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Abstract: In this paper, a SJA-based nonlinear adaptive controller is developed, which is
capable of completely suppressing LCO in UAV systems with uncertain actuator dynamics.
Specifically, the control law compensates for uncertainty in an input gain matrix, which results
from the unknown airflow dynamics generated by the SJA. Challenges in the control design
include compensation for input-multiplicative parametric uncertainty in the actuator dynamic
model. This difficulty was handled via innovative algebraic manipulation in the error system
development, along with a Lyapunov-based adaptive law. A rigorous Lyapunov-based stability
analysis is utilized to prove asymptotic plunging regulation, considering a detailed dynamic
model of the pitching and plunging dynamics; and numerical simulation results are provided to
demonstrate that simultaneous pitching and plunging suppression is achieved using the proposed
control law.

Keywords: Adaptive system and control, nonlinear adaptive control, Lyapunov stability
analysis, limit cycle oscillations, synthetic jet actuators

1. INTRODUCTION

There has recently been a surge of interest in the design
and application of unmanned aerial vehicles (UAV). These
UAVs can be used in numerous civilian applications, such
as urban reconnaissance, package delivery, and area map-
ping; UAVs are utilized in various military applications
as well. One of the biggest challenges involved in the
autonomous operation of UAVs is in the design of flight
tracking controllers for UAVs operating in uncertain and
possibly adverse conditions. In particular, suppression of
limit cycle oscillations (LCO) (or flutter) is an important
concern in UAV tracking control design. This is especially
true for applications involving smaller, lightweight UAV
systems, where the aircraft wings are more susceptible to
LCO. These engineering challenges necessitate the utiliza-
tion of UAV flight controllers, which achieve accurate flight
tracking in the presence of dynamic uncertainty while
simultaneously suppressing LCO. Moreover, as practical
considerations motivate the implementation of smaller
UAVs, there is a growing need for UAV flight control
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designs that do not require heavy mechanical deflection
surfaces.

LCO refer to “flutter” behavior in UAV wings that
manifest themselves as constant-amplitude oscillations
(O’Donnell et al. (2007)), which result from nonlinearities
inherent in the aeroelastic dynamics of the UAV system
(Satak et al. (2012)). Due to these behaviors, the LCO
would surpass the limiting safe flight boundaries of an
aircraft (Rubillo et al. (2005)) and could potentially lead
to structural damage and catastrophes. Control applica-
tions for LCO suppression are often developed (e.g., see
Frampton and Clark (2000); Strganac et al. (2000); Pla-
tanitis and Strganac (2004)) using mechanical deflection
surfaces (e.g. flaps, ailerons, rudders, and elevators). How-
ever, when dealing with small UAVs, practical engineering
considerations and physical constraints can preclude the
addition of the large, heavy moving parts that are required
for the installation of deflection surfaces. To address this
challenge, the use of synthetic jet actuators (SJA) in UAV
flight control systems is becoming popular as a practical
alternative to mechanical deflection surfaces.

The design and application of SJA has recently increased
by virtue of their capability to achieve momentum transfer
with zero-net mass-flux. This beneficial feature eliminates
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Fig. 1. Schematic layout of a Synthetic Jet Actuator.

the need for an external fuel supply, since the working
substance is simply the gas (i.e., air) that is already present
in the environment of operation (Mackunis et al. (2013)).
This makes SJA an attractive option in UAV applications,
because of the significant reduction in size of the required
equipment. The SJA synthesize the jet flow through the al-
ternating suction and ejection of fluid through an aperture,
which is produced via pressure oscillations in a cavity (Jee
et al. (2013)) as shown in Fig. 1. The pressure oscillations
can be generated using various methods, including pistons
in the SJA orifices (Rubillo et al. (2005)) or piezoelectric
diaphragms (Deb et al. (2005b); Mackunis et al. (2013)).
SJA can achieve boundary-layer flow control near the
surface of a UAV wing (Milanese et al. (2008)), since
they can provide instant actuation, unlike conventional
mechanical control surfaces. In addition, SJA can expand
the usable range of angle of attack, resulting in improved
UAV maneuverability (Amitay et al. (2001)).

