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Abstract: The central problem in Adaptive Optics feedback control is the reconstruction of
the aberrated wavefront from wavefront sensor measurements. We recently presented a novel
algorithm to compute the wavefront estimate directly from (Shack-)Hartmann intensity images
instead of using the classical centroid algorithm to approximate the local wavefront slopes. The
novel algorithm allows a distributed linearization of the model describing the imaging process
through the use of a B-spline parametrization of the wavefront. This linearization enables the
estimation of the wavefront via a linear least-squares solver. A major bottleneck of this new
algorithm is the computational complexity that stems from the large number of pixels with
each pixel giving rise to one row of the overdetermined set of equations. In this paper, a
compression method is proposed to speed up this new reconstruction method by only using
a small percentage of the given intensities to make it applicable for real-time Adaptive Optics.
Numerical simulations for open- and closed-loop show that reducing the data on the one hand
dramatically reduces the number of measurements, but on the other hand does not cause any
significant loss in accuracy or robustness of the reconstructed wavefront estimate.
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1. INTRODUCTION

The main limitations to high resolution imaging in fields
as microscopy, lithography or ground based astronomy are
caused by aberrations in the phase profile, the so called
wavefront, of light waves. In observations with ground
based telescopes the aberrations are mainly introduced by
the turbulent atmosphere of the Earth. Adaptive Optics
(AO)[Hardy, 1998] is used to compensate for the wavefront
distortions in real-time. A sensor measures information
from which the aberration is reconstructed and then cor-
rected with a deformable mirror (DM). The wavefront
reconstruction (WFR) is the crucial part of a classical
real-time AO system, since the bandwith of the feed-
back controller is much smaller than the first resonance
frequency of the deformable mirror. With the increasing
dimensionality of the new generation of extremely large
telescopes, there is urgent demand for computationally
efficient reconstruction methods.
For this reason, the most common class of wavefront
sensors is the (Shack-)Hartmann sensor which allows the
formulation of the reconstruction problem as a linear
(least-squares) problem. This paper is restricted to a Hart-
mann sensor, but the results are extendable to the Shack-
Hartmann architecture. A Hartmann sensor consists of an
array of apertures which sample the incoming wavefront
? This work was supported in part by the Dutch NOVA partner-
ship in the European Strategy Forum on Research Infrastructures
(ESFRI).

by approximating the local spatial slopes of the wavefront
using the center of mass of the intensity measurements col-
lected by a detector. Since not all the information present
in the intensity patterns is used, this approach results in
loss of accuracy of the wavefront estimate.
Silva et al. [2013] recently proposed a novel method based
on a distributed linearization of the relationship between
the local wavefront aberrations in each subaperture and
the corresponding intensity pattern in the detector. This
approach preserves the linearity of the reconstruction
problem, and it makes direct use of the intensity measure-
ments as done by Polo et al. [2012] instead of using the
center of gravity of the pixel pattern computed with the
centroid algorithm [Carvalho, 2004]. The unknown wave-
front is parametrized and reconstructed with B-splines, a
methodology presented in our recent work by De Visser
and Verhaegen [2013].
The major advantage of this new method is the increased
accuracy with which the wavefront can be estimated, by
not using the approximation of the wavefront slopes but
the intensity measurements provided by the Hartmann
sensor. However, this results in higher computational com-
plexity of the wavefront reconstruction which has to be
applied in real-time. The contribution of this paper is
a methodology to reduce the number of used intensity
measurements which results directly in a linear speed up
of the computational cost. Inspired by the technique of
compressive sampling [Candès, 2006], we can show that
a small percentage of the measurements is sufficient to
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Fig. 1. Scheme of a closed-loop AO system.

reconstruct the wavefront with nearly the same accuracy.
The paper is organized as follows. After a brief intro-
duction of the novel spline based method for intensity
measurements in Section 3, a procedure selecting the
intensity measurements which are most sensitive to our
linear model is presented with a short analysis of the
achieved computational gain in Section 4. A simulation
study in Section 5 analyzes the performance of the new
method using only 10% of the intensity measurements.
Next to a comparison with the classical modal reconstruc-
tion method for slope measurements [Southwell, 1980], it is
shown that the compressive sampling approach preserves
accuracy and robustness of the original method for inten-
sity measurements for open- and closed-loop configuration.
We consider a classical AO feedback control described in
a control engineering framework e.g. in [Hinnen et al.,
2007, 2008]. Further, a perfect mirror and static wavefront
aberrations are assumed. Finally, we end this paper with
some concluding remarks.

