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Abstract: Distributed implementations of state estimation algorithms generally have in
common that each node in a networked system computes an estimate on the entire global
state. Accordingly, each node has to store and compute an estimate of the same state vector
irrespective of whether its sensors can only observe a small part of it. In particular, the task of
monitoring large-scale phenomena renders such distributed estimation approaches impractical
due to the sheer size of the corresponding state vector. In order to reduce the workload of the
nodes, the state vector to be estimated is subdivided into smaller, possibly overlapping parts.
In this situation, fusion does not only refer to the computation of an improved estimate but also
to the task of reassembling an estimate for the entire state from the locally computed estimates
of unequal state vectors. However, existing fusion methods require equal state representations
and, hence, cannot be employed. For that reason, a fusion strategy for estimates of unequal
and possibly overlapping state vectors is derived that minimizes the mean squared estimation
error. For the situation of unknown cross-correlations between local estimation errors, also a
conservative fusion strategy is proposed.

Keywords: Estimation theory, filtering techniques, Kalman filters, distributed estimation, data
fusion

1. INTRODUCTION

State estimation methods such as Kalman filters (Kalman,
1960) are applied for the purpose of providing useful
information about an unknown quantity. An estimate is
dynamically computed based on prior information, a pro-
cess model, and measurements coming from sensor devices.

estimate 1

estimate 2

estimate 3

Fig. 1. Local estimates.

In many network-based ap-
plications, it is often not
a single instance that com-
putes an estimate but many
autonomous nodes each of
which is equipped with its
own state estimation system.
Networked estimation sys-

tems offer several advantages over monolithic systems
including scalability, robustness to failures, and distribution
of computational resources. Some situations simply require
the use of sensor networks, e.g., in order to monitor a large-
scale phenomenon. Collecting all measurements at a central
system is in general not an option due to high requirements
regarding frequency and volume of data transfers. Instead,
distributed state estimation approaches (Liggins II et al.,
2009) are the method of choice, where each node computes
an estimate based on its sensor readings. State estimation
then has to address the additional question of how to
fuse estimates stemming from different sources in order to
obtain a single informative estimate.

Distributed estimation principles are in the focus of
many studies—see, for instance, Hall et al. (2013),
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Fig. 2.

Olfati-Saber (2007), Carli et al. (2008), and
Govaers and Koch (2010). The most significant
contributions have been achieved in the context
of target tracking applications (Bar-Shalom
and Campo, 1986; Bar-Shalom et al., 2001;
Chong et al., 2000), where different tracks of
the same target are to be fused. A continuing
challenge in developing distributed tracking
algorithms is the treatment of cross-correlations
between the tracks to be fused (Chang et al.,
1997). Since bookkeeping of cross-correlations
between all local estimators is often too cum-
bersome, conservative fusion strategies (Julier
and Uhlmann, 1997; Noack et al., 2011) can
be pursued. If fully decentralized estimation
architectures are aspired, it is even not possible
to keep track of correlations.

As illustrated in Figure 1, approaches towards
distributed state estimation usually have in
common that each locally computed estimate
refers to the same state, for instance, to the
position of a single target. However, a high-
dimensional state vector renders such a dis-
tributed estimation approach rather impracti-
cal. As shown in Figure 2, a more desirable
approach is then to divide the global state
vector into smaller parts for each of which a
local estimate is computed on a corresponding

node. The local estimates may thereby refer to overlapping
parts of the state vector, as indicated by the different colors
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in Figure 2. For instance, if a large-scale physical process
is to be monitored, a single sensor device is only in the
position to cover a small area of the phenomenon. In a
sensor network deployed to monitor this phenomenon, it
is computationally too demanding for a node to maintain
an estimate of the entire state vector. Instead, a more
effective approach is to let each node only compute an
estimate of that part of the state that is affected by its
sensor observations. This approach not only reduces the
computational pressure of the nodes but also reduces the
data volume to be transferred by each node. Furthermore,
it is an easy task to increase or decrease the monitored
area, i.e., to add elements to or delete elements from the
global state vector. Such a scaling only affects neighboring
nodes with overlapping parts whereas the usual approach,
as shown in Figure 1, implies that each local estimate has
to be adapted if the state vector is altered.