Recently developed nonlinear control methods using SJA
typically utilize neural networks and/or complex fluid dy-
namics computations in the feedback loop (e.g., see Tchieu
et al. (2008); Mondschein et al. (2011); Deb et al. (2005b,a,
2006, 2007, 2008); Liu et al. (2006); Singhal et al. (2009);
Tao (1996); Jee et al. (2009); Milanese et al. (2008)).
While such approaches have been shown to yield good
SJA-based control performance, they can require increased
computational resources, which might not be available
in small UAV applications. Adaptive control approaches
have been applied to linear time-invariant (LTI) dynamic
models to compensate for SJA nonlinearities and external
disturbances (Mondschein et al. (2011)). Adaptive inverse
control schemes are another popularly utilized method
to compensate for the actuator nonlinearity inherent in
SJA (Deb et al. (2005b,a, 2006, 2007, 2008)). A robust
tracking control method is proposed in (Mackunis et al.
(2013)), which builds on results similar to (Deb et al.
(2005b,a, 2006, 2007, 2008)), to compensate for the SJA
nonlinearity at a reduced computational cost. The afore-
mentioned approaches have been shown to achieve good
flight tracking performance using SJA; however, nonlinear
control approaches have not as often been applied to SJA-
based LCO suppression.

In this paper, a SJA-based nonlinear adaptive controller
is developed, which is capable of completely suppressing
LCO in UAV systems with uncertain dynamics. Specifi-
cally, the control law compensates for uncertainty in an
input gain matrix, which results from uncertainty in the
airflow dynamics generated by the SJA. Challenges in
the control design include input-multiplicative parametric
uncertainty in the dynamic model. This difficulty was
handled via innovative algebraic manipulation in the error
system development, along with a Lyapunov-based adap-
tive law. A rigorous Lyapunov-based stability analysis is
utilized to prove asymptotic plunging regulation, consider-
ing a detailed dynamic model of the pitching and plunging
dynamics; and numerical simulation results are provided
to demonstrate simultaneous pitching and plunging sup-
pression using the proposed control law.

2. DYNAMIC MODEL AND PROPERTIES

The equation describing LCO in an airfoil approximated
as a 2-dimensional thin plate can be expressed as

Msp̈+ Csṗ+ F (p)p =

[
−Lift
Moment

]
(1)

where the coefficients Ms, Cs ∈ R2×2 denote the structural
mass and damping matrices, F (p) ∈ R2×2 is a nonlinear
stiffness matrix, and p (t) ∈ R2 denotes the state vector.
In (1), p (t) is explicitly defined as

p =

[
h

α

]
(2)

where h (t), α (t) ∈ R denote the plunging [meters] and
pitching [radians] displacements describing the LCO ef-
fects. Also in (1), the structural linear mass matrix Ms is
defined as (Dreyer (2008))

Ms =

[
m Sα
Sα Iα

]
(3)

where the parameters Sα, Iα ∈ R are the static moment
and moment of inertia, respectively. The structural linear
damping matrix is described as

Cs = 2

[
ζh
√
khm 0

0 ζa
√
kαIα

]
(4)

where the parameters ζh, ζα ∈ R are the damping loga-
rithmic decrements for plunging and pitching, and m ∈ R
is the mass of the wing, or in this case, a flat plate. The
nonlinear stiffness matrix utilized in this study is

F (p) =

[
kh 0

0 kα + kα3α2

]
(5)

where kα, kα3 ∈ R denote structural resistances to pitching
(linear and nonlinear) and kh ∈ R is the structural
resistance to plunging. The right hand side of (1) is given
by (Dreyer (2008); Milanese et al. (2008))[

−Lift
Moment

]
=

[
−(L+ Lvj )

(M +Mvj )

]
(6)

= Map̈+ Caṗ+Kap+ Lηη +B1vj +B2v̇j

where Lvj (t), Mvj (t) ∈ R denote the control contributions
due to the SJA, and L, M ∈ R are the aerodynamic
lift and moment due to the 2 degrees-of-freedom motions
(Milanese et al. (2008)). The η ∈ R2 are the aerodynamic
state vectors that relates the moment and lift to the modes.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5080



Terms vj (t) ∈ R and v̇j (t) ∈ R are the SJA control input
(air) velocity and acceleration, respectively. The constant
vectors B1, B2 ∈ R2×2 are defined

B1 =

[
−UρbI1

Uρb2I2 + aUρb2I1

]
(7)