2. THE ADAPTIVE OPTICS CONTROL PROBLEM

To explain the role of wavefront reconstruction in the
closed-loop of an AO system, we briefly outline the prin-
ciple of astronomical AO on the basis of the schematic
drawing in Figure 1. The light emitted from a distant point
source, arrives as a plane wave at the outer layers of the
Earth’s atmosphere. Crossing the turbulent atmosphere,
time and space varying optical path differences are intro-
duced, such that the wave reaches the telescope with a
distorted phase profile φ(x, t), where x ∈ R2 denotes the
spatial position in the telescope aperture and t the time.
The AO system aims at correcting those wavefront aber-
rations by introducing optical path differences of opposite
sign through an active component, the deformable mirror.
Light entering the AO system is first directed to the
deformable mirror, whose shape is adjusted in real-time to
apply a time-varying phase correction φDM(x, t). After the
wavefront correction, a beam splitter sends one part of the
light to a science camera. The remaining light is directed to
a wavefront sensor (WFS) which measures the uncorrected
residual phase error φres(x, t) = φ(x, t)−φDM(x, t). Based
on the wavefront measurements y, a feedback controller
has to compute the actuator inputs u to the DM. The com-
mon approach is to first reconstruct an estimate φ∗(x, t)
of the wavefront from the wavefront measurements, and
to then compute actuator commands u such that the
applied phase φDM(x, t) cancels out most of the estimated
aberrations. In this paper, we assume a perfect mirror
which implies that the DM can perfectly compensate the
estimated wavefront, i.e. phase φDM(x, t) = φ∗(x, t). In
the following section, the wavefront reconstruction prob-
lem is solved for a Hartmann wavefront sensor.

3. SPLINE BASED WAVEFRONT
RECONSTRUCTION FROM INTENSITY

MEASUREMENTS

A Hartmann wavefront sensor consists of an array of
apertures wich are equally spaced in an otherwise opaque
screen. The wavefront is sampled by each subaperture in
the aperture plane and the transmitted beams are col-
lected by e.g. a CCD camera in the detector plane [Polo
et al., 2012]. In this section, we briefly introduce the main
principles of the novel method introduced by Silva et al.
[2013]. After the derivation and local linearization of the
model which describes the relationship between the wave-
front and the intensity measurements, the parametrization
of the unknown wavefront with B-splines and the compu-
tation of the estimate as a constrained least-squares (LS)
solution are described.

3.1 Linearized phase retrieval problem

The complex field U(x, y, z) of a wave transmitted by the
Hartmann hole array can be computed as function of the
wave’s amplitude A(x, y) and phase distribution φ(x, y).
In the aperture plane z = 0 and the detector plane z = L,
U(x, y, z) is respectively given by

U(x, y, 0) = A(x, y) exp(ikΦ(x, y)) , (1)
U(x, y, L) = F−1 [F [U(x, y, 0)]H(fx, fy)] , (2)

with H(fx, fy) denoting the Rayleigh-Sommerfield trans-
fer function [Goodman, 2005] for spatial frequencies fx
and fy. For a wavelength λ, the wavenumber is defined as
k = 2π

λ .
We parametrize the wavefront φ(x, y) in (1) as a linear
combination

φ(x, y) =
K∑
k=1

αkfk(x, y) (3)

of K basis functions fk(x, y). Given is a set of intensity
measurements Imeas(xi, yj) from the Hartmann sensor’s
CCD camera and a model of the measurements triggered
by an imcoming wavefront φ(x, y) is provided with (2) as
I(xi, yj , L) = |U(xi, yj , L)|2[Goodman, 2005]. An estimate
of weighting coefficients αk can then be computed by
minimizing the error between the measured and modeled
intensities which yields the cost function

