
Formulating Robot Pursuit-Evasion
Strategies by Model Checking ?

Hongyang Qu ∗ Andreas Kolling ∗ Sandor M. Veres ∗

∗Department of Automatic Control and Systems Engineering
University of Sheffield, UK

e-mail: {h.qu, a.kolling, s.veres}@sheffield.ac.uk

Abstract: This paper presents an application of a model checking framework to robotic search,
particularly search problems known as pursuit-evasion that assume a smart, fast and evading
target. Within the framework we can model different pursuit-evasion problems and thereby
enable a direct and rigorous comparison between different problem formulations and their
respective properties and algorithms. In addition, we enable the computation of new kinds
of solutions to pursuit-evasion problems, so called strategies, that can consider multiple criteria,
e.g. order of vertices or connectedness. These strategies are computed by satisfying a temporal
logic formula by model checking. We present theorems that show the connection between a
strategy and a temporal logic formula. We demonstrate our approach by applying it to two
different graph-based pursuit-evasion problems and show how to enable a comparison. This
work presents the first step and basis for further investigations of more rigorous and unified
approaches to understand, compare and design pursuit-evasion models.

Keywords: Distributed robot systems; pursuit-evasion games; verification; graph-searching,
mobile agent.

1. INTRODUCTION

The study of surveillance tasks goes back a long way in
the robotics literature. Initially, there have been visibility-
based pursuit-evasion games, first investigated by in
Suzuki and Yamashita [1992], for detecting targets with an
unlimited-range beam sensor. Following this many variants
of their problem formulation were studied; for instance
robots with an unlimited range of omnidirectional gap
sensors by Sachs et al. [2004], which can detect intruders
robustly and in varied environments. A different model
for the problem was used by Parker [2002] who investi-
gated the surveillance of multiple moving targets in simple
planar environments by large robot teams. Bopardikar
et al. [2007] presented a capturing strategy in open planar
environments in which robots form a “trapping chain”
to ensure that the target once detected by any robot
in the chain will subsequently be caught. A probabilistic
approach is presented by Moors et al. [2005] that take into
account uncertainties of measurements and movements.
A summary of the vast variety of surveillance tasks and
approaches from a robotics perspective is presented by
Chung et al. [2011].

For large-scale pursuit-evasion, however, graph-based mod-
els, first introduced by Parsons [1976], have proven to be
useful. An overview of theoretical work on graph-based
pursuit-evasion is given by Fomin and Thilikos [2008].
In a robotics context new models, such as the Graph-
Clear model based on surveillance graphs (SG), have been
investigated intensively by Kolling and Carpin [2010a,b].
For robotics applications, Kolling and Carpin [2008] thor-

? This work was supported by the EPSRC project EP/J011894/2.

oughly investigated the practicality of graph-based models
by showing how it is possible to algorithmically extract
suitable graphs from occupancy grid maps produced by
robots. Generalized Voronoi diagrams have been used to
obtain SGs from maps continuously updated by mobile
robots exploring indoor environments. This allows the ap-
plication of numerous algorithms (see Fomin and Thilikos
[2008], Chung et al. [2011] for an overview) that were
designed to solve pursuit-evasion problems under different
constraints. The large variety of different models, however,
make it difficult to compare them. They differ with regard
to the actions that searchers can execute, visibility require-
ments for the targets and the locations targets can occupy
in the graph. In addition, the algorithms that compute
solutions to these pursuit-evasion problems, also known
as strategies, also vary with regard to their optimization
criteria, complexity, and further assumptions, e.g., some
require connectedness Barrière et al. [2002].

In this paper, we propose a new framework for modelling
pursuit-evasion problems and algorithms in a unified man-
ner that allows a rigorous and comprehensive comparison.
The framework is based on model checking, i.e. algorithms
of formal verification. Model checking allows a strategy to
be specified as a temporal logic formula. This addresses
one of the problems with prior pursuit-evasion models,
namely that they only consider single criteria, usually the
minimal number of searchers. Adding different criteria is
not possible within the context of a particular pursuit-
evasion model without changing its formalization. Due to
the versatility of temporal logics we can compute multiple
strategies, each of which can satisfy different criteria, e.g.,
to require searching a subset of nodes in a certain order.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 3048

The specific actions that a pursuit-evasion model permits
also determine how applicable it is for implementations on
robotic searchers. Applicability can vary greatly depending
on the type of environment, the method with which graphs
are extracted from the map and the type of robotic
searchers that are available. The ultimate goal of our
framework is to formulate a pursuit-evasion model that
is flexible enough to allow multiple criteria, multiple and
different kinds of actions from multiple previous models
and heterogenous search teams. As a first step towards this
goal we present our framework and show how to model
two different graph-based pursuit-evasion problems and
enable a comparison, e.g., of the number of states and
computation time for strategies.