B2 =

 −ρb2I2
−1

2
ρb3I3 + aρb3I2

 (8)

where the constant ρ ∈ R denotes the density of air, and
U ∈ R is the mean free-stream velocity. The parameters
a, b ∈ R denote the relative location of the rotational axis
from the midchord and the semi-chord, respectively. The
functions I1, I2, I3 ∈ R (Milanese et al. (2008)) are linked
to the control force distribution, and they are explicitly
defined as

I1 =

Θ2∫
Θ1

sin(Θ)tan−1

(
Θ

2

)
dΘ (9)

I2 =
1

2

[
Θ2 −Θ1 +

1

2
sin(2Θ1)− 1

2
sin(2Θ2)

]
(10)

I3 =
1

3

[
sin3(Θ2)− sin3(Θ1)

]
. (11)

The parameters Θ1 and Θ2 are the optimal synthetic
jet locations (Milanese et al. (2008)). The aerodynamic
matrices Ma, Ca, Ka ∈ R2×2 are described as

Ma = πρb2
[−1 ba

ba −b2
(

1
8 − a

2
)] (12)

Ca = πρb2
[
0 −U
0 −Ub

(
1
2 − a

)] (13)

+2πρUbφ(0)

[
−1 −b

(
1
2 − a

)
b
(

1
2 + a

)
b2
(

1
2 + a

) (
1
2 − a

)]
Ka = 2πρUbφ(0)

[
0 −U
0 b
(

1
2 + a

)
U

]
(14)

Lη = 2πρUb

 a1b1 a2b2

−b
(

1

2
+ a

)
a1b1 −b

(
1

2
+ a

)
a2b2

 (15)

where φ(0) is the Wagner solution function at 0, and the
parameters a1, b1, a2, b2 ∈ R are the Wagner coefficients.

The aerodynamic state variables are governed by (Dreyer
(2008))

η̇ = Cηṗ+Kηp+ Sηη (16)

The aerodynamic state matrices in (16), Cη, Kη, Sa ∈
R2×2, are explicitly defined as

Cη =
U

b

−1 −b
(

1

2
− a
)

−1 −b
(

1

2
− a
)
 (17)

Kη =
U

b

[
0 −U
0 −U

]
(18)

Sη =
U

b

[
−b1 0

0 −b2

]
. (19)

By rearranging (1) and (6) and solving for p̈ (t), the
equation becomes

p̈ = − C
M
ṗ− K

M
p+

Lη
M
η +

B1

M
vj +

B2

M
v̇j (20)

where C = Cs −Ca, K = F (p)−Ka, and M = Ms −Ma.

The dynamic equation in (20) can be expressed in state
form as

ẋ = A(x)x+ B̂1vj + B̂2v̇j (21)

where v̇j (t) denotes the control input, x (t) ∈ R6 is the
state vector, A(x) ∈ R6×6 is the state matrix (nonlinear),

and B̂1, B̂2 ∈ R6×1 are defined as

B̂1 =


0

0

M−1B1

0

0

 (22)

B̂2 =


0

0

M−1B2

0

0

 (23)

where B1 and B2 are the control input gain terms, which
only directly affect ḧ (t) and α̈ (t). By making the defini-

tions x1 = h, x2 = α, x3 = ḣ, x4 = α̇, x5 = η1, and
x6 = η2; and defining ẋ1 = x3, ẋ2 = x4, ẋ3 = ḧ, ẋ4 = α̈,
ẋ5 = η̇1, and ẋ6 = η̇2, the state vector and its derivative
can be expressed as

x , [x1 x2 x3 x4 x5 x6]
T
, (24)

ẋ , [ẋ1 ẋ2 ẋ3 ẋ4 ẋ5 ẋ6]
T
. (25)

After expressing (20) in state space form similar to (21)
and solving for the corresponding coefficients, the A(x)
state matrix can be explicitly obtained.