In the situation of unequal state representations, the role
of state fusion is not only to provide an improved estimate
but also to assemble an estimate for the entire state
from the locally computed lower-dimensional estimates.
The distributed estimation methods discussed in the
preceding paragraphs cannot be applied here for fusion.
For consensus-based estimation techniques, a method for
merging estimates of overlapping parts has been proposed
by Stanković et al. (2009). However, a consensus, in general,
does not take into account the covariance matrices, i.e.,
uncertainties, of the locally computed estimates and hence
does not systematically reduce the overall estimation
error. Against the background of decentralized control
problems, Ikeda et al. (1981) consider a similar situation
of overlapping information. In our initial studies—see
Sijs et al. (2013)—we have investigated an empirical
method for fusing estimates of overlapping state vectors
that is particularly suited to fully decentralized estimation
problems. In the following, we derive a linear minimum
mean squared error fusion method that exploits all available
information, such as cross-correlations. If this information is
not available, a suboptimal fusion strategy can be pursued.

2. PRELIMINARIES

Underlined variables x denote vectors or vector-valued
functions, and lowercase boldface letters x are used for
random quantities. Matrices are written in uppercase
boldface letters C. By (x̂,C), we denote an estimate with
mean x̂ and covariance matrix C. The notation x̂ is used for
the mean of a random variable, an estimate of an uncertain
quantity, or an observation. The matrix I denotes the
identity matrix of appropriate dimension.

3. THE CONSIDERED SETUP

Linear estimation problems are studied. The state to be
estimated is characterized by a discrete-time process model

xk+1 = Ak xk + wk (1)

with system matrix Ak and zero-mean white process
noise wk, which has the error covariance matrix Cw

k . Each
sensor device provides observations that are related to the
state through a linear model

zk = Hk xk + vk , (2)

where Hk is the measurement matrix and vk denotes a zero-
mean white sensor noise with error covariance matrix Cv

k.
The index k denotes the time step.

We consider a network of several state estimation systems
each of which provides an estimate of an arbitrarily sized
part of the global state vector. On each node, a Kalman
filter is employed to compute an estimate, where local
versions of the models (1) and (2) are used. In particular,
(2) refers to the node’s sensor equipment. The results of
the local estimators are sent to a data sink, where an
estimate for the global state vector is to be derived. Since
fusion usually involves only estimates referring to the same
time step, the index k is omitted in most of the following
discussions.

4. JOINT STATE SPACE FORMULATION OF
ESTIMATION AND FUSION

As a first step, we revisit common estimation and fusion
principles by availing ourselves appropriate joint state space
reformulations. Li et al. (2003) have demonstrated that
fusion can be stated in terms of a weighted least squares
(WLS) problem. The WLS method provides a solution x̂e

to the minimization problem

x̂e = arg min
x

(ẑ −Hx)T(Cz)−1(ẑ −Hx) , (3)

where all observations ẑA, ẑB , . . . of an uncertain quan-
tity x and according measurement models HA,HB , . . . are
summarized in

ẑ =

ẑAẑB
...

 and H =

HA

HB

...

 ,

respectively. The observation noise terms vA,vB , . . . have
the joint covariance matrix Cv and are possibly correlated.
In this original form, the WLS formulation does not
incorporate any prior knowledge on x. However, as shown
by Li et al. (2003), this method can be generalized to a
fusion rule that also takes into account prior information.

The solution of problem (3) can be computed by means of
the gain

K =
(
HT(Cv)−1H

)−1
HT(Cv)−1 . (4)

As it is usually done, we assume that Cv is positive definite,
and HT(Cv)−1H is regular. The optimal estimate then
yields

x̂e = K ẑ (5)

with

Ce = K(Cv)K′ =
(
HT(Cv)−1H

)−1
. (6)

The matrix Ce denotes the mean squared error (MSE)
matrix 1

Ce = E
[
(x̂e − x)(x̂e − x)T

]
.

In the considered setup, WLS estimates are identical to
maximum-likelihood estimates. The following subsections
consider the most common fusion problems that are
reformulated in terms of WLS problems.