The remainder of this paper is structured as follows. In
Section 2, we give a brief discussion of two graph-based
pursuit-evasion models: Graph-Clear (GC) and Weighted
Edge Searching (WES). Section 3 presents an introduction
to the core of the framework of: the model checker of mul-
tiagent systems MCMAS [Lomuscio et al., 2009], including
its modelling and specification language. In Sections 4
and 5 rules to model the GC and WES algorithm are
presented with main theorems on the correctness of the
algorithms. Section 6 concludes the paper.

2. PURSUIT-EVASION PROBLEM

There can be a variety of formulations for pursuit-evasion
problems. One of the common assumptions, which most of
these formulations share, is the search for an omniscient
and smart target that moves at unbounded speed. This
target is then represented by the formal concept of contam-
ination by Parsons [1976] as defined below. The unbounded
speed assumption [Suzuki and Yamashita, 1992] simplifies
the problem setup and makes solutions conservative: un-
bounded speed is the worst one can assume about spread
of contamination.

The second common assumption is that the searchers can
execute actions, usually in the form of motion, that clears
contamination or block it from spreading through parts
of the environment. Variants of pursuit-evasion problems
consider different kinds of clearing and blocking actions.
For our purposes we consider the Graph-Clear (GC) model
introduced and formalized in Kolling and Carpin [2010b]
that has proven to be a useful model for robot search and
the Weighted Edge-Searching (WES) model introduced by
Barrière et al. [2002]. Both models consider that some
basic actions may require multiple searchers in order to be
executed. We will briefly describe these two models below.

In Graph-Clear the environment is given by a surveil-
lance graph which is an undirected weighted graph G =
(V,E,w) with set V of vertices, set E of edges, and
w : V ∪E → N+ defined as a weighting function. To model
contamination, and how it is spreading, the vertices and
edges have an associated state. Vertices are either clear or
contaminated and edges are either clear, contaminated, or
blocked. These are abbreviated as R, C, and B for clear,
contaminated, and blocked, respectively. The state space
of the surveillance graph with n vertices and m edges
is then given by ν ∈ V(G) = {R, C}n × {R, C,B}m. As
a shorthand, we write ν(vi) and ν(ej) for the state of
a particular vertex or edge. Contamination spreads on

recontamination paths. These are paths of vertices and
edges on which no edge is blocked.

Finally, searchers can execute actions which are either a
sweep on a vertex or a block on an edge. The executed
actions on G can be represented by a = {a1, . . . , an+m} ∈
{0, 1}n+m = A(G) where a 1 for an associated vertex
indicates a sweep and a 1 for an associated edge indicates
a block. The cost of an action a is given by c(a) =∑n

i=1 aiw(vi) +
∑m

j=1 an+jw(ej), representing the number
of robots needed to execute all sweeps and blocks for the
action. The spread of contamination and the clearing of
actions can now be formalized via a transition function ζ,
defined in Kolling and Carpin [2010b], as follows:

Definition 1. [Transition function] Let G, V(G) and A(G)
be defined as above. The transition function ζ maps a state
and an action into a new state:

ζ : V(G)×A(G)→ V(G).

Given a ∈ A(G) and ν ∈ V(G), the new state ν′ is defined
as follows:

(1) if an+j = 1, 1 ≤ j ≤ m, then ν′(ej) = B
(2) if ai = 1, 1 ≤ i ≤ n, then ν′(vi) = R
(3) if νn+j = B, an+j = 0, 1 ≤ j ≤ m, and no

recontamination path between ej and x ∈ V ∪E with
ν(x) = C exists, then ν′n+j = R

(4) if there exists a recontamination path between x ∈
V ∪ E and y ∈ V ∪ E with ν(y) = C, then ν′(x) = C

(5) ν′i = νi otherwise.

In colloquial terms the above simply describes the follow-
ing rules:

(1) edges where a block action is applied become blocked;
(2) vertices where a sweep action is applied become clear;
(3) blocked edges where a block action is not applied

anymore become clear if there is no recontamination
path involving them;

(4) vertices or edges for which a recontamination path
towards a contaminated vertex or edge exists become
contaminated;

(5) vertices or edges maintain their previous state if none
of the former cases apply.

A strategy to clear an initially fully contaminated surveil-
lance graph G is a sequence of actions S = {a1, a2, . . . , ak},
and the cost of the strategy is the maximum cost of
executing one of its actions, i.e., maxi=1...k c(ai). In Kolling
and Carpin [2010b] it has been shown that solving the
GC problem on graphs is NP-hard and a polynomial time
algorithm for trees exists. The algorithm has been applied
to robotic search in Kolling and Carpin [2009, 2010a,b],
Kolling and Kleiner [2013]. In Kolling and Carpin [2008] a
method to extract instances of the GC problem from robot
maps was presented, validating the graph-based model for
practical use.

The above definitions are best illustrated with the simple
example shown in Fig. 1, where vertices are associated
with rooms, and edges with connections between rooms.
Edges between vertices are blocked by placing a robot in
the connection between rooms. All contaminated parts can
hide an intruder while cleared parts are guaranteed to be
free of undetected intruders. A room is cleared by using
the specified number of robots to sweep through it.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3049

v5
�
���
���
���
��

.