3. CONTROL DEVELOPMENT

The objective is to design the scalar control signal v̇j (t)
to regulate the plunge dynamics (i.e., h (t)) to zero. The
plunging dynamics can be expressed as

ḧ=−c1ḣ− c2α̇− c3h− c4α+ c5η1 + c6η1 (26)

+ b1vj + b2v̇j ,

where c1, c2, c3, c4, c5, c6 ∈ R are the coefficients related
to A(x). The coefficients b1 and b2 are unknown constant
control input gain terms, which relate the SJA dynamics
to the plunging dynamics. The expression in (27) can be
rewritten as

ḧ = g(h, α, η) + b1vj + b2v̇j (27)

where g(h, α, η) satisfies inequality

‖g(h, α, η)‖ ≤ ρ0‖z‖ (28)

where ρ0 ∈ R+ is a known bounding constant, and z(t) ∈
R2n is defined as

z , [e r]
T
. (29)

To facilitate the subsequent control development and sta-
bility analysis, a tracking error e (t) and an auxiliary
tracking error variable r (t) are defined as

e= h− hd = h− 0 (30)

r= ė+ αge = ḣ+ αgh (31)
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where αg > 0 ∈ R is a user defined control gain, and the
desired plunging state hd = 0 for the plunging suppression
objective. To facilitate the following analysis, the time
derivative of (31) is calculated as

ṙ = ḧ+ αgḣ. (32)

After substituting for ḧ (t) in (27) and using (32) the
following is obtained:

ḧ= g(h, α, η) + Y1θ1 + Ωv̇j

ṙ= g(h, α, η) + Y1θ1 + Ωv̇j + αgḣ (33)

where Y1(vj) ∈ R is measurable regressor, and θ1 ∈ R is
an unknown constant defined via the parameterization

Y1θ1 , b1vj . (34)

In Equation (33), Ω(b2) ∈ R denotes an uncertain constant
auxiliary term defined via the parameterization

Ωv̇j , b2v̇j . (35)

The expression in (35) can be reparameterized in terms of
a known regressor Y2(v̇j) ∈ R and an unknown constant
θ2 ∈ R as

Ωv̇j , Y2θ2. (36)

To address the issue of the control input v̇j (t) being
multiplied by the uncertain term Ω as in (33), an estimate

of the uncertainty Ω̂(t) ∈ R is defined via

Ω̂v̇j , Y2θ̂2 (37)

where θ̂2 (t) ∈ R is a subsequently designed estimate of the
parametric uncertainty in Ω(b2). Based on (36) and (37),
(33) can be expressed as

ṙ = g(h, α, η) + αgḣ+ Y1θ1 + Ω̂v̇j + Y2θ̃2 (38)

where the parameter estimate mismatch θ̃2(t) ∈ R is
defined as

θ̃2 , θ2 − θ̂2. (39)

Based on the open-loop error dynamics in (38), the control
input is designed as

v̇j = Ω̂−1
(
− (ks + 1) r − Y1θ̂1 − h

)
(40)

Remark 1. To ensure that no singularities are encountered
during closed-loop controller operation, the time-varying
adaptive estimates in Ω̂ are generated using a standard
projection algorithm, which is used to guarantee that
Ω̂ 6= 0.

Using (40) and the open loop dynamics in (38), the closed
loop system is obtained as

ṙ = Ñ + Y1θ̃1 + Y2θ̃2 − (ks + 1) r − h , (41)

where the parameter estimate mismatch θ̃1(t) ∈ R is
defined as

θ̃1 , θ1 − θ̂1. (42)

In (41), the unknown, unmeasurable auxiliary function

Ñ (t) ∈ R is defined as

Ñ , g(h, α, η) + αgḣ. (43)

The auxiliary term Ñ (t) satisfies the inequality

‖Ñ‖ ≤ ρ0‖z‖. (44)

Based on (41) and the following stability analysis, the

adaptive estimates θ̂1(t) and θ̂2(t) are generated online
according to the following adaptive update laws:

˙̂
θ1 = γ1proj

(
Y T1 r

)
,

˙̂
θ2 = −γ2proj

(
Y T2 r

)
(45)

where γ1, γ2 ∈ R are positive constant adaptation gains.
The function proj(·) is a normal projection algorithm,
which ensures that the following inequalities are satisfied
(Zergeroglu et al. (2000); Dixon (2007))

θ1 ≤ θ̂1 ≤ θ̄1 (46)

θ2 ≤ θ̂1 ≤ θ̄2 (47)

where θ1, θ̄1, θ2, θ̄2 ∈ R denote known lower and upper

bounds on θ̂1 (t) and θ̂2 (t), respectively.