J =
∑
i,j

[Imeas(xi, yj)− I(xi, yj , L)]2 = ||imeas−iL||22 , (4)

where the intensity vectors are defined as imeas(m) =
Imeas(m) and iL(m) = I(m,L) with each index m =
1, ...,M corresponding to a pixel center location (xi, yj)
in the detector.
A truncated first order Taylor expansion for a constant
coefficient vector ᾱ ∈ RK×1 approximates the nonlinear
imaging model by

I(m,L) ≈ I(m,L)
∣∣
ᾱ

+
∂I(m,L)
∂α

∣∣∣
ᾱ
α := c0m + (c1m)Tα .

(5)
Applying this linearization for each pixel m = 1, ...,M ,
one obtains a constant vector c0 := [c01, ..., c0M ]T ∈ RM×1

and the constant Jacobian matrix C1 := [c11, ..., c1M ]T ∈
RM×K . The cost function of the linearized wavefront
reconstruction problem can then be defined as

Jlin = ||imeas − (c0 + C1α)||22 . (6)
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With the optimal least-squares solution
α∗ := ((C1)TC1)−1(C1)T(c0 − imeas) , (7)

the reconstructed wavefront can be computed with the
basis expansion in (3).

3.2 Multivariate simplex B-splines

De Visser and Verhaegen [2013] suggested to use multivari-
ate B-splines [De Visser, 2011] to expand the wavefront in
(3). This type of basis functions can be used as an alterna-
tive for this expansion as well as the linearization outlined
in Section 3.1. For the sake of brevity, we continue to use
the same notation as in (5) to represent the linearization
as obtained in terms of the B-spline coefficients.
B-splines are defined locally on simplices, which corre-
spond in the 2 dimensional case to triangles t, each defined
by 3 non-degenerate vertices (v0,v1,v2) ∈ R2×3, and
evaluated for x = (x, y) ∈ R2 with the Barycentric co-
ordinate system. For a simplex t with vertices (v0,v1,v2),
the Barycentric coordinates (b0, b1, b2) of a point x in the
Cartesian plane are given by[

b1
b2

]
= V−1

[
x
y

]
, b0 = 1− b1 − b2 , (8)

with transformation matrix V = [v1−v0,v2−v0]. On the
simplex t, the Bernstein polynomials

Bdκ(b(x)) =


d!

κ0!κ1!κ2!
bκ0
0 bκ1

1 bκ2
2 ,x ∈ t

0 ,x /∈ t
(9)

of degree d, with |κ| = κ0 +κ1 +κ2 = d and κ0, κ1, κ2 ≥ 0
give a local basis. A linear combination of the Bernstein
polynomials yields then the B-form polynomial

p(b(x)) =


∑
|κ|=d

αtκB
d
κ(b(x)) ,x ∈ t

0 ,x /∈ t
(10)

of degree d on the simplex t. In order to obtain a global
B-spline, a triangulation T of multiple adjacent simplices
is constructed on the considered domain. The local B-form
polynomials defined on the single simplices are joined to a
smooth spline polynomial by enforcing continuity for the
first r derivatives of the spline at the edges of neighbouring
simplices through equality constraints

Hα = 0 . (11)
The smoothness matrix H contains equations establishing
relationships between the basis coefficients of neighbouring
simplices [De Visser, 2011].

3.3 Wavefront reconstruction with B-splines

The new approach proposed is to approximate wavefront
φ(x, y) by a B-form polynomial as described in the previ-
ous section. To link the spline theory with the linearized
phase retrieval problem of Section 3.1, the phase is ex-
panded using Bernstein polynomials in (3). The wavefront
is reconstructed on the aperture plane, which is divided
into N equal and adjacent square regions, each of them
covering one subaperture of the Hartmann sensor. The
detection plane is divided in square regions aligned to the
subapertures. It is assumed at this point that propagated
beams from one subaperture have minimal effect on the
subimage corresponding to the neighbouring subapertures.