1

141 2

32

2 3

2

e3 e4

v1 v2 v3

e1 e2

e5

v4
�
��

Fig. 1. A simple example environment and one of the
possible surveillance graphs that can model the search
for a target. Numbers on vertices are clearing costs
and numbers on edges are blocking costs.

Fig. 2 presents a strategy to clear the graph associated
with the environment shown in Fig. 1. The first column dis-
plays the status of the graph in the form of “ν(v1) · · · ν(v5)
ν(e1) · · · ν(e5)”, the second the applied action of the form
“av1 · · · av5 ae1 · · · ae5”, and the third the cost. The reader
should note that in the third row an action of sweeping two
vertices at the same time is applied, and that a final action
removing all blocks is executed in the end (with 0 cost).
The cost of this strategy is 12, i.e., the maximum value
read in the third column, and as such it is not optimal.
An optimal strategy can be found in Section 4 with 9 cost.

ν(G) a c(a)
CCCCC CCCCC 10000 10100 5
RCCCC BCBCC 00010 10101 6
RCCRC BCBCB 01100 11011 12
RRRRC BBRBB 00001 00011 7
RRRRR RRRBB 00000 00000 0
RRRRR RRRRR

Fig. 2. A Graph-Clear strategy.

Much of the prior work in graph-searching by Fomin and
Thilikos [2008] focused on actions that are executed by a
single searcher, while the GC model explicitly considers
actions that require multiple searchers. An extension of
edge-searching WES proposed in Barrière et al. [2002] also
considers weighted actions. Despite the claim in Barrière
et al. [2002] that WES can be solved on trees in polynomial
time, it was later shown to be NP-hard even on trees in
Dereniowski [2010].

The WES problem is also defined as an undirected
weighted graph G = (V,E,w) but with actions that allow
multiple searchers to be 1) placed on a vertex or 2) to
be moved along an edge, as presented by Barrière et al.
[2002]. A vertex v with w(v) searchers placed on it is said
to be guarded and prevents recontamination through all
edges adjacent to this node. An edge e with w(e) searchers
moving along it becomes clear after the move. For the
purposes of this paper we consider connected searching
(sometimes also named as contiguous search) to be a
search in which the cleared edges and vertices always form
a connected subgraph. The addition of weights by Barrière
et al. [2002] is a straightforward extension of the classical
edge-searching problem studied since Parsons [1976]. The
type of actions and the spread of contamination are iden-
tical with those of GC, with the only exception that w(v)
or w(e) searchers are necessary instead of one.

To provide an intuition on how WES works, we show
a strategy in Fig. 3 that solves the WES problem for

the example in Fig. 1. For simplicity, we assume that all
robots take actions simultaneously. Note that in WES a
guarded vertex effectively blocks the contamination from
spreading and it is hence not obligatory in WES to block
every connected edge when guarding a node. This key
difference to GC in the formulation means that we may
require fewer robots to clear the graph from Fig. 1, but it
has implications with regard to the applicability on real
robots. In practice, the guarding of a vertex requires the
clearing of its associated area or room while simultaneous
guaranteeing that no target can move through it from any
of its edges to any other. In GC the sweeping of a vertex
is only a clearing action and not a blocking action. As a
consequence, some of the algorithms for visibility-based
pursuit-evasion, e.g., the algorithms from Sachs et al.
[2004], can be used in GC for sweeping rooms but cannot
be used for guarding a room in WES. The former may
require fewer searchers, but makes the implementation of
vertex guarding more difficult for robots. The latter may
require additional robots for blocking edges but simplifies
the implementation of sweeping vertices.

ν(G) a c(a)
CCCCC CCCCC 00001 00000 3
CCCCR CCCCC 00000 00011 4
CCCCR CCCBB 00010 00010 5
CCCRR CCCBR 01010 00000 6
CRCRR CCCRR 01000 00100 6
CRCRR CCBRR 11000 00000 6
RRCRR CCRRR 00000 11000 2
RRCRR BBRRR 10000 00000 2
RRRRR RRRRR 00000 00000

Fig. 3. A WES strategy with cost 6.

3. MODEL CHECKING BY MCMAS

MCMAS is a symbolic model checker developed for veri-
fication of multiagent systems [Lomuscio et al., 2009] and
has been applied to many scenarios, e.g., contract [A. Lo-
muscio, 2012] and commitment [Bentahar et al., 2012].
In recent years, the control community has witnessed a
growth of successful case studies using MCMAS [Ezekiel
et al., 2011, Molnar and Veres, 2011]. MCMAS adopts the
binary decision diagram (BDD) [Bryant, 1986] as the basis
for verification algorithms. BDD allows a compact and
unique representation for a Boolean formula, which is very
effective in reducing memory consumption, and therefore,
enables verification of real world systems. On top of BDD,
various model checking techniques, such as symmetry re-
duction [Cohen et al., 2009a,b], abstraction [Lomuscio
et al., 2010] and parallel computation [Kwiatkowska et al.,
2010], have been developed for MCMAS to speed up veri-
fication computationally.