4.1 Bar-Shalom/Campo Fusion

Bar-Shalom and Campo (1986) consider the problem of
fusing two tracks of a target. The estimates to be fused are
given by x̂A and x̂B with the corresponding MSE matrices

CA = E
[
(x̂A − x)(x̂A − x)T

]
1 Note that trace(Ce) is the MSE.
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and

CB = E
[
(x̂B − x)(x̂B − x)T

]
,

where the cross-covariance matrix

CAB = E
[
(x̂A − x)(x̂B − x)T

]
is in general nonzero because the same process model (1) is
used for both estimates. Hence, the same process noise
is modeled twice and leads to correlations. The Bar-
Shalom/Campo formulas allow to exploit these dependen-
cies in order to compute a minimum MSE fusion result.
They are derived by determining optimal gains for the
linear combination

x̂e = KA x̂A + KB x̂B .

The same estimate x̂e can be obtained when this fusion
problem is redefined to a WLS problem. For this purpose,
the estimates x̂A and x̂B are interpreted as observations
by considering the identities

x̂A = x + (x̂A − x) = x + x̃A and

x̂B = x + (x̂B − x) = x + x̃B ,
(7)

where x̃ := [x̃A, x̃B ]T represents the observation noise. The
corresponding observation model then reads[

x̂A
x̂B

]
= Hx + x̃ with H =

[
I
I

]
. (8)

The measurement noise x̃ has the covariance matrix

Cx = E

[([
x̂A
x̂B

]
−
[
I
I

]
x

)([
x̂A
x̂B

]
−
[
I
I

]
x

)T
]

=

[
CA CAB

CBA CB

]
.

(9)

With these parameters, the WLS gain (4) can now be
computed that enters into equations (5) and (6) for the
estimate and error covariance matrix, respectively.

We demonstrate the relation to the Bar-Shalom/Campo
fusion rule by considering the error covariance matrix (6),
i.e.,

Ce =
(
HT(Cx)−1H

)−1
,

where Cx, given by (9), can be inverted blockwise according
to

(Cx)−1 =

[
C−1A + C−1A CABWCBAC

−1
A −C−1A CABW

−WCBAC
−1
A W

]−1
with W = (CB −CBAC

−1
A CAB)−1. The transformation

with H then yields the sum

HT(Cx)−1H = C−1A + C−1A CABWCBAC
−1
A

−C−1A CABW −WCBAC
−1
A + W

= C−1A + (C−1A CAB − I)W(CBAC
−1
A − I)

and finally, with the Woodbury matrix identity, we have

Ce = CA −CA(C−1A CAB − I)(
W−1 + (CBAC

−1
A − I)CA(C−1A CAB − I)

)−1
(CBAC

−1
A − I)CA

= CA − (CA −CAB)

(CA + CB −CAB −CBA)−1(CA −CBA) .

This result equals the Bar-Shalom/Campo covariance
matrix (see Bar-Shalom and Campo (1986)).

It is important to point out that the Bar-Shalom/Campo
combination of estimates provides us with a minimum

MSE fusion result but not with a minimum MSE estimate
given all available measurements. More precisely, a central
processing of all measurements from devices A and B
generally yields better estimates than local computations of
estimates with subsequent fusion. This issue is, for instance,
discussed by Chang et al. (1997).

4.2 Measurement Fusion

The WLS fusion formalism can also be utilized to redevelop
the standard Kalman filtering step, i.e., the fusion of prior
information with an observation. A measurement ẑk at
time step k is related to the state by the sensor model (2).
As it has been done in (7), the prior estimate (x̂p

k,C
p
k) is

now also regarded as a measurement, and we obtain the
joint measurement model[

x̂p
k

ẑk

]
=

[
x + (x̂p

k − x)
Hk x + vk

]
=

[
I
Hk

]
x + x̃ , (10)

where x̃ is characterized by the joint noise matrix

Cx =

[
Cp

k 0
0 Cv

k

]
.

The measurement is assumed to be conditionally inde-
pendent of the current estimate as it is common practice.
According to (6), the covariance matrix of the WLS result
can now be computed by

Ce =

(
[I Hk] (Cx)−1

[
I
Hk

])−1
=
(

(Cp
k)−1 + HT

k (Cv
k)−1Hk

)−1
.

This result is identical to the information filter formulas
(Mutambara, 1998), which are an algebraical reformulation
of the Kalman filter algorithm.