Hence the linear optimization problem in (6) can be solved
locally to estimate the phase distribution in each of the
subapertures from the corresponding subimage only. The
connectivity between the estimated phases is established
through the equality constraints in (11). The constraint
matrix H is global with a sparsity that depends on the
matching of the derivative degree at the edges between
the different simplices.
On the square subaperture regions n = 1, ..., N , triangu-
lations of Js simplices are defined. In this paper, we use
a regular Type II triangulation of 4 simplices per sub-
aperture[De Visser, 2011]. The choice of the triangulation
depends on factors like sensor geometry and number of
given intensity measurements. The cost function in (6)
can now be formulated for each simplex j = 1, ..., Js in
subaperture n with B-coefficient vector αnj , the measured
intensity pixel vector imeas

n
j and the linearization constant

c0
n
j of the respective regions on the detector plane. The

local Jacobian matrix C1
n
jj′ models the effect of the phase

in simplex j represented by B-coefficient vector αnj′ on
the image in the detector plane alligned to simplex j′, for
j′ = 1, ..., Js. The reconstruction of the whole wavefront
is then performed by solving the following optimization
problem
argmin

αglob
||iglobmeas − (cglob0 + Cglob

1 αglob)||22 s.t. Hαglob = 0 ,

(12)
where

Cglob
1 =

C1
1

. . .
C1

N

 with C1
n=

C1
n
11 . . . C1

n
1Js

...
. . .

...
C1

n
Js1 . . . C1

n
JsJs

.
The global B-coefficient vector αglob, and the lineariza-
tion offset cglob0 respectively intensity measurement vector
iglobmeas, are simply created by stacking their local coun-
terparts in corresponding order. As the imaging process
is not correlated between the subapertures, the global
Jacobian Cglob

1 ∈ RM×K is block diagonal, where M is the
total number of intensity measurements and K the total
number of B-coefficients. The blocks of Cglob

1 are the local
Jacobians C1

n∈ RMs×Jsd̂, where d̂ = (2+d)!
2d! is the number

of B-coefficients to be estimated per spline. The global
smoothness matrix H contains the equality constraints to
guarantee order r continuity between the simplices.
As proposed in [De Visser and Verhaegen, 2013], we
compute a least-squares estimator which eliminates the
constraint equations by projection on the nullspace of
the smoothness matrix H through the projection matrix
NH ∈ RK×kH , where kH denotes the dimension of the
kernel of H [De Visser, 2011]. With CH

1 := Cglob
1 NH ∈

RM×kH , the least-squares solution for the B-coefficients of
the spline based wavefront reconstruction problem from
intensity measurements is then
α∗ = NH((CH

1 )TCH
1 )−1(CH

1 )T(iglobmeas − c0
glob) . (13)

The reconstruction matrix R := NH((CH
1 )TCH

1 )−1(CH
1 )T

of the estimated B-coefficients can be precomputed for
the given Hartmann sensor geometry. The estimated phase
values can now be obtained with (10) at any desired vector
of N ′ locations x ∈ RN ′×2 in the cartesian plane through

φ∗(x) = B(x)α∗, (14)
where B(x) contains the respective Bernstein basis func-
tions Bdκ(b(x)) pre-evaluated at x.
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4. ACCELERATION STUDY THROUGH
COMPRESSIVE SAMPLING

The reconstruction of the global wavefront is computa-
tionally the most expensive part of an AO control loop.
For the new generation of extremely large telescopes, the
reconstruction problem (12) has to be solved for measure-
ments of 104 sensor subapertures at an update frequency
in the kHz range. To guarantee real-time applicability of
the spline based method with intensity measurements, we
propose two approaches to reduce the computational com-
plexity. De Visser and Verhaegen [2012] have shown that
the local nature of the B-spline framework allows highly
distributed computation of the LS estimate. This method
has been implemented for spline based wavefront recon-
struction from slope measurements and can be extended
to the method discussed in this paper. In addition to the
distributed implementation for speeding up, we focus in
this paper on a second strategy based on compressive sens-
ing [Candès, 2006]. We present simulation results which
show that the number of pixels used for estimation of the
wavefrornt can be reduced dramatically without significant
loss of accuracy and robustness of the reconstruction.
Motivated by the work of Ohlsson et al. [2012] and others
who applied principles of the theory of compressive sensing
and sampling to solve the phase retrieval problem, we only
use M ′ := cr