The MCMAS input language ISPL was designed particu-
larly for modelling multiagent systems. An agent is com-
posed of a set of variables, which record the local state of
the agent, a set of actions the agent has, a protocol deciding
when an action can be executed, and an evolution function
specifying the transitions among the states. The variables
are internal to the agent in the sense that other agents
cannot observe their value. This constraint, although re-
strictive, makes the model very close the real world. Com-
munications among agents is conducted by agents’ actions.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3050

In other words, when an agent makes a transition, the
new local state it will locate in will be determined by not
only its own action, but also other agents’ action. The
environment surrounding agents is modelled as a special
agent Environment, whose variables are partitioned into
two sets: one can be observed by normal agents, and the
other cannot. The observable variables are part of the local
states of each normal agent.

MCMAS generates a Cartesian product from the specifica-
tion of the agents and Environment. The product is a tran-
sition system encoding the evolution of the system from
the global point of view. The properties are checked in
this product. MCMAS supports Computation Tree Logic
(CTL) and other logics. In this paper, we only need CTL
to search for a graph clearing strategy for robots. Formally,
CTL can be defined by the following BNF grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | EX ϕ | EG ϕ | E(ϕ U ϕ),

where p is an atomic proposition. EXϕ means that there
exists a path ρ starting from the current state s such that
ϕ holds in the successor state of s; EGϕ specifies that all
states in ρ satisfy ϕ; E(ϕ1 U ϕ2) says that there exists a
state s′ in ρ satisfying ϕ2 and all states before s′ satisfy ϕ1.
Some other operators that are used frequently in practice,
such as temporal operator F and universal path quantifier
A, can be expressed by the combinations of E,X,G and U .
For example, EFϕ ≡ E(true U ϕ) asks for a path ρ such
that ϕ holds in a state in ρ. AGϕ ≡ ¬EF ¬φ requires
that, in all path starting from s, every state satisfies ϕ.
More details can be found in [Clarke et al., 1999].

Given a multiagent system that is composed of n agents
(A1, . . . ,An) and the Environment AE , the semantics of
CTL is interpreted on its underlying transition system. We
first present the formal definition of transition systems,
and afterwards, the CTL semantics.

Definition 2. [Transtion system] A transition system M is
a tuple 〈S, S0, T, A,H〉 such that

• S is a finite set of states; A state s ∈ S is composed
of local states from agents and the Environment, i.e.,
s = (le, l1, . . . , ln), where le is the local state of the
Environment and li the local state of agent i.

• S0 ⊆ S is a set of initial states;
• T ⊆ S × S is the transition relation; A transition

(si, sj) ∈ T is composed of a set of local transi-

tions {(lie, lje), (li1, l
j
1), . . . , (lin, l

j
n)} from the Environ-

ment and the agents, and each local transition is per-
mitted by its agent’s protocol and evolution function.
• A is a set of atomic propositions;
• H : S → 2A is a labelling function mapping states to

the set of atomic propositions A. We denote the set
of atomic propositions holding in state s by H(s).

A path in M is a sequence of states ρ = s0, s1, . . . , sn, . . .
such that for all i ≥ 0, (si, si+1) ∈ T . The state at place
k, i.e., sk, is also written as ρ(k).

Definition 3. [Satisfaction] Let s ∈ S be a state in the
transition system M . The satisfaction of a CTL formula ϕ
at s, written as M, s |= ϕ, is recursively defined as follows.

• M, s |= p iff p ∈ H(s);
• M, s |= ¬ϕ iff it is not the case that M, s |= ϕ;
• M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2;

• M, s |= EXϕ iff there exists a path ρ starting at s
such that M,ρ(1) |= ϕ.

• M, s |= EGϕ iff there exists a path ρ starting at s
such that M,ρ(k) |= ϕ for all k ≥ 0;

• M, s |= E(ϕUψ) iff there exists a path ρ starting
at s such that for some k ≥ 0, M,ρ(k) |= ψ and
M,ρ(j) |= ϕ for all 0 ≤ j < k.

If for all initial states s0 ∈ S0, we have M, s0 |= ϕ, then we
say that ϕ is satisfied in M , written as M |= ϕ. The set of
all formulae, of which the satisfaction can be derived from
A, will be denoted Φ ⊃ A.

4. MODELLING GRAPH-CLEAR

We model all robots as a whole by a Robots agent, and
all intruders by an Intruders agent. In addition, we need
the Environment to control the execution order between
Robots and Intruders and update the status of vertices
and edges. We could model each robot individually by an
agent, but this would blow up the state space and prevent
large graphs from being verified.

To find the minimum number of robots required, we start
by verifying the graph for d ≥ 1 robots. If no strategy
can be found for d robots, then we try d+ 1 robots in the
next round. This process is continued until a strategy is
found 1 . LetNvi be the minimum number of robots needed
to sweep vertex vi (which includes the robots blocking all
adjacent edges), and NG = max{Nvi | 1 ≤ i ≤ n}. It is
apparent that at least NG robots are required to clear the
graph. Hence, we set d to NG in the first round.