This subsection has demonstrated that prior information
can also be incorporated by the WLS fusion method. In
this case, even a linear minimum MSE (LMMSE) estimator
is obtained. As already stated by Li et al. (2003), the WLS
formulation can be regarded as a universal tool for fusion
problems.

4.3 Results and the Next Step

Sections 4.1 and 4.2 have demonstrated that optimal fusion
can be expressed in terms of the solution to a WLS problem.
However, in both cases, the quantities to be fused, be it
x̂A and x̂B in (8) or x̂p

k and ẑk in (10), refer to the same
state vector x. In the remainder of this work, estimates of
different state vectors x1 and x2 are considered, which may
partially overlap. So far, the problem of fusing estimates on
unequal state vectors has been treated by consensus-based
(Stanković et al., 2009) or empirical methods (Sijs et al.,
2013). In the following, a minimum MSE fusion method is
provided based on an WLS formulation and also, a fusion
strategy under unknown correlations is presented.

5. GENERALIZED FUSION STRATEGIES

The considerations of the previous section brings us close
to a solution for the general problem. The fusion rule
of Section 4.1 represents an important special case of
the considered problem, i.e., the estimates to be fused
correspond to the same parts of the state vector and there
are no exclusive parts. For this special case, Shin et al.
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(2006) have shown how to fuse multiple estimates at once,
for instance, in order to combine the estimates in Figure 1.
The opposite case consists of estimate that are computed
for exclusive parts of the state vector, which is studied in
the first subsection. After that, the optimal fusion strategy
for overlapping state vectors is discussed. The treatment
of unknown cross-correlations lies in the focus of the third
part of this section.

5.1 Fusion of Non-overlapping Parts

The simplest case is the problem of fusing state estimates
of exclusive parts of the state vector. For the state
x = [xT

1 ,x
T
2 ]T, the estimates x̂A and x̂B for x1 and

x2, respectively, are considered. In line with (7), these
two estimates are again regarded as measurements of the
state vector. In contrast to equation (8), the measurement
equation now becomes[

x̂A
x̂B

]
=

[
I 0
0 I

] [
x1
x2

]
+ x̃ ,

i.e., the matrix H becomes the identity. As a consequence,
the gain (4) that solves the WLS problem also reduces to
the identity.

Of course, this result is rather obvious: An estimate for the
joint state vector is the joint estimate. The local estimates
have to be merged into x̂e = [x̂T

A, x̂
T
B ]T, and the MSE

matrix is simply the joint error matrix Ce = Cx, which
is (9). The fusion of more than two estimates on exclusive
parts is carried out in the same fashion.

5.2 Optimal Fusion

The primary aim of this paper is to provide a fusion method
for estimates of arbitrary size and number. For the sake of
clarity, we first discuss the simpler case of two estimates
x̂A = [x̂T

A1, x̂
T
A2]T and x̂B = [x̂T

B2, x̂
T
B3]T, where x̂A2 and

x̂B2 are estimates on the same part x2 of the state vector
x = [xT

1 ,x
T
2 ,x

T
3 ]T. The partial estimates x̂A1 and x̂B3 refer

to the exclusive parts x1 and x3. Again, by regarding each
estimate as an observation, the measurement equation

x̂A

{
x̂B

{
x̂A1
x̂A2
x̂B2
x̂B3

 =

I 0 0
0 I 0
0 I 0
0 0 I


︸ ︷︷ ︸

=H

[
x1
x2
x3

]
+ x̃ (11)

can be set up, where the measurement noise x̃ has the
covariance matrix (9). The gain (4) can then be computed
by means of the matrices H and Cx, and finally an estimate
(x̂e,Ce) is attained according to (5) and (6).

Remark 1. In general, the state estimates for the parts
x1, x2, and x3 are correlated due to the process model,
and, hence, the joint covariance matrix Cx of the state
estimates is fully occupied. In particular, also the correla-
tions between the estimation errors of x̂A1 and x̂B3 have
to be addressed. In the particular case that the process
model does not cause dependencies between the estimates
of x1, x2, and x3, the joint covariance matrix (9) can be
simplified to[

CA CAB

CBA CB

]
=

CA1A1 0 0 0
0 CA2A2 CA2B2 0
0 CB2A2 CB2B2 0
0 0 0 CB3B3

 ,

where only correlations between the overlapping parts
remain. Fusion, in this case, becomes a combination of the
Bar-Shalom/Campo rule for x̂A2 and x̂B2 and the fusion
of the non-overlapping estimates x̂A1 and x̂B3.