100M , for 0<cr≤100, of the total number of M
given intensity measurements stored in iglobmeas to estimate
the spline coefficients. This is implemented by introducing
a selection matrix S ∈ RM ′×M in the cost function of the
global reconstruction problem in (12), which yields a new
cost function

JCS
lin = ||S(iglobmeas − c

glob
0 )− SCglob

1 αglob||22 . (15)

Parameter cr denotes the undersampling of the intensity
images and is further referred to as compression ratio. The
LS estimate of the B-coefficient vector is then computed
as

α∗ = NH

(
(CCS

1 )TCCS
1

)−1(CCS
1 )TS(iglobmeas − c

glob
0 ) , (16)

where CCS
1 := SCglob

1 NH ∈ RM ′×kH with kH denoting the
nullspace dimension of constraint matrix H.
Choosing at each time instance, the M ′s = crMs largest in-
tensities in each subaperture of the sensor would guarantee
maximal signal to noise ratio. However, this approach is
not feasible for real-time computations as it would turn
the selection matrix S to become time variant. The conse-
quence of this is that the reconstruction matrix R can
no longer be precomputed, thereby increasing the real-
time computational complexity (unacceptably for large
scale problems such as for extremely large telescopes).
Two time-invariant procedures to construct a precom-
puted selection matrix S are considered in this paper. The
first is inspired by the random sampling often performed
in compressive sampling [Candès, 2006]. This results in
determining S such that at each time instance an identical
(though a priori determined random) selection ofM ′s pixels
is made in each subaperture. The selection can differ for
different subapertures. The second option is to choose the
M ′s intensity measurements which are most “favoured”
by the linear model in the following manner: For each
subaperture n we determine a vector kn ∈ RMs as

kn(m) =
K∑
j=1

|C1
n(m, j)|, (17)

for m = 1, ...,Ms. The entries of this vector reflect the av-
eraged (in terms of the `1-norm) sensitivity of the intensity
measurements to the spline coefficients corresponding to a
local aperture. The selection matrix Sn ∈ RM ′

s×Ms is in
this second option constructed such that the M ′s pixels
inmeas(m) with the highest values for kn(m) are selected.
The global block diagonal selection matrix is given by

S = diag [S1, · · · ,SN ] ∈ RM
′×M . (18)

The motivation for the second selection option is that the
“most sensitive” pixels will also be those that have the
best signal to noise ratio. This heuristic argument will be
further illustrated in the experimental Section 5, where
a significant advantage of the Jacobian based over the
randomly computed selection matrix is shown.

5. NUMERICAL SIMULATIONS

For the simulations, the same setup of a Hartmann sensor
with 10 by 10 subapertures sensing at a wavelength of
λ = 638nm as in [Polo et al., 2012] was considered.
Each Hartmann hole has a side length of 200µm and is
separated by a distance of 526.5µm from the adjacent
hole. The distance of propagation between the aperture
plane and the detector plane of the sensor is 10mm. Each
subaperture corresponds to a square domain of 25 by
25 pixels in the detector plane. The measurement noise
introduced by read out and photon noise in the sensor is
modeled as a zero mean Gaussian distribution of standard
deviation σccd = 4×10−4, based on the specification of a
commercial camera, which is added onto the normalised
intensity measurements.
An astigmatism, the 4th Zernike mode in Noll’s notation,
is used to model the incoming wavefront with small aber-
rations of α4 = 0.1λ where α4 denotes the 4th Zernike
coefficient. It was shown by Silva et al. [2013] that the
spline based method for intensity measurements provides
stable results for aberrations smaller than λ. The wave-
front is approximated on the sensor’s aperture plane with
a B-form polynomial of degree d = 2, subject to continuity
constraints of order r = 0. Note at this point that all
results presented in this paper can also be obtained for
higher order aberrations if the spline degree is increased to
the radial degree of the used Zernike modes and continuity
of the same order is imposed [Silva et al., 2013]. To evaluate
the performance of the wavefront reconstruction the RMS
values of the residual wavefront, the difference between
the simulated and the estimated phase screen (both nor-
malised to the wavelength λ), have been computed for
several noise realisations to obtain an averaged result.