4.1 Definition of the Environment agent

Variables. For each vertex vi (edge ei, resp.) in the pursuit-
evasion graph, we assign a variable vi (ei, resp.) to record
its state.

vi =

{
R if the vertex is clear,
C if contaminated.

ei =

{R if the edge is clear,
C if it is contaminated,
B if it is blocked.

We also define a variable nvi for vertex vi to indicate
whether the vertex is being swept during deployment of
agents (i.e., when it is the robots’ turn to move). nvi is
reset to zero when the Environment updates the status of
vertices and edges.

nvi =

{
1 if vi is being swept,
0 otherwise.

The variable nei is defined for edge ei in the same way.

nei =

{
1 if ei is being blocked,
0 otherwise.

We need a variable turn to schedule the turn of each agent:
robots, intruders, or the Environment itself.

turn =


robots if it is the robots’ turn,
intruders if it is the intruders’ turn,
env if it is the Environment’s turn,
stop if the graph is cleared completely.

1 This process will terminate in finite time as only a finite number
of robots are needed to clear the graph.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3051

Table 1. Protocol in Environment.

robots robots actions

intruders intruders actions

env env actions

stop null

Actions and Protocol. The Environment have four actions:
robots actions, intruders actions, env action, and
null. They are enabled according to the values of variable
turn as shown in Table 1.

Evolution function. The evolution function defines how to
update a variable a individually. Let a′ denote the new
value updated from a.

The evolution of variable turn is illustrated in Fig. 4. The
ellipse node represents the initial value.

Intruders.Action=null

robots

Robots.Action=null

∃ i.v i=C∨∃ j.e j=C ∀ i. v i=R∧∀ j.e j≠C

env

stopintruders

Fig. 4. Evolution of variable turn.

Fig. 5 demonstrates how the value of vi and ei is changed.
An edge changes its status from B to R after robots
blocking it leave the edge. In this figure, the formula ψ1 is
customised for each vertex vi. Let Ē = {ē1, . . . , ēk} be the
set of adjacent edges of vi, and nej the corresponding ne
variable for ēj . The formula ψ1 is defined as follows.

ψ1 ≡
k∧

j=1

nej = 1. (1)

The condition nvi = 1 ∧ ψ1 expresses the requirement of
sweeping operation on vi: the vertex itself is swept by the
robots and all entrances are blocked.

Fig. 6 demonstrates how the value of nvi and nei is
changed. nvi is set to one when it is being swept by the
robots and reset to zero by the Environment. An edge
can be automatically blocked if one of its vertices is under
sweep, or blocked by the robots on purpose. Therefore, the
condition ψ2 is defined as follows:

ψ2 ≡Robots.Action = sweep vj∨
Robots.Action = sweep vk,

(2)

where vj and vk are vertices that edge ei connects.

turn=env∧
nv i=1∧ψ1

C

R

turn=intruders∧
Intruders.Action=take v i

turn=env∧nei=1

C

B

turn=intruders∧
Intruders.Action=take ei

R

turn=env∧nei=0

turn=env
∧ne i=1

Fig. 5. Evolution of variable vi (left) and ei (right)

turn=env

0

1

turn=robots∧
Robots.Action=sweep v i

turn=env

0

1

turn=robots∧
(Robots.Action=block e i∨ψ2)

Fig. 6. Evolution of nvi (left) and nei (right)

4.2 Definition of the Robots agent

Variables. Only one variable is needed to represent the
presence of robotic agents. It is defined as a bounded
integer: n = 0..d. The value of n records the number of
robots available for deployment.

Actions. This agent has actions sweep vi to sweep vertex
vi and actions block ej to block edge ej . Action null is
enabled when no other actions can be enabled.

Protocol. At the beginning of the clearing process, all
vertices are contaminated, i.e.,

Environment.turn = robots∧

n = d ∧
n∑

i=1

Environment.vi = C, (3)

and all sweep vi actions are enabled, while all block ej
actions are disabled. This arrangement indicates that we
can always begin with a sweeping action to clear the graph
if there exits a strategy to do so. In other cases, sweep vi is
enabled if vertex vi is contaminated, and one of its adjacent
vertices v̄j is clear, i.e.,

Environment.turn = robots∧

Environment.vi = C ∧
k∨

j=1

Environment.v̄j = R, (4)

where v̄1, . . . , v̄k are the adjacent vertices of vi. Once a
vertex is selected to be swept, the agent can choose to block
some edges that are not connected to the vertex if there
are robots available to do so. To guarantee contiguous
strategies, we require that one of its end vertex needs to
have been cleared already. However, the agent also has the
right not to do any block actions if necessary. Formally,
both block ej and null are enabled if

Environment.turn = robots ∧ k ≤ n < d∧
Environment.nej = 0∧

((Environment.vp = R∧ Environment.vq = C)∨
(Environment.vp = C ∧ Environment.vq = R)),

(5)

where vp and vq are end vertices of ej , and k is the number
of robots needed to block ej . In all other cases, only null
is enabled.