In order to fuse arbitrarily many estimates x̂A, x̂B , x̂C , . . .
on the state vector x = [xT

1 ,x
T
2 ,x

T
3 , . . .]

T into a single,
updated estimate, the two-vector case (11) is expanded to
the general measurement equation

x̂A1
x̂A2

...
x̂B1
x̂B2

...


= H


x1
x2
x3
...

+ x̃ . (12)

More precisely, the vector on the left-hand side collects
all (existent) x̂Xj with X = A,B,C, . . . and j = 1, 2, 3, . . .,
where the vector x̂Xj is that part of the local estimate x̂X
that refers to xj . The measurement matrix H is set up
from blocks of identity matrices according to

H =


. . .
· · · I · · ·

. . .

 (13)

j

X

and maps xj to the component x̂Xj of the local estimate x̂X .
The joint covariance matrix for x̃ has the form

Cx =


CA CAB CAC

CBA CB CBC . . .
CCA CCB CC

...
. . .

 . (14)

The formulas (4), (5), and (6) can now be employed to
reconstruct an estimate x̂e for the entire state vector x.

Example 2. For the partition into unequal state represen-
tations that has been illustrated in Figure 2, a schematic
representation of the corresponding measurement equa-
tion (12) is



=








+ x̃ ,

[x̂T
A, x̂

T
B , . . .]

T H [xT
1 ,x

T
2 , . . .]

T

where solid boxes represent entries with value 1 and each
other value is 0. More precisely, the shaded boxes indicate
the identity matrices and correspond to the structure of
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(a) Considered setup. Local Kalman filters for parts of the state.
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(b) Centralized Kalman Filter.
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(c) Local Kalman filter estimates x̂A, x̂B , x̂C , x̂D, and x̂E .
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(d) Optimal( ) and conservative( ) fusion of estimates in Fig.3(c).

Fig. 3. Temperature profile of rod is to be estimated and is drawn black. A centralized Kalman filter is compared with
several local Kalman filters on unequal parts of the state and subsequent fusion.

matrix (13). It should be noticed that H does not need to
be of such a close-to-diagonal structure—for instance, the
first estimate could also refer to parts that belong to any
other than the second estimate.

5.3 Fusion under Unknown Correlations

The prerequisite that the joint covariance matrix (14) has to
be known often renders the optimal fusion strategy difficult
to apply. The task of bookkeeping or reconstructing the
joint covariance matrix is an often-encountered problem
in applying distributed Kalman filters. If the off-diagonal
blocks in (14) are nonzero, a local update of an estimate x̂X
effects also an update of all cross-covariance matrices CXY ,
Y = A,B, . . .. This form of interdependencies among
the local estimators diminishes important advantages of
networked information processing, such as scalability and
robustness.

Conservative fusion strategies constitute an alternative
to optimal fusion methods that rely on a completely
known cross-covariance matrix. In respect of storage and
processing complexity, it may be desirable to intentionally
discard cross-correlations between local estimates. Julier
and Uhlmann (1997) have shown by means of the covari-
ance intersection algorithm how to treat unknown cross-
correlations when two estimates are to be fused. While this
solution is based on the information form of the Kalman
filter, Hanebeck et al. (2001) formulate this fusion principle
in terms of a bound on the joint covariance matrix. This
second formulation—the covariance bounds approach—
can be employed to compute a conservative bound of the
joint covariance matrix (14), which is given by

1
wA

CA 0 0

0 1
wB

CB 0 . . .

0 0 1
wC

CC

...
. . .


︸ ︷︷ ︸

=:CCB

≥


CA CAB CAC

CBA CB CBC . . .
CCA CCB CC

...
. . .


with positive wA, wB , . . . and wA + wB + . . . = 1. The
inequality CCB ≥ Cx means that the difference CCB −Cx

is a positive semidefinite matrix. In place of Cx, the
matrix CCB can now be utilized to compute a covariance-
consistent estimate by means of (4), (5), and (6).

