are:

˙̂yij =
∂ŷij
∂t

=
∂ŷij
∂xij

∂xij

∂t
=
∂ĥij(x)

∂x
ẋij (30)

=wij1

[
−βij1x1 +

13∑
k=1

Wij1kσ(xk)

]
= Lfij ĥij(x).

Each of which is not explicitly a function of the system
inputs. It can shown that the second time derivative
depends on the system inputs.

¨̂yij =
∂2ŷij
∂t2

=
∂

∂ŷij

∂t

∂xij

∂xij

∂t
=
∂Lf ĥij(xij)

∂x
ẋij (31)

= dij(x) + eij(x)uij = L2
fij ĥij(x) + LgijLfij ĥij(x)uij ,

with nonlinear functions dij(x) and eij(x) of which signify
the free and forced response of the system respectively.
The vector of relative degree r has the form:

r = [ rfr rfl rrr rrl ]
T

= [ 2 2 2 2 ]
T
. (32)
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Since the relative degree is less than the number of states
(i.e. 13), the DNN models are input-output feedback
linearizable. The system dynamics may be expressed in
terms of the characteristic matrix Â(x) Garces et al.
(2003):

ÿ = f(x,u) = Â(x) + B̂(x)u. (33)

A new transformed system is described as:

ẑ = Ψ̂(x) =
[
ξ̂ η̂

]T
, (34)

with observable dynamics ξ̂ij = [ ẑij1 ẑij2 ]
T

, and zero

dynamics η̂ij =
[
ψ̂ij1(x) ψ̂ij2(x) . . . ψ̂ij11(x)

]T
. The new

coordinate system is of the form:

˙̂
ξij = Âcij ξ̂ij + B̂cij υ̂i + ˆ̄pij(w), (35)

ŷij = Ĉcijξij . (36)

For the linear decoupled system between the virtual con-
trol input υij and system outputs yij , the system matrices
take the ensuing form:

Âc =

[
0 1

λ0rij λ1rij

]
, B̂c =

[
0
1

]
, (37)

Ĉc = [ 1 0 ]
T
, ˆ̄p(w) = [ 0 1 ]

T
, (38)

υ is determined by applying inversion to Eq. (33).

u = P̂(x) + Q̂(x)υ, (39)

where, P̂(x) = −Â(x)−1B̂(x), and Q̂(x) = −Â(x)−1. De-
sign parameters λ0rij , λ1rij , λ2rij , may be added to aug-

ment performance Garces et al. (2003).

The new linear and decoupled system now becomes:
rij∑
k=0

λ+ krij
dkŷij
dtk

= υ̂ij , (40)

where the closed-loop transfer function is:

Ĝij(s) =
Ŷij(s)

V̂i(s)
=

1

λ2rij s
2 + λ1rij s+ λ0rij

. (41)

Routh-Hurwitz stability criterion is applied to the denom-
inator of the transfer function. This demands that all poles
lie in the negative half plane. The new virtual control ῡij
can be supplanted to this linear system as follows:

υ̂ij = −
rij∑
k=0

λkrij

dkŷij
dtk

ῡij . (42)

The controller gains of the DNNFBL and PID controller
are selected using PSO as it is an efficient and quicker
alternative to fine tuning. The problem variables are the
controller gains and the objective function is given by Eq.
(19). The following settings of the PSO algorithm are used:
population size, N = 100; maximum number of iteration,
kmax = 150; and optimization parameters, w1 = 0.5,
w2 = w3 = 2 and the performance index convergence is
shown in Figure 6.

The PSO-based DNNFBL achieved (DNNFBL+PSO)

Fig. 6. Performance index evolution with PSO optimiza-
tion

achieved a performance index of 0.93, which is an im-
provement of 68% from the PID-based AVSS. This infers
that the proposed DNNFBL+PSO control scheme outper-
formed the PID-controlled system. However, this does not
provide any information regarding the degree to which
the conflicting performance criteria have been resolved for
these methods.

4. SIMULATION RESULTS AND DISCUSSION

System performance is examined for the case where a
deterministic road disturbance excites the AVSS during
simulations in the Matlab/Simulink environment. Numer-
ical experimentation shows that the performance of the
rear right suspension system was the worst, and hence its
results will be presented here. The suspension travel and
tyre dynamic load responses are shown in Figures 7 and
8. Performance criterion relating to vehicle ride comfort
(body-heave acceleration) is presented in Figure 10.

Fig. 7. Suspension travel response for PVSS and AVSS
cases

Fig. 8. Tyre dynamic load response for PVSS and AVSS
cases

Fig. 9. Variation of control input supply the AVSS cases

Figure 7 shows that both AVSS controllers achieved supe-
rior settling times, better transient behaviour with min-
imal oscillations, and immediate damping once the dis-
turbance had been passed. In road holding, both AVSS
cases did not improve upon the PVSS in terms of peak
values. On the other hand the DNNFBL+PSO case ob-
tained superiority over the PVSS for all the tyres but it
only showed a marginal improvement for the rear right
system. In relation to the response in this aspect, both
AVSS exhibited few oscillations, quicker damping, with the
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DNNFBL+PSO showing smaller consecutive peaks.

The voltage supplied for the PID-based AVSS case had
marginally lower peak value. It did settle smoother than
the DNNFBL+PSO case. In the criterion of body-heave
acceleration (ride comfort), the DNNFBL+PSO AVSS
outperformed the PID case by a substantial degree in peak
values.

Improved ride comfort and road holding attained for
the DNNFBL+PSO controller would intuitively require a
larger actuator force to cancel out the disturbance forces.
However, the opposite occurred and this highlights that
the PSO optimization and adaptive nature of the intelli-
gent controller has a major impact on the system.

Analysis of the results shows that the DNNFBL+PSO
had a better performance and found a better compromise
between conflicting trade-offs than that of both the PID
and PVSS cases. This concludes that soft computing tech-
nique is a useful tool in improving system performance and
resolving conflicting design trade-offs.

Fig. 10. Body-heave acceleration response for PVSS and
AVSS cases

5. CONCLUSIONS

The main outcomes of this paper are:

• PSO proved to be effective in training DNN models.
• The advantages of PSO optimization were further

realized as it assisted in improving the performance
of the AVSS.
• DNNFBL+PSO attained the best performance in-

dex and successfully resolved the conflicting design
requirements.
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