Evolution function. For each sweep action sweep vi, the
new value of n is defined as follows:

n′ := n− k, (6)

where k is the number of robots needed to sweep vi and
block all adjacent edges. For each block action block ej ,
we have as follows:

n′ := n− t, (7)

where t is the number of robots needed to block ei. Note
that when a vertex of ej is under sweep, block ej is disabled

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3052

automatically. When no vertices need to be swept and no
edges need to be blocked, i.e., when action null is enabled,
n is reset to the initial value (the total number of robots).

4.3 Definition of the Intruders agent

Variables. The Intruders agent has only one variable
recontamination, which is of Boolean type. The truth
value indicates whether recontamination occurs after the
robots are deployed in each iteration.

Actions. This agent has actions take vi to recontaminate
vertices vi and take ej to recontaminate edges ej . In ad-
dition, action null means the agent cannot recontaminate
vertices or edges any more in each iteration.

Protocol Action take vi is enabled if

Environment.turn = intruders∧

Environment.vi = R∧
k∨

j=1

Environment.ēj = C,

where ē1, . . . , ēk are adjacent edges. Similarly, take ej is
enabled if
Environment.turn=intruders∧Environment.ej =R∧

(Environment.v̄1 = C ∨ Environment.v̄2 = C)
where v̄1 and v̄2 are adjacent vertices.

Evolution function. recontamination is true when recon-
tamination occurs, and false once the Intruders agent
finishes recontamination, as illustrated in Fig. 7.

Action=null

false

true

Action=∨i=1
n take v i∨

Action=∨ j=1
m take e i

Fig. 7. Evolution of variable recontamination

Note that the turn-based scheduling allows efficient ver-
ification, but it does not preserve the unbounded speed
of recontamination. However, as stated in Theorem 1,
the intruders are not able to recontaminate the graph
in the middle of deployment of the robots even with the
unbounded speed.

4.4 Specification

We first define two atomic propositions in order to con-
struct a strategy specification:

• recontaminated holds whenever recontamination in
the Intruders agent is set to true.
• graph cleared becomes true when all vertices and

edges are free of contamination, i.e.,
n∧

i=1

vi = R∧
m∧
j=1

(ej = R∨ ej = B).

We ask MCMAS to generate a clearing strategy using the
following CTL formula.

E(¬recontaminated U graph cleared). (8)

This formula specifies whether there exists a path that
clears the whole graph without incurring any recontami-
nation. Such a path is a clearing strategy for the robots.

The following theorem shows the correctness of the ISPL
model constructed in this section.

Theorem 1. If formula (8) is satisfied by the model, then
every path satisfying it is a contiguous strategy for the
robots to clear the graph, and no recontamination can
occur during the clearing process.

Proof 1. Contiguity is guaranteed by the protocol in the
Robots agent. We begin with a close look at the clearing
process to prove that recontamination cannot occur.

When the clearing process begins, it is the robots’ turn to
deploy, i.e., choose a vertex to sweep (including blocking
the adjacent edges) and some extra edges to block if possi-
ble. Once the deployment is complete, the Environment set
the status of vertices and edges accordingly. Next, it is the
Intruders’ turn to recontaminate the graph when possible.
After the recontamination is done, a new iteration begins
just like the cycle in Fig. 4 suggests.

The U operator in Formula (8) eliminates the possibility
of recontamination after the deployment of the robots is
complete. Now we need to show there is no chance to recon-
taminate the graph during the deployment process, which
can be done by induction. At the beginning of the clearing
process, all vertices and edges are contaminated. Hence
the first deployment does not cause recontamination.

V 1

V 2

V 3

E2

E1

E3

V 1

V 2

V 3

E2

E1

E3

Fig. 8. Clearing step i (left) and i+ 1 (right)

Assume no recontamination occurs up to the i-th deploy-
ment, which can be illustrated in Fig. 8. We partition
vertices into three sets.

• V1 contains cleared vertices that do not have contam-
inated adjacent vertices;

• V2 contains cleared vertices that have contaminated
adjacent vertices;

• V3 contains contaminated vertices.

Recall that in each deployment, we choose a vertex to
sweep. Such a vertex is marked in green in the figure.
Similarly, the edges are partitioned into three sets as well.

• E1 contains cleared edges that do not have contami-
nated adjacent vertices;

• E2 contains blocked edges (in red) that have a con-
taminated adjacent vertex, and blocked edges (in
green) due to the requirement of sweeping;

• E3 contains contaminated edges.

Note that our model does not allow robots to block
edges in E1. If an edge in V2 is not blocked, then it
can be recontaminated between the i-th and (i + 1)-th
deployment. This situation has been taken care of by the
U operator.

In the (i + 1)-th deployment, we first choose a vertex in
V3 to sweep, which is shown in Fig. 8 on the right. As

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3053

all edges in E2 in the i-th deployment are still blocked,
which means that the robots occupying those edges do not
move, no recontamination can occur during the (i+ 1)-th
deployment. 2

Example Fig. 9 displays a clearing strategy for the ex-
ample in Section 2 produced by MCMAS. The experiment
was carried out in a computer with dual Intel Xeon E5-
2630 processors and 32 GB memory. The reachable state
space in this model is 2640, and it took MCMAS less than
one second to compute the strategy.