This approach not only bypasses the need for bookkeeping
of cross-correlations but also reduces the computational
complexity for inverting the joint covariance matrix. How-
ever, one has to weigh these advantages against the optimal
fusion strategy, which offers a lower estimation uncertainty,
i.e., a lower MSE.

6. SIMULATIONS

In order to illustrate and discuss the proposed fusion
strategies, the process of heat conduction in a rod is
considered. For this purpose, we revisit the example in
(Sijs et al., 2013). The rod is divided into 100 segments, for
each of which the temperature is to be estimated. The initial
temperature is 300 K, and the rod is heated at segment
50 with 15 W and is cooled at segments 30 and 50 with
−10 W each. The discretized process model is

xk+1,n = 0.17xk,n−1+0.66xk,n+0.17xk,n+1+wk,n , (15)

where the index k ∈ N denotes the time step, and n ∈
{1, 2, . . . , 100} is the n-th segment of the rod. The process
noise is normally distributed according to wk,n ∼ N (0, 30)
and is used by the estimators to represent the uncertainty
about temperature changes, i.e., to represent unknown
inputs. The rod is equipped with five sensor nodes, as
illustrated in Figure 3(a). They are located at the segments
10, 30, 50, 70 and 90 with the sensor models

zA
k = xk,10 + vA

k , zB
k = xk,30 + vB

k , zC
k = xk,50 + vC

k ,

zD
k = xk,70 + vD

k , zE
k = xk,90 + vE

k .

Each sensor noise term is a zero-mean white noise with
variance 0.01. The estimation results after 60 time step are
shown in Figure 3. The optimal estimate can be seen in
Figure 3(b), where each sensor transmits its measurements
to the data sink at every time step. A centralized Kalman
filter in the data sink computes this estimate. In place
of a centralized processing, Figure 3(c) shows the results
of local Kalman filters at the five sensor nodes, i.e., each
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local filter uses only the measurements provided by the
corresponding sensor (see Figure 3(a)). At each node, only
an estimate for a small part of the state is computed, i.e.,

x̂A of [xk,1, . . . ,xk,30]T , x̂B of [xk,10, . . . ,xk,50]T ,

x̂C of [xk,30, . . . ,xk,70]T , x̂D of [xk,50, . . . ,xk,90]T ,

x̂E of [xk,70, . . . ,xk,100]T .

Each local filter employs a local process model, i.e., (15)
is only applied to the corresponding part of the state
vector. In order to take the influences from adjacent
segments into account, the process noise for the boundary
segments of the partial state vectors is increased to 50,
e. g., wk,30 ∼ N (0, 50) and wk,70 ∼ N (0, 50) for the local
Kalman filter at sensor node C.

At time step k = 60, the local estimates from Figure 3(c)
are fused at the data sink. Both the optimal and the
conservative fusion result are depicted in Figure 3(d). The
magenta plot is closer to the temperature profile, but
requires bookkeeping of the entire joint covariance matrix.
Since optimal MMSE fusion generally does not yield the
MMSE estimate (see Chang et al. (1997)), the magenta
result is different from Figure 3(b). The green conservative
fusion result has been computed with the aid of a bounding
covariance matrix, as explained in Section 5.3. However,
due to the high process noise, the difference between the
green and magenta estimate is not significant.

7. CONCLUSIONS

For the treatment of unequal state representations, fusion
strategies have been presented that are based on a gen-
eralized WLS problem. This WLS formulation has been
employed to express standard estimation problems, i.e.,
the Kalman measurement update and track-to-track fusion,
and has then been further developed in order to fuse local
estimates of arbitrarily sized parts of the state vector. If
cross-correlations among all local estimates are known, an
optimal fusion result can be derived. If information on
cross-correlations is missing, a conservative fusion strategy
can be pursued, which employs an upper bound on the
unknown joint covariance matrix. The proposed concept is
intended for a networked system where an estimate of the
entire state vector is to be reconstructed from estimates
of unequal state representations. In this regard, we have
assumed that the fusion process is carried out by a central
node in the network. Consequently, fully decentralized
fusion architectures are an important topic for future work.
Here, each node is intended to operate independently, and
state estimates can be exchanged between nodes. Fusion
then takes place locally, and a decentralized formulation of
the proposed fusion strategies is to be found.
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