3.1 Stability Analysis

Theorem 1. The adaptive controller in (40) ensures asymp-
totic regulation of the plunging displacement in the sense
that

|h(t)| → 0 as t→∞. (48)

Proof. Let V
(
r, h, θ̃1, θ̃2

)
denote the following radially

unbounded positive definite Lyapunov function:

V =
1

2
h2 +

1

2
r2 +

γ−1
1

2
θ̃2

1 +
γ−1

2

2
θ̃2

2. (49)

After taking the time derivative (49) and substituting (41)

and (31), V̇ (t) is obtained as

V̇ = r
(
Y1θ̃1 + Y2θ̃2 − (ks + 1) r − h+ Ñ

)
(50)

+ h(r − αgh)− γ−1
1 θ̃1

˙̂
θ1 − γ−1

2 θ̃2
˙̂
θ2.

After using the adaptive laws in (45), the expression in
(50) can be used to upper bound V (t) as

V̇ ≤ −αg‖h‖2 +
[
ρz‖r‖‖z‖ − λmin(ks)‖r‖2

]
(51)

After completing the squares for the bracketed term in
(51), the upper bound on V̇ (t) can be expressed as

V̇ ≤ −λ ‖z‖2 +
ρ2
z‖z‖2

4λmin(ks)
(52)

where λ , min {αg, 1} and z (t) is defined in (29). The
expressions in (49) and (52) can be used to conclude
that h(t) ∈ L∞ and r(t) ∈ L∞. Since, h(t), r(t) ∈ L∞,

ḣ (t) ∈ L∞ from (31). Given that ḣ (t) ∈ L∞, h (t) is
uniformly continuous. The expressions in (52) and (49)
can be used to prove that h(t) ∈ L∞ ∩ L2. Barbalat’s
lemma (Khalil (2002)) can now be invoked to prove that
‖h(t)‖ → 0 as t → ∞. Further, given that V (t) in (49)
is radially unbounded, convergence of h (t) is guaranteed,
regardless of initial conditions - a global result. �

4. SIMULATION RESULTS

A numerical simulation was created to demonstrate the
performance of the control law developed in (40). The
simulation is based on the dynamic model given in (1) and
(16). The dynamic parameters utilized in the simulation
are summarized in Table 1 and were obtained from Dreyer
(2008).

The parameters Θ1 = 1.6 and Θ2 = 1.7 are the synthetic
jet locations that result in a lift overshoot reduction of 21%
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Table 1. Constant parameters

ρ = 1.225 kg
m3 a = −0.24 U = 18m

s

m = 2.55kg b = 0.11m v = 18m
s

Sα = 10.4× 10−3kg ·m a1 = 0.1650 a2 = 0.0455

Iα = 2.51× 10−3kg ·m b1 = 0.3350 b2 = 0.3000

kh = 450N
m

kα = 9.3N
m

kα3 = 55N
m

ζh = 5.5× 10−3 ζα = 1.8× 10−2

Fig. 2. Convergence of the tracking error for plunging, h(t)
in [m].

Fig. 3. Convergence for pitching, α(t) in [rad].

Fig. 4. Control input behavior, v̇j(t) in [ms2 ].

Milanese et al. (2008). These values are used in conjunction
with the parameters I1, I2, and I3 as described in (7) and
(8). The control gains αg, γ1, γ2 and ks were manually
selected as 2.5, 1, 1 and 1, respectively.

Fig. 2 shows the time evolution of h (t), which demon-
strates the rapid convergence of the system plunge to zero.
Furthermore, Fig. 3 shows that the pitching displacement
α (t) also converges to zero quickly. Fig. 4 shows the control
effort (v̇j (t)) used during closed-loop controller operation.
The commanded control input remains within reasonable
limits throughout the duration of the simulation.

5. CONCLUSION

A nonlinear adaptive control law for LCO suppression
in UAV wings is presented. The proposed control law is
rigorously proven to achieve global asymptotic regulation
of the plunging displacement to zero in the presence
of dynamic model uncertainty and uncertain actuator
dynamics. Furthermore, the proposed control law is shown
via numerical simulation to simultaneously suppress the
pitching displacement α (t). Future work will address LCO
suppression control design, which can be proven to achieve
simultaneous pitching and plunging regulation using only
a scalar control input (i.e., the underactuated control
problem).
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