ν(G) a c(a)
CCCCC CCCCC 00001 00011 7
CCCCR CCCBB 00010 00111 8
CCCRR CCBBB 10000 10110 8
RCCRR BCBBR 01000 11010 9
RRCRR BBRBR 00100 01000 3
RRRRR RBRRR

Fig. 9. A Strategy for Graph-Clear.

5. MODELLING WEIGHTED EDGE-SEARCHING

Just as for modelling Graph-Clear, we put all robots in
the Robots agent, all intruders in the Intruders agent, and
the graph in the Environment. We also verify the graph
iteratively starting from d robots. However, d is not equal
toNG anymore. Instead, it is the maximum weight a vertex
can have.

To find a strategy using WES to clear the graph, we define
the same set of variables as when modelling GC: vi, ei, nvi,
nei, and turn. The variables have the same domain as well,
except that vi has one more value.

vi =

{R if vi is clear,
C if vi is contaminated,
G if vi is guarded.

The evolution of variables turn, and ei is the same as
before. The evolution of vi, shown in Fig. 10 is now close
to ei as vi has three values.

turn=env∧nv i=1

C

G

turn=intruders∧
Intruders.Action=take v i

R

turn=env∧
nv i=0

turn=env∧
nv i=1

Fig. 10. Evolution of variable vi

The evolution of nvi and nei is changed slightly. There
is no ψ2 in the enabling condition of the transition from
nei = 0 to nei = 1, as a guard action does not enforce
block actions any more. The definition of the Intruders
agent is the same as that in Graph-Clear in Section 4.

5.1 Definition of the Robots agent

This agent is quite similar to that in GC. The variables are
the same; the actions are the same as well except sweep vi
is replaced by guard vi. The evolution function is defined

turn=env

0

1

turn=robots∧
Robots.Action=guard v i

turn=env

0

1

turn=robots∧
Robots.Action=block e i

Fig. 11. Evolution of nvi (left) and nei (right)

in the same way too except that when executing an action
guard vi, only the number of robots needed for guarding
the vertex is reduced from the robots pool. The protocol
also reflects this difference, as well as the change of the
value domain of vi.

Protocol. When the whole graph is contaminated, all
guard vi actions are enabled, while all block ej actions are
disabled. This constraint is the same as in GC, as it is still
possible to clear the graph by clearing nodes sequentially.

After the clearing process starts, guard vi is enabled at
the beginning of each clearing iteration if the following
condition is satisfied:
Environment.turn = robots ∧ n = d∧
((Environment.vi =C∧ψ3)∨(Environment.vi =G ∧ ψ4)),

where ψ3 encodes that an edge connected to vi is blocked,
and ψ4 encodes that an edge has been cleared. Formally,

ψ3 =

k∨
j=1

Environment.ēj = B,

ψ4 =

k∨
j=1

Environment.ēj = C,

where ē1, . . . , ēk are edges connected to vi. The condition
Environment.vi = C∧ψ3 indicates that vi can be guarded
if it is contaminated and the robots can enter it via
a blocked edge, which guarantees the contiguity. The
condition Environment.vi = G ∧ ψ4 allows vi to remain
guarded to avoid recontamination, as one of its edges is
contaminated. In other cases, we do not allow the robots
to guard vi in order to reduce the number of possible
strategies and speed up verification.

In WES, sometimes it is necessary to allow the robots to
only block edges in certain iterations in order to minimise
the number of robots needed. The enabling condition of
block ei is defined as follows:
Environment.turn = robots ∧ n ≥ k
∧Environment.nei = 0

((Environment.vp 6= C ∧ Environment.vq = C)∨
(Environment.vp = C ∧ Environment.vq 6= C)),

(9)

where k is the number of robots needed to block the edge,
and vp and vq are end vertices of ei. The last two lines
in the condition enforces the contiguity. Note that action
null is also enabled with block ei to give robots freedom
to choose whether to block ei. Indeed, this freedom can
avoid unnecessary movement/deployment of robots.

5.2 Specification

We use the same CTL formula as before to look for a
strategy to clear the graph. Similar to Section 4, we can
prove that Theorem 2 holds for this model.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3054

Theorem 2. If formula (8) is satisfied by the model, then
every path satisfying it is a contiguous strategy for the
robots to solve the weighted edge-searching problem, and
no recontamination can occur during the clearing process.

Example Fig. 12 shows a clearing strategy for the exam-
ple in Section 2 using WES. Similarly, this strategy was
computed within two seconds for 7029 reachable states.

ν(G) a c(a)
CCCCC CCCCC 00001 00000 3
CCCCG CCCCC 00000 00011 4
CCCCR CCCBB 01000 00001 5
CGCCR CCCRB 00010 11001 5
CRCGR BBCRB 10000 01100 5
GRCRR RBBRR 00100 01000 3
RRGRR RBRRR

Fig. 12. A Strategy for Weighted Edge-Searching.