5.1 Selection matrix and computational gain

In this section, the advantage of the Jacobian based selec-
tion matrix S over its randomly computed counterpart is
shown. It becomes especially significant for the compres-
sion ratios of interest cr < 20%. Further, a short complex-
ity analysis of the real-time computations which have to be
performed in the presented reconstruction method shows
the acceleration achieved with the compressive sampling
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approach.
In Figure 2, the RMS values of the normalised residual
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Fig. 2. RMS errors between the reconstructed and the orginal
Zernike wavefront for decreasing percentage cr% of intensity
measurements used. Triangles: Randomly computed selection
matrix. Circles: Jacobian based selection matrix. Crosses: Real-
time computational complexity depending on cr%.

wavefront are plotted in logarithmic scale for wavefront
estimates computed with cr% of the noisy CCD image
pixels simulated for the described Hartmann setup and an
astigmatic incoming wavefront. One can see, that the ac-
curacy of the estimation performed for randomly selected
pixels decreases already for less than 20% of compression
ratio, whereas the Jacobian based selection matrix pro-
vides stable results up to 10% and shows a steep increase
in the RMS error only at a compression ratio of 1%. Even
though these results do not replace a full analysis of the
Jacobian based selection, they give sufficiently strong in-
dication to use this approach for the compressive sampling
in this paper.
Next to the evolution of the RMS error, the computational
complexity of the real-time computations (which have to
be performed in order to obtain the values of the estimated
wavefront at N ′ points stacked in coordinate vector x ∈
RN ′×2) is shown in Figure 2 for decreasing compression
ratio cr. This real-time computations consist of applying
(14) and (16), where the product

(
B(x)NH

)
∈RN ′×kH of

the spline evaluation matrix and the nullspace projector
as well as the pseudo-inverse

(
CCS

1

)+∈ RkH×M ′
of the

modified Jacobian are precomputed. The selection of M ′
intensities with sparse matrix S and the subtraction of the
respective linearization offsets can be scaled at M ′ FLOPs
(Floating Point Operations). The computational complex-
ity is then given by C =

(
N ′kH+kHM ′+M ′

)
FLOPs where

the compressed total number of intensity measurements is
M ′ = crMsN with Ms = 625 pixels per subaperture and
N = 100 subapertures in the considered case. Note that
for a real case scenario of an extremely large telescope N
scales with O(104). The real-time computation is applied
in the described way as dimension kH of the nullspace
of constraint matrix H is much smaller than K and M ′.
kH is a function of the total number of simplices and
internal edges in the triangulation as well as degree d
and continuity order r of the spline model [De Visser
and Verhaegen, 2013] and equals 6 for the chosen setup
and model. For p evaluation points per subaperture the
computational complexity is obtained with C =

(
p kHN +

(kH + 1)MsNcr
)
FLOPs as linearly decaying function of

compression ratio cr, which is plotted for p = 4 evaluation
points per subaperture in Figure 2.

5.2 Open-loop comparison

In the following section, we present simulation results for
open-loop reconstruction which show that the spline based
method for intensity measurements with compressive sens-
ing of ratio cr = 10% suffers only minor to negligible
losses in peformance to variations in aberration strength
and to different noise standard deviations, compared to
the original method using the full CCD output. To allow
further comparison to a standard wavefront reconstruc-
tion method, a modal reconstruction method using slope
measurements was used for the same setup. It approxi-
mates the averaged slopes of the wavefront seen by each
Hartmann subaperture computing the center of gravity
of the respective intensity distributions. From these slope
measurements the wavefront which is parametrized with
Zernike polynomials can be estimated by solving the LS
problem for optimal weighting coefficients.
Figure 3 shows the RMS values of the absolute error maps
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Fig. 3. RMS errors for WFR with Spline based method for 10% of
the intensity measurements (Triangles), spline based method
using all intensity measurements (Squares), classical modal
reconstruction method for slope measurements (Stars). Top:
Fixed noise standard deviation, increasing aberration strength.
Bottom: Fixed aberration, increasing noise level.