6. CONCLUSION

This paper lays the foundations of using model checking to
find strategies for different pursuit-evasion models and to
describe and compare their properties. In addition, it offers
the potential to consider additional criteria other than the
number of searchers for the computation of strategies, such
as time or constraints on the order of vertices.

We have shown how to express two pursuit-evasion models
in our framework and used the multiagent model checker
MCMAS to find solutions to the Graph-Clear and the
Weighted Edge Searching problems.

Two main theorems have been presented which guarantee
the correctness of the methods proposed. In addition,
we discussed how the model checking methods proposed
enable a comparison of algorithmic complexity of the
different pursuit-evasion models.

To conclude, the presented work can be a starting point for
further investigations regarding a more rigorous and uni-
fied approach to understand, compare and design pursuit-
evasion models.

REFERENCES

M. Solanki A. Lomuscio, H. Qu. Towards verifying con-
tract regulated service composition. Autonomous Agents
and Multi-Agent Systems, 24(3):345–373, 2012.

L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro.
Capture of an intruder by mobile agents. In Proceedings
of SPAA’02, pages 200–209. ACM Press, 2002.

J. Bentahar, M. El-Menshawy, H. Qu, and R. Dssouli.
Communicative commitments: Model checking and
complexity analysis. Knowl.-Based Syst., 35:21–34,
2012.

S. D. Bopardikar, F. Bullo, and J. P. Hespanha. Coop-
erative pursuit with sensing limitations. In American
Control Conference, pages 5394–5399, 2007.

R. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transaction on Computers, 35(8):
677–691, 1986.

T.H. Chung, G.A. Hollinger, and V. Isler. Search and
pursuit-evasion in mobile robotics. Autonomous Robots,
31(4):299–316, 2011.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

M. Cohen, M. Dam, A. Lomuscio, and H. Qu. A symme-
try reduction technique for model checking temporal-
epistemic logic. In Proc of IJCAI’09, pages 721–726,
2009a.

M. Cohen, M. Dam, A. Lomuscio, and H. Qu. A data
symmetry reduction technique for temporal-epistemic
logic. In Proc of ATVA’09, volume 5799 of LNCS, pages
69–83. Springer, 2009b.

D. Dereniowski. Connected searching of weighted trees.
Mathematical Foundations of Computer Science 2010,
pages 330–341, 2010.

J. Ezekiel, A. Lomuscio, L. Molnar, and S. M. Veres.
Verifying fault tolerance and self-diagnosability of an
autonomous underwater vehicle. In Proceedings of IJ-
CAI’11, pages 1659–1664. IJCAI/AAAI, 2011.

F. V. Fomin and D. M. Thilikos. An annotated bibli-
ography on guaranteed graph searching. Theoretical
Computer Science, 399(3):236–245, 2008.

A. Kolling and S. Carpin. Extracting surveillance graphs
from robot maps. In Proceedings of IROS’08, pages
2323–2328, 2008.

A. Kolling and S. Carpin. Surveillance strategies for target
detection with sweep lines. In Proceedings of IROS’09,
pages 5821–5827, 2009.

A. Kolling and S. Carpin. Multi-robot pursuit-evasion
without maps. In Proceedings of ICRA’10, pages 3045–
3051, 2010a.

A. Kolling and S. Carpin. Pursuit-evasion on trees by
robot teams. IEEE T. Robot., 26(1):32–47, 2010b.

A. Kolling and A. Kleiner. Multi-uav motion planning for
guaranteed search. In Proceedings of AAMAS’13, pages
79–86, 2013.

M. Kwiatkowska, A. Lomuscio, and H. Qu. Parallel
model checking for temporal epistemic logic. In Proc
of ECAI’10, pages 543–548. IOS Press, 2010.

A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model
checker for the verification of multi-agent systems. In
Proc of CAV’09, volume 5643 of LNCS, pages 682–688.
Springer, 2009.

A. Lomuscio, H. Qu, and F. Russo. Automatic data-
abstraction in model checking multi-agent systems. In
Proc of MoChArt’10, volume 6572 of LNCS, pages 52–
68. Springer, 2010.

L. Molnar and S. M. Veres. Hybrid automata dicretising
agents for formal modelling of robots. In Proc of the
18th IFAC World Congress, pages 49–54. IFAC, 2011.

M. Moors, T. Röhling, and D. Schulz. A probabilistic ap-
proach to coordinated multi-robot indoor surveillance.
In Proceedings of IROS’08, pages 3447–3452, 2005.

L.E. Parker. Distributed algorithms for multi-robot obser-
vation of multiple moving targets. Autonomous Robots,
12:231–255, 2002.

T.D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and
D. R. Lick, editors, Theory and Applications of Graphs,
volume 642, pages 426–441. Springer, 1976.

S. Sachs, S. M. LaValle, and S. Rajko. Visibility-based
pursuit-evasion in an unknown planar environment. Int.
J. Robot. Res., 23(1):3–26, 2004.

I. Suzuki and M. Yamashita. Searching for a mobile
intruder in a polygonal region. SIAM Journal on
Computing, 21(5):863–888, 1992.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3055