between the estimated wavefront and the original incoming
wavefront simulated by an astigmatism. In the first plot, a
fixed noise standard deviation σccd = 4×10−4 was assumed
while the open-loop reconstructions were performed for
increasing aberration strength simulated by augmenting
the Zernike weight α4. One can see that the spline and
intensity based method gives almost the same accuracy
for reconstruction from 100% or 10% of the measurements.
For aberrations smaller than λ, the assumption of locally
independent imaging holds and aberrations of higher poly-
namial orders can be retrieved from the intensity measure-
ments. The centroid based method processes only informa-
tion about the local slopes of the wavefront which yields
a less accurate approximation. The RMS errors of both
methods reach a threshold for very small aberrations due
to the influence of the measurement noise. For aberrations
larger than 10λ, the diffraction pattern corresponding to
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one subaperture affects the intensity pattern of the neigh-
bouring such that the assumption for independent imaging
is not valid anymore. In this case, slope measurements give
better information about the shape of the wavefront. The
second plot shows the behaviour of the RMS error for
the same simulations with a fixed α4 = 0.1λ aberration
where different noise levels on the intensity measurements
were simulated. Again, the spline method shows the same
behaviour using 10% of the intensity measurements as for
reconstruction from all the pixels. Only a minor loss in
accuracy was observed for the reduced version. Since the
used spline polynomials of degree 2 cannot approximate
higher modes in the wavefront, the performance reaches a
limit due to fitting errors.

5.3 Closed-loop comparison

In the previous section, the presented results were obtained
for open-loop reconstruction where neither a feedback loop
nor a deformable mirror was included in the simulation.
In this section, the discussed wavefront reconstruction
methods were integrated in a classical AO feedback loop.
It could be shown that the compressive sampling pre-
serves the convergence properties and the sensitivity of
the wavefront reconstruction error to noise. The closed-
loop setup includes a simulator of the Hartmann sensor
specified at the beginning of Section 5 which computes
the intensity measurements and models the read out and
photon noise. The wavefront values are then reconstructed
using the presented methods. A delay was added in the
loop to simulate the sensor’s read out time as well as time
consumed for the computations and communications in a
real-time implementation. To compensate for the delay,
a PI controller is integrated and tuned to minimize the
delay’s effect. For the correction, a perfect deformable
mirror was assumed which can be adjusted without any
fitting errors to the shape of the reconstructed wavefront.
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Fig. 4. RMS values of the residual wavefront for a classical closed-
loop AO setup for reconstruction from intensities with the
spline based method (solid: 10% of pixels; dashed: all pixels)
and from slopes with the classical modal method (dot-dashed).

Figure 4 shows the results obtained for a 0.1λ astigmatism
aberration with measurement noise of standard deviation
10−4. The spline based method reaches the same con-
vergence and noise sensitivity levels for the compressed
number of intensity measurements as for the full number
of pixels. The RMS values of reconstruction with the
modal method for slope measurements emphasizes that the
new intensity based spline approach converges to a lower
error level and is less sensitive to noise than the classical
method.

6. CONCLUSION

In this paper, we introduced a procedure to accelerate
the real-time computation part of a recently presented
wavefront reconstruction method for intensity measure-
ments of a Hartmann sensor without compromising the
performance of the reconstruction. The novel compres-
sive sensing reconstruction method significantly reduces
the number of intensity measurements used for wavefront
reconstruction to only a small percentage of the full image
information. First simulations of open- and closed-loop AO
systems gave very promising results. This indicates that
performance and robustness, as well as the convergence
gain that was established with the new intensity based re-
construction method [Silva et al., 2013], could be preserved
with a significantly reduced computational complexity.
The novel compressive sensing method is highly suitable
for a distributed implementation, since the selection pro-
cess is independently performed for each intensity pattern
in the sensor’s subapertures which stands in contrast to
the globally applied random sampling in many compressive
sensing methods. Due to the local nature of the presented
compressive sensing reconstruction method for intensity
measurements, it can be integrated with our recent work
of De Visser and Verhaegen [2012] who have shown that
the locally defined B-spline framework allows highly dis-
tributed computation of the LS wavefront estimate